Current and future projections of glacier contribution to streamflow in the upper Athabasca River Basin

Canadian Geophysical Union: May 2017 H06: Advances in Cold Regions Hydrology

M. Chernos^{1,2}, R.J. MacDonald^{1,2}, D. Cairns², and J. Craig³ ¹MacDonald Hydrology Consultants Ltd., Cranbrook, BC, V1C 6Z4 ²Alberta WaterSMART, Calgary, AB, T2L 2A7 ³ Dept. of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON

Athabasca River Basin

- Drains ~168,000 km²
- Flows ~1,250 km from the Columbia Icefield (Jasper National Park) to Lake Athabasca
- One of the longest free-flowing (undammed) rivers in the world
- Contains a variety of land use:
 - Jasper NP, Peace-Athabasca Delta UNESCO World Heritage Site
 - Heavily forested foothills
 - Agricultural plains
 - Boreal forest
 - Oil and Gas
- Entire basin modelled as part of the Athabasca River Basin Initiative

Athabasca River Headwaters

- Upstream of Hinton, AB (9,720 km²)
- Primarily forest and alpine cover
- Glaciation primarily along southwest margins of watershed; currently covers
 - 2.8% of area upstream of Hinton,
 - 5.8% of area upstream of Jasper

Modelling Methods

Climate Change Projections

Athabasca River Basin Headwaters Climate Change Scenarios

- CanESM2 RCP 4.5 and RCP 8.5 Scenarios from ClimateWNA
 - Three thirty year periods
- Observed records scaled against differences between scenario and 1980 - 2010 normals

Warmer air temperatures, more precipitation

CanESM2 RCP 4.5 CanESM2 RCP 8.5

Values obtained from ClimateWNA (www.climatewna.com)

Climate Change Projections (cont.)

Glacier Area

- CanESM2 RCP 4.5 and RCP 8.5 Scenarios
- Implemented decadal changes from 2010 - 2100 into Raven

ARB projected to lose half glacier coverage by ~2060

Data are obtained from Clarke, G. K., Jarosch, A. H., Anslow, F. S., Radić, V., & Menounos, B. (2015). Projected deglaciation of western Canada in the twenty-first century. Nature Geoscience, 8(5), 372-377.

Modified HBV-EC

Emulated in Raven, following the HBV-EC model with a few notable points:

- **Snow-melt**: spatially corrected Temperature Index Model that varies by day-length and is corrected by land cover type.
- Glacier melt: exposed ice uses scaled melt factor (~x3.5 snow)
- **Potential Evapotranspiration**: Priestley-Taylor equation
- **Baseflow:** (2-reservoir soil) lowest layer uses VIC algorithm

Model Performance

- Temperature/Precipitation Lapse Rates, Snowmelt parameters (and coniferous forest coverage) are most sensitive parameters
- Air Temperature and Snow Water Equivalent are well simulated at independent verification sites

Site	Network	Elevation (m) _	r ²		
			Т	Р	SWE
Sunwapta	EC, AB_EP	1416	0.87	-	0.63
Marmot Basin	EC, AB_EP	1800	0.93	0.71	0.63
Southesk	AB_EP	2045	-	-	0.82
Yellowhead	EC, BC_RFC	1847	0.89	-	0.92

8

Model Performance

- Observed - Simulated

Shaded areas correspond to 10% and 90% quantiles.

Site	Calibration		Verification	
Site	NSE	PBIAS	NSE	PBIAS
Athabasca River At Hinton	0.90	1%	0.91	1%
Athabasca River Near Jasper	-	-	0.93	-5%
Miette River Near Jasper	0.87	5%	0.86	2%

Current Glacier Contributions to Streamflow

up to 20-25% of flow in late summer

Non-Glacial Sources

Glacier Discharge

10

Obtained from Raven tracer routine

Non-Glacial Sources

Glacier Discharge

Non-Glacial Sources

Glacier Discharge

Non-Glacial Sources

Glacier Discharge

Non-Glacial Sources Glacier Discharge

14

Shaded areas represent 10% and 90% quantiles.

Peak Water?

Streamflow Under Future Conditions

CanESM2 RCP 4.5

— 1980 - 2010 — 2010 - 2040 <mark>—</mark> 2040 - 2070 <mark>—</mark> 2070 - 2100

Shaded areas correspond to 90th and 10th quantiles.

Implications and what (if anything) we do about it

Implications of less glacier area in the ARB

- Less July-September streamflow; typically a period where water shortages already occur downstream
 - Agricultural Demand
 - Industrial Licences
 - Municipal Use
 - Aboriginal Navigation

What can we do to offset reduced late-summer streamflow?

- Timing more critical than annual water yields
- Precautionary Withdrawal Limits/Reduce demands?
 - Demands expected to increase with more population, agriculture
- Build water storage (off-stream storage, dams)
- "Switzerland Attempts to Conserve a Glacier by Covering It in Blankets"
- "Artificial glacier could help Ladakh villagers adapt to climate change"

Conclusions

• Glaciers are important in the upper Athabasca River Basin

- (for streamflow, but also a host of things not mentioned here)
- Provide up to 20% of streamflow at Hinton in August, very little during the rest of the year
- Glacier contributions occur mostly after freshet -- coincide with lower streamflow

• Glacier coverage is expected to decrease

- ARB expected to be lose about half it's current glacier coverage by 2070, and for it to halve again by 2100
- Shrinking glaciers mean less late-summer/fall water
- Glacier discharge expected to increase until 2050
 - Double the contributions to streamflow by 2050, but expected to decrease after that
- Future streamflow expected to increase in spring, decrease in summer/fall
 - Higher, earlier freshet (warmer temperatures increase rate and timing of snowmelt)
 - Less streamflow in August-September, larger changes further into future

Timing of flow is key:

Less streamflow during periods when water deficits are already common is likely to stress the system, will require adaptation or engineering solutions (or a combination of the two).

Acknowledgements

ARB Working Group

Where can I find out more about this project?

Google arb initiative

Where can I get the slides for this?

• <u>https://github.com/mchernos/CGU2017</u>

Outline

1. Introductions

- a. Athabasca River Basin and Project Scope
- b. Athabasca River Basin Headwaters
- 2. Hydrologic Modelling Methods
 - a. Data (Meteorology and Land Use)
 - b. Glacier Dataset
 - c. Modified HBV-EC Model
 - d. Model Calibration and Verification
 - e. Climate Change Scenarios
- 3. Model Results
 - a. Model Performance
 - b. Current Glacier Contributions to Streamflow
 - c. Future Glacier Contributions to Streamflow
 - d. Streamflow Under Future Conditions
- 4. Implications and Future Considerations

Hydrologic Response Units (HRUs)

- In order to reduce computation time, complexity, the watershed is divided into HRUs.
- Within each sub-basin, proportion of each land cover type delineated by:
 - 100 m elevation bands (1000 3800 m)
 - Land cover type (Coniferous Forest, Deciduous Forest, Cut Forest, Grassland, Wetland, Mine, Disturbed (Urban), Alpine, and Glacier)
 - Aspect and Slope classes
- Glacier change: Decadal changes implemented within Raven
 - 'GLACIER' HRUs changed to 'ALPINE'
- Resulted in 18,234 HRUs

Athabasca River Basin Headwaters Model Hypsometry

Data Sources

• Streamflow

- 3 Water Survey of Canada Hydrometric Gauges
- Athabasca River near Jasper, at Hinton, and one major tributary (Miette River)

• Climate Data

- Four Environment Canada climate stations (Mica, Cariboo, Jasper, Hinton):
- Seven synthetic climate stations:
 - Scaled nearest observed met station using PRISM climate normals 1961-1990.

Land Cover

- <u>ABMI 2010 Land Cover</u> dataset, derived from Landsat
- Glacier coverage
 - From Clarke, G. K., Jarosch, A. H., Anslow, F. S., Radić, V., & Menounos, B. (2015). Projected deglaciation of western Canada in the twenty-first century. *Nature Geoscience*, 8(5), 372-377.
 - <u>http://couplet.unbc.ca/data/RGM_archive/</u>

Model Calibration

- Calibrated using <u>OSTRICH</u>
 - Levenberg-Marquhart and DDS algorithms
 - Calibrated to Athabasca River Near Jasper and Miette River at Jasper from 2000 2010
 - Verified from 1990 2010
- Step-like process to leverage multiple data sets and (hopefully!) improve hydrological process-representation

Guiding Principle		Parameters	Criteria/Objective
1)	Isolate and exclude insensitive parameters	All	CSS ≈ 0 ("not calculated")
2)	Ensure correct volume of water in catchment	T, P lapse rates, Interception, glacier melt	Minimize PBIAS, maximize NSE
3)	Ensure correct freshet timing	T lapse rate, melt factors	Maximize NSE, ensure SWE timing
4)	Calibrate routing, sensitivity, and baseflow	Soil routing parameters	Maximize NSE
5)	Approximate parameter uncertainty	All	Obtain parameter SE

Non-Glacial Sources Glacier Discharge

Water Balance Under Current and Future Conditions

