
Raven:

User’s and Developer’s Manual v2.7

the Raven development team

Contributions to Raven, its utilities, documentation, testing, and source code, have been made by
numerous students at the University of Waterloo, including Rob Chlumsky, Susan Huang, Ayman
Khedr, Konhee Lee, Stuart Pearson, Silvie Spraakman, Graham Stonebridge, Connor Werstuck,
and Cloud Zhang. Andrew P. Snowdon contributed much to the library of hydrological process
algorithms, and to the global numerical solver. Juliane Mai has provided Mac/Linux compilation
support and NetCDF gridded data support. Martin Serrer from NRC contributed to the I/O
design, code optimization, and interfacing tools. Wayne Jenkinson from NRC and Georg Jost
from BC Hydro have provided debugging, benchmarking, and planning support. The base software
architecture and much of the core program was developed by James R. Craig at the University of
Waterloo, with support through multiple conversations with Drs. Eric Soulis and Bryan Tolson.

Contents

1 Introduction 3
1.1 Model Abstraction . 3
1.2 Global Numerical Algorithm . 6
1.3 Conceptual Model . 9

2 Running Raven 10
2.1 Installation . 10
2.2 Input Files . 10
2.3 Running the Model . 12
2.4 Output Files . 12
2.5 Calibration, Visualization, and Uncertainty Analysis 14
2.6 Common Run Approaches . 15
2.7 Troubleshooting Raven . 15
2.8 Version Notes . 17

3 Raven Code Organization∗ 19
3.1 Classes . 19
3.2 Contributing to the Raven Framework* . 22

4 The Hydrological Process Library 26
4.1 Precipitation Partitioning . 26
4.2 Infiltration . 29
4.3 Baseflow . 33
4.4 Percolation . 35
4.5 Interflow . 37
4.6 Soil Evaporation . 38
4.7 Capillary Rise . 40
4.8 Canopy Evaporation . 41
4.9 Canopy Drip . 42
4.10 Abstraction . 43
4.11 Depression Storage Overflow . 44
4.12 Snow Balance . 45
4.13 Snow Sublimation . 47
4.14 Snow Melt . 48
4.15 Snow Refreeze . 49
4.16 Snow Albedo Evolution . 50
4.17 Glacial Melt . 51
4.18 Glacier Release . 52
4.19 Crop Heat Unit Evolution . 53

1

4.20 Special Processes . 54

5 Routing 57
5.1 In-Catchment Routing . 57
5.2 In-Channel Routing . 60
5.3 Reservoir Routing . 63

6 Forcing Functions 65
6.1 Spatial Interpolation . 66
6.2 Temperature . 67
6.3 Precipitation . 70
6.4 Potential Evapotranspiration (PET) . 72
6.5 Shortwave Radiation . 77
6.6 Longwave Radiation . 80
6.7 Cloud Cover . 81
6.8 Energy . 82
6.9 Atmospheric Variables . 84
6.10 Sub-daily Corrections . 86
6.11 Monthly Interpolation . 87

7 Tracer and Contaminant Transport 89
7.1 Constituent Sources . 90
7.2 Catchment Routing . 90
7.3 In-channel Routing . 90

8 Model Diagnostics 91
8.1 Pointwise vs. Pulsewise comparison . 91
8.2 Diagnostic Algorithms . 91

A Input Files 94
A.1 Primary Input file (.rvi) . 94
A.2 Classed Parameter Input file (.rvp) . 109
A.3 HRU / Basin Definition file (.rvh) . 121
A.4 Time Series Input file (.rvt) . 124
A.5 Initial Conditions Input file (.rvc) . 132

B Output Files 134

C Reference Tables 136

D Template Files 139
D.1 UBCWM Emulation . 139
D.2 HBV-EC Emulation . 141
D.3 GR4J Emulation . 143

2

Chapter 1

Introduction

This document describes the design and operation of the Raven hydrological modelling framework,
a software package for watershed modeling. The document is meant for both users of the software
who wish to run the program and understand the multitude of model options and by new developers
of the Raven software who wish to understand, customize, and/or upgrade the code (chapters and
sections for developers are marked with an asterisk∗).

Raven is a mixed lumped/semi-distributed model that can be used to understand the hydro-
logical behavior of a watershed and assess the potential impacts of land use, climate, and other
environmental change upon watershed properties such as flood potential, soil water availability, or
groundwater recharge. The model can be used to investigate individual storm events or develop
long-term water, mass, and energy balances for resource management and water quality assessment.
Raven’s uniqueness primarily comes from its numerical robustness and its flexibility; Raven is
able to use a wide variety of algorithms to represent each individual component of the hydrological
cycle and has a quite general treatment of every possible model option, from output access to
numerical simulation algorithm. Because of its modular design, users have access to a number of
different methods of interpolating meteorological forcing data, routing water downstream, repre-
senting evaporation, and any number of other model options. With this flexibility, a modeler can
examine the wide range of possible outcomes that result from our uncertainty about a watershed
model, and test hypotheses about watershed function.

In addition, Raven’s flexibility and large library of user-customizable subroutines allow it to
emulate (and augment) a number of existing hydrological models. Raven has achieved level 1
(near-perfect) emulation of the UBC Watershed Model (Quick, 1995), Environment Canada’s ver-
sion of the HBV model (Bergstrom, 1995), and GR4J (Perrin et al., 2003). Level 2 (conceptual)
emulation is available for various algorithms used which are comparable to those found in (e.g.,)
Brook90, SWAT, VIC, PRMS, HYMOD, and/or described within various hydrological texts, such
as Dingman’s Physical Hydrology (2002).

1.1 Model Abstraction

While much of Raven’s operations are generic and flexible, they are all built up from critical as-
sumptions about the organization and operation of a watershed. These collectively form the core
structure of any Raven model, which is depicted in figure 1.1. A watershed is here assumed to be
assembled from a number of subbasins, which in turn are assembled from a number of contiguous

3

or non-contiguous hydrological response units (HRUs), defined as areas with hydrologically unique
responses to precipitation events. Each HRU is defined by a single combination of land use/land
type (LU/LT), vegetation cover, and terrain type and is underlain by a defined soil profile and
stratified aquifer. Membership in these classification schemes, or property classes, is used to deter-
mine all or part of the physically-based properties of the response unit, such as soil conductivity
or leaf area index. Each HRU is composed of a finite number of storage compartments, such as the
soil, canopy, and snowpack, in which water and energy are stored (see table 1.1). Given some set of
user-specified controlling hydrological processes (see table 1.2), Raven builds and solves the resul-
tant zero- and 1-dimensional water and energy balance problem for each HRU, redistributing water
within the HRU in response to precipitation and other atmospheric forcings. Some of this water is
redistributed to surface water channels associated with the subbasin, where it is routed downstream
from subbasin to subbasin. During this simulation process, diagnostics about water/mass/energy
storage distribution, cumulative flux, and instantaneous fluxes may be tracked.

Figure 1.1: Land surface partitioning in Raven

surface(ponded water) surface(lakes and streams) atmospheric

shallow soil deep soil groundwater aquifer

frozen snow liquid snow canopy

glacial ice glacial melt wetlands

Table 1.1: Common storage compartments that correspond to state variables in hydrological models
- each compartment can store both water and energy (a non-comprehensive list)

Each HRU is wholly defined by its geometric properties (area, latitude, longitude, parent sub-
basin), topographic properties (slope, aspect), subterranean soil profile, and its property class
membership (land use, vegetation, terrain). Each soil horizon in the soil profile and the aquifer in
turn belong to a soil property class. All individual HRU properties are assigned based upon mem-

4

precipitation runoff evaporation transpiration

drip trunk drainage canopy drainage interflow

throughfall infiltration recharge capillary rise

snowmelt sublimation glacial melt

Table 1.2: Common hydrological processes that may be included in a Raven model

bership in these classes, i.e., most of the properties belong to the class, not the HRU, enabling the
solution of a finely discretized model (>1000 HRUs) without generating an equally large number
of unknown parameters.

As a generalization of standard methods used to represent shallow soils in hydrological models,
the shallow subsurface may be represented by one or many discrete layers, which is generated
from the specified soil profile, as shown in figure 1.2. The soil profile, specified for each HRU,
describes the thickness and soil type of each constituent horizon. Soil parameters for the M -layer
soil model (e.g., hydraulic conductivity) are then determined based upon soil class membership of
each soil horizon, aggregated or disaggregated depending upon desired vertical model resolution.
Alternatively, the soil layers may correspond to conceptual soil moisture stores not explicitly linked
to physical soil horizon, as is done in many lumped watershed models.

Figure 1.2: Translation of soil profiles to soil models. Properties are aggregated or disaggregated
depending upon specified vertical resolution of soil model

Subbasins are similarly succinctly characterized by their channel characteristics, their topology
with respect to other subbasins (i.e., their outlet basin) and their cross-sectional profile. Again,
properties are linked to channel and profile types, so finely discretized distributed models may still
be parsimonious in terms of parameters.

With Raven, unlike other models, the modeler determines the degree of model complexity. At
the simplest, a watershed can be treated as a single giant HRU/subbasin where only daily precipi-
tation and temperature are needed to provide predictions of streamflow. In the other extreme, the
model could be composed of thousands of HRUs consisting of tens of individual storage compart-
ments and forced using measured hourly longwave radiation, wind velocity, and air pressure. The
complexity of the model is limited by the user or (even more sensibly) the availability of data.

While the various components of the HRU water balance are user-specified, an example schematic
of the flow of water in a single HRU can be seen in figure 1.3.

5

Figure 1.3: Example flowchart of the water balance in a Raven model. Note that individual
processes and storage compartments may be added or subtracted from this schematic.

1.2 Global Numerical Algorithm

The operation of Raven is fundamentally simple. Starting from some initial state of the watershed,
the model moves forward in time, updating the distribution of water, mass and energy both within
and between HRUs in response to physical forcings such as precipitation, and laterally routing water
and energy downstream to the watershed outlet. The entire system is simulated one timestep at a
time. During each timestep, the following sequence of events occur:

1. The forcing functions are updated, i.e., the representative values of rain and snow precip-
itation, temperature, and perhaps wind velocity, longwave radiation, etc. are generated or
extracted from user-specified time series at a (relatively small) number of gauge stations, then
interpolated to every HRU in the model. Alternatively, these functions may be specified as a
gridded model input from a regional climate or weather model.

2. All of the model parameters which change in response to the current state of the system are
updated in each HRU (for example, canopy leaf area index may be updated with the seasons)

3. Using these updated forcing functions and parameters, the state of the system at the end of the
timestep is determined from the state of the system at the start of the timestep by rigorously
solving the coupled mass and energy balance equations in each HRU in the model. These
mass and energy balances are assembled from the relevant hydrological processes occurring in
the HRU, which individually redistribute water and energy between different compartments
(e.g., the evaporation process may move ponded water to the atmosphere).

4. If needed, advective and dispersive mass transport of constitutents (contaminants or tracers)
is simulated using the water fluxes over the time step.

5. Runoff from the HRUs (and mass/energy associated with this runoff) is routed into the surface
water network in each subbasin, and concurrently routed downstream.

6

6. Mass/Energy balance checks are performed

7. Output is written to a number of continuous output files

The process is repeated until the model has been run for the specified duration.

1.2.1 The HRU Mass/Energy Balance

The problem being solved by Raven within each HRU is fundamentally that of a coupled system of
ordinary and partial differential equations (ODEs and PDEs). These ODEs and PDEs individually
describe either (1) the accumulation of mass or energy within a given storage compartment or
continuum (i.e., a mass or energy balance) or (2) the temporal change in some auxiliary system
property (e.g., snow density or albedo).

Here, each state variable in an HRU is subject to the influence of a number of hydrological
processes. Increases or decreases in a primary state variable are simply the additive combination
of influx or outflux terms (i.e., the ODE or PDE corresponding to a primary state variable is built
up from mass or energy balance considerations). Increases or decreases in auxiliary variables are
likewise assumed to be written as the additive combination of terms. We can therefore write an
individual differential equation for the change in the jth state variable, φj , as:

∂φj
∂t

=
NP∑
k=1

NS∑
i=1

Mk
ij(
~φ, ~P , ~F) (1.1)

where Mk
ij is the change in state variable j due to process k (of NP processes), which is linked to

another state variable i. This linkage typically communicates flow direction, e.g., a process Mk
ij

moves mass or energy from storage compartment i to compartment j. A process Mk
ii (i.e., i = j)

represents an independent rate of change for an auxiliary variable, and does not connotate exchange
of mass or energy between compartments. The fluxes or rates-of-change returned by each process
are a function of the current vector of state variables (~φ), system parameters (~P), and forcing
functions ~F . For example, the mass balance for ponded water on the land surface (depression
storage, DS) may be given as:

∂φDS
∂t

= P − E − I −R (1.2)

where P is the precipitation input, E is the evaporation rate, I is the infiltration rate into the
soil beneath, and R is the overflow rate of the depression. Each of these processes (Mk) may be a
function of a number of forcings (e.g., precipitation and temperature), current state variables (e.g.,
ponding depth and soil saturation), and parameters (e.g., maximum depression storage and soil
hydraulic conductivity).

The full system of equations describing the influence of all processes in an HRU can be written
in matrix form:

∂~φ

∂t
= MG(~φ, ~P , ~F){1} (1.3)

where ~φ is the complete vector of state variables, MG is a NSxNS global symmetric matrix of
composite rate-of-change functions, where NS is the number of state variables, and {1} is a column
vector filled with ones. The global process matrix is the sum of contributions from each individual
symmetric process matrix, i.e., MG =

∑
Mk.

The above mathematical formulation enables the complete separation of individual hydrological
process algorithms, which may individually be very simple or quite complicated. It also enables the

7

use of a variety of methods for solving the global system of equations defined by 1.3. Because of
the approach used to solve this system, mass balance errors are typically on the order of machine
precision.

1.2.2 Routing

Raven separately handles in-catchment routing (from the HRU to the major reach in the subbasin)
and in-channel routing (in and between subbasin stream reaches). The concept is depicted in figure
1.4.

Figure 1.4: The general routing model of Raven

In-catchment routing to the primary basin channel is generally handled using a convolution
or unit hydrograph (UH) approach, where the UH for each catchment is either user-specified or
generated from basin characteristics. The immediate history of quickflow, interflow, and baseflow
output to surface water is stored in memory as an array of time step-averaged outflow rates to
off-channel tributaries, ~Qlat; the duration of this history is determined by the subbasins time of
concentration, tc. To transfer this water to either the channel segments within the subbasin or
directly to the subbasin outflow, the pulse hydrograph is convolved with the unit hydrograph,
represented as a piecewise linear function. Water and energy is transferred to the downstream ends
of channel segments within the reach.

In-channel routing , for each time step, is assumed to be completely characterized by a finite
history of upstream inflow (stored as a vector of flow values at fixed time intervals of ∆t, ~Qin), and
the outflow at the start of the time step; the duration of this history is determined by the minimum
flood celerity and the length of the reach segment. During each time step, moving from upstream
to downstream at both the watershed level (basin to basin) and subbasin level (reach segment to
reach segment), a routing algorithm is used to generate the outflow from each reach based upon
the time history of upstream inflows, i.e.,

Qn+1
out = Froute(Q

n
out,

~Qin, ~Ps) (1.4)

where Froute is the routing algorithm, ~Ps is a vector of channel parameters, typically a number
of stored channel rating curves, primary channel and bank roughness, and, if applicable, weir or
reservoir relationships. This formalization supports both common lumped and distributed flow
routing methods depending upon the form of Froute(), including Muskingum-Cunge, lag-and-route,
transfer function/unit hydrograph convolution, and, if desired, a more complex kinematic wave or
diffusive wave approach (not currently implemented). Notably, sub-time-stepping for routing is
also enabled with this formulation.

8

Reservoir routing . At the outlet of each subbasin, the option exists to specify a reservoir which
mediates the outflow from the subbasin channel. This reservoir is characterized using specified
volume-stage and surface area-stage relationship, and level-pool outflow from the reservoir may
be calculated using a variety of methods, including simple weir formulae to complex reservoir
management rules. The mass balance within the reservoir is calculated as

dV (h)

dt
= Qin(t)−Qout(t, h)− ET (A(h)) + P (A(h)) (1.5)

where V (h) is the stage (h) dependent volume of the reservoir, Qin is the inflow to the reservoir,
Qout(t, h) is the outflow from the reservoir (a function of stage), and ET and P are the evapotran-
spiration from and precipitation to the reservoir surface, both functions of surface area.

1.3 Conceptual Model

The critical feature of Raven is that it does not make any assumptions about the functioning of
the watershed. That is the modelers job. There is no single system conceptualization that is forced
upon the modeler, other than those imposed by the Subbasin-HRU model framework. Rather, the
modeler determines what processes to use, how to parameterize the watershed, how to discretize
the watershed. All the while, Raven makes this easy to do by providing reasonable defaults, an
intuitive file interface, and a large library of hydrologic and algorithmic options.

9

Chapter 2

Running Raven

Much energy has been expended to ensure that the operation and use of Raven is as simple,
convenient, intuitive, and user-friendly as possible. Model commands and file formats are in plain
English, error messages are reasonably concise and explanatory, unnecessary restrictions or require-
ments are not forced on the user, and model input and output files can be read and understood
with a minimal learning curve. There may be, however, a learning curve in familiarizing oneself
with the large variety of modelling options and how they differ.

2.1 Installation

There is no formal installation package for Raven, and no special programs are libraries are required
to operate Raven. Simply download the windows or linux executable Raven.exe and unzip to a
local drive.

2.2 Input Files

In order to perform a simulation using Raven, the following five input files are required:

• modelname.rvi - the primary model input file
This is where the primary functioning of the Raven model is specified. This includes all of
the numerical algorithm options (simulation duration, start time, time step, routing method,
etc.) and model structure (primarily, how the soil column is represented). Critically, the list
of hydrological processes that redistribute water and energy between storage compartments
is specified here, which define both the conceptual model of the system, the specific state
variables simulated, and the parameters needed. Lastly, various options for output generation
are specified.

• modelname.rvh - the HRU / basin definition file
The file that specifies the number and properties of subbasins and HRUs, as well as the
connectivity between subbasins and HRUs. Importantly, land use/land type, vegetation class,
aquifer class, and soil classes are specified for each HRU in order to generate appropriate model
parameters to represent the properties of each HRU.

10

• modelname.rvt - the time series/forcing function file
This file specifies the temperature, precipitation, and possibly other environmental forcing
functions at a set of observation points (“gauges”) within the model domain. This information
is interpolated to each HRU within the watershed based upon spatial location. The .rvt file
typically “points” to a set of files storing information for each gauge or forcing type. If
gridded forcing data is used, the details about the corresponding netCDF gridded data file
and connections between the grid and landscape are specified here.

• modelname.rvp - the class parameters file
This is where most of the model parameters are specified, grouped into classes. Each HRU
belongs to a single vegetation class, single land use, single aquifer class, and has a unique
soil profile defined by a collection of soil horizons each of a single soil class. All model
parameters, on a class by class basis, are specified here. The class formalism aids in the
calibration process. Note that the :CreateRVPTemplate command can be used to generate
an empty .rvp file given the model configuration specified in the .rvi file (see appendix A.1.4
for details).

• modelname.rvc - the initial conditions file
This is where the initial conditions for all state variables in all HRUs and subbasins are
specified. This may be generated from the output of a previous model run. If a blank file is
provided, all storage initial conditions are assumed to be zero (i.e., no snow, dry soil, etc.)
and a run-up period will be warranted.

Each of these files are described in detail in appendix A. While the .rvi (setup), .rvh (watershed
geometry), .rvc (initial conditions) and .rvt(forcing data) files are typically unique to a particular
model, the .rvp (properties) file may ideally be ported from one model to another. Figure 2.1
depicts the base input used by and output generated from Raven, where the default/mandatory
files for all simulations are indicated in light blue.

Figure 2.1: Standard input/output configuration of Raven. Light blue input files are required, light
blue output files are the default output (which may be suppressed if desirable). The light red input
files are files referred to by the primary input files, and are kept separate mostly for organization.
The light red output files are generated only if specifically requested by the user in the .rvi file.

11

To prepare the input files, it is recommended to first familiarize yourself with the format and
various input options. A number of pre-processors have been or are being developed to generate
the .rvt file(s) from alternative formats. For instance, Environment Canada streamgauge data may
be imported with utilities in the RavenR package. The .rvh file is likely best prepared with the
assistance of a healthy GIS database which can be used to determine unique class combination and
the topology of the watershed subbasins. Note that, if the size of .rvt or .rvh files becomes unwieldy,
the :RedirectToFile command can be used to redirect the input from an ’extra’ input file, so a
model could, for instance, have a single master .rvt file that points to a number of meteorological
forcing files (e.g., one or more .rvt file per gauge). A similar approach also enables the testing of
multiple climate scenarios without having to overwrite data files.

2.3 Running the Model

Once all of the necessary components of the above files have been created, the model may be called
from the command line, e.g.,

> C:\Program Files\Raven\Raven.exe C:\Temp\model_dir\modelname

or, if the active directory is C:\Temp\model_dir\

> C:\Program Files\Raven\Raven.exe modelname

where ’modelname’ is the default predecessor to the .rvi, .rvh, .rvt, and .rvp extensions. There are
no special flags needed, just the name of the model. The command line also supports the following
flagged commands:

• -o {output directory} : specifies the directory for generated model output

• -p {rvp filename.rvp} : specifies the rvp file location

• -t {rvt filename.rvt} : specifies the rvt file location

• -c {rvc filename.rvc} : specifies the rvc file location

• -h {rvh filename.rvh} : specifies the rvh file location

• -r {runname} : specifies the run name for the simulation

Alternatively, the :OutputDirectory command in the .rvi file may be used to specify file output
location and the :rv* Filename command may be used to specify the corresponding files (see the
details in appendix A.3).

A useful application of the output directory flag is to specify an output directory in the folder
directly beneath the working directory, for instance:

> C:\Program Files\Raven\Raven.exe modelname -o .\output\

Raven will will create this specified output folder if it does not exist.

Note that while it is allowed that the input files from multiple models exist in a single folder, it
is recommended that each model get its own output directory to avoid overwriting of outputs.

2.4 Output Files

12

Raven generates a number of customizable outputs which contain model diagnostics. By default,
Raven generates the following files:

• Hydrographs.csv - the hydrograph output file
Contains the flow rates, Q(t) [m3d−1], at the outlets of specified subbasins in the watersheds
(usually corresponding to those with stream gauges). Which subbasin outlets are recorded as
hydrographs is specified in the .rvh file.

• WatershedStorage.csv - the watershed storage file
Contains watershed-averaged water storage in all of the modeled compartments over the
duration of the simulation. Also reports watershed-wide water mass balance diagnostics.

• solution.rvc - the solution file
Stores the complete state of the system at the end of the simulation. This file can be used as
initial conditions for a later model run. This file may also be generated at user-specified inter-
vals during simulation as a defense against computer breakdown for massive computationally-
demanding models.

• RavenErrors.txt - the errors file includes all of the warnings and errors for a particular
model run, including when the model may be making choices on behalf of the modeler (i.e.,
parameter autogeneration) or when model input is somehow flawed.

The formats of these files are described in appendix B, and may be pre-appended with the runname
if the :RunName command is used, generating (for example), Alouette41 Hydrographs.csv if the
run name is Alouette41. RavenErrors.txt is never given a prefix.

In addition to the above, the following output files may be created on request:

• WatershedMassEnergyBalance.csv - the watershed flux diagnostics file
Contains watershed-averaged water and energy fluxes from each hydrological process over
time. (enabled using the :WriteMassBalanceFile command)

• WatershedEnergyStorage.csv - the watershed energy diagnostics file
Contains watershed-averaged storage in all of the modeled compartments over the duration
of the simulation. (enabled using the :WriteEnergyStorage command)

• parameters.csv - the parameters file
Stores a list of specified and auto-generated parameters for all soil, land use, topography, and
vegetation classes. (enabled using the :WriteParametersFile command)

• forcings.csv - the forcing functions file
Stores the complete time series of all watershed-averaged forcing functions over the domain
(i.e., rainfall, snowfall, incoming radiation, etc.) (enabled using the :WriteForcingFunctions
command)

• ExhaustiveMB.csv - exhaustive mass balance file
Stores all state variables in all HRUs over time. Given the potential size of this file, this
option should be used sparingly (enabled using the :ExhaustiveMassBalance command.)

• ReservoirStages.csv - reservoir stage history file
Stores the time history of reservoir stages for all simulated reservoirs. Requires at least one
reservoir in the model.

• diagnostics.csv - model quality diagnostics
reports metrics characterising of fit between the model results and any user-specified obser-
vations. This output is enabled using the :EvaluationMetrics command, and requires at

13

least one set of observation data (:ObservationData in the .rvt file) to be generated.

• state files - model intermediate state files
similar to solution.rvc, except output at intermediate times specified using the :OutputDump

or :MajorOutputInterval commands. The files are named using the output timestamp, e.g.,
RunName state 20011001.rvc, and may be used as initial conditions for later simulation runs.

Lastly, custom output commands can be used to track and store in .csv or .tb0 flat files any
parameter or state variable in the model over time. This data may be aggregated either temporally
or spatially, so that the user may generate files containing, e.g., basin-averaged hydraulic conduc-
tivity of the top soil layer at the daily timescale, or monthly averaged evaporation from the canopy
in the 23rd HRU. The details of this custom output are in the discussion of the :CustomOutput

command in the .rvi file (appendix A.1.4).

Additional output files generated by the transport routines are discussed in chapter 7.

2.4.1 Alternative Output Formats

For compatibility with the Green KenueTM software interface, the option is also available to
generate output in .tb0 (Green KenueTM tabular) format. Custom output will be written to a
.tb0 table output file if the :WriteEnsimFormat parameter in the .rvi file is set to “yes” and a .csv
file if set to “no” (or by default if the command is not included).

2.5 Calibration, Visualization, and Uncertainty Analysis

Unlike many hydrological modeling tools, the Raven software package intentionally does not in-
clude any methods for calibration, uncertainty analysis, plotting, or complex statistical analysis.
All of these tools are best addressed using flexible and generic pre-and post-processing tools. Some
recommendations:

• Green KenueTM

An advanced data preparation, analysis, and visualization tool for hydrologic modellers, which
supports some Raven features and provides useful post-processing tools for Raven output
as well as direct access to Canadian hydrologic data repositories

• Ostrich
A model-independent multi-algorithm optimization and parameter estimation tool. Ostrich
can be used to calibrate Raven models, generate Monte Carlo simulations, and much, much
more...

• R
An open-source software environment for statistical computing and scientific graphics.

• RavenR
A set of R utilities available from the Raven website. Requires the R open-source software
environment.

• mc-stan.org
An open-source software environment for Bayesian inference and maximum likelihood esti-
mation

14

• WhiteBox GAT
An open-source software (with user inteface) for geographic analysis, visualization, terrain
analysis, and watershed delineation.

Note that the model quality diagnostics generated using the :EvaluationMetrics command
may be utilised to support the calibration process.

2.6 Common Run Approaches

The following section describes suggested methods for running Raven in a mode other than
straightforward simulation of a single model with a single set of inputs.

• Multiple Climate Scenarios
For running multiple climate scenarios using a single model, it is recommended to fix the .rvc,
.rvp, and .rvh files. Different .rvt files should be generated for the specific climate scenarios.
Individual runs would be generated by modifying the rvt filename (using the :rvtFilename

command in the .rvi file) and the run name (using the :RunName command in the .rvi file).

• Multiple Parameter Sets
It is common to run a model using multiple parameter sets in order to assess the uncertainty
or sensitivity of its predictions to changes in input (as done in, e.g., Markov Chain Monte
Carlo). For such an approach, it is recommended (if not using software such as Ostrich),
to generate multiple .rvp files, keeping the remainder of the data files fixed. Individual runs
would be generated by modifying the rvp filename (using the :rvpFilename command in the
.rvi file) and the run name (using the :RunName command in the .rvi file).

2.7 Troubleshooting Raven

While Raven will generally try to tell you when a mistake in the input files will cause problems,
there are times when the interface will hang or input will be noticeably erroneous without provid-
ing a warning or error in RavenErrors.txt (note that Raven is designed to produce significant
errors when something goes wrong rather than subtle undetectable errors). These unchecked errors
are most commonly due to missing or erroneous input forcing or parameter data, though it may
occasionally be due to a genuine bug in the Raven code.

The following steps may be taken to diagnose and repair issues with Raven.

1. Check the RavenErrors.txt file in the output directory. Often, the error messages and warnings
will contain sufficient information to diagnose and repair the problem. This is always the best
first step.

2. If the model hangs prior to the beginning of simulation. Add the command :NoisyMode to the
.rvi file. This must be after any call to :SilentMode (these commands toggle the same internal
switch), but ideally at the top of the input file. Running the code in noisymode generates
detailed narrative output to the command prompt window, and is best for diagnosing errors
in input parsing. By looking at where the code hangs, the problematic input command can
often be found. See if the model runs with this command commented out. If it does, there
may be (a) a missing input parameter for the chosen method/algorithm (b) erroneous input
data linked to this method/algorithm that Raven is not currently able to detect.

15

3. If the model runs to completion but generates clearly erroneous output (such as NaN or -#inf
in the hydrograph output).

This type of error is likely due to (a) a missing model parameter which Raven did not detect;
(b) an error in the Raven modelling library or (c) an error in input which Raven did not
detect.

(a) Step 1: Open the ForcingFiles.csv output file and look for non-sensible numerical values
(e.g., negative PET or NaN radiation). These errors in Forcing Functions will propagate
through the model and generate hydrograph errors. Comment out or modify the corre-
sponding forcing function commands (catalogued in section A.1.2 of the appendix) until
the faulty forcing output not generated. For instance, if the PET is consistently nega-
tive, replace the PET estimation or PET orographic correction algorithm with another
method. If the errors are fixed, then this may be due to poor parameters which drive
this method. If the errors remain, then data which is used to drive PET estimation may
be faulty OR one of the other forcing functions which drives PET (such as shortwave
radiation, temperature, etc.) is faulty. The latter would also be obvious from a cursory
inspection of the ForcingFiles.csv output.

(b) Step 2: If the forcing functions are not the culprit, then examine the WatershedStor-
age.csv file and check for clearly erroneous estimates of watershed-averaged water stor-
age. If, for example, glacial storage looks faulty but everything else is OK, comment out
the algorithms which operate on glacial storage in the :HydrologicProcesses block in
the .rvi file and re-run until the glacial storage results are feasible (perhaps monoton-
ically growing or shrinking, but not NaN or hugely negative). This narrows us down
to the problematic process algorithm. Check the documentation to make sure that the
proper parameters are provided for this algorithm in the .rvp file for all glacier HRUs.
If you still cannot diagnose the problem, send the problematic input files with a short
description to jrcraig@uwaterloo.ca.

4. If the model is providing odd/unexpected output.

Sometimes generated hydrographs are not completely broken, but are at odds with our ex-
pectations. For example, outflows are 10 times larger or smaller than they should be when
compared to the observed hydrographs. These issues are much thornier, as they can arise
from individually reasonable (but collectively unreasonable) combinations of parameter in-
puts. They are also quite possible if you are building a model from scratch with Raven,
and have done so improperly (e.g., Raven technically allows you the flexibility to have two
evapotranspiration processes, but it is physical nonsense to implement this). There are some
general approaches you may take towards debugging this kind of model issue.

(a) Look at the WatershedStorage.csv file for clues. Most watersheds should have a quasi-
steady state behaviour from year to year; there may be wet years and dry years, but
storage in general oscillates and repeats a relatively consistent water balance from month
to month. If your model is a continuous model of three or more years, you should
expect this type of oscillatory behavior. If you find that one storage compartment is
steadily increasing or decreasing in storage, it may be worthwhile to investigate the
cause. In many cases, the inflow/outflow processes are not properly matched, e.g., a
middle soil storage unit may be filled due to percolation at a much faster rate than it
depletes due to baseflow losses, even at the annual scale. Another possible symptom
that may be seen in the WatershedStorage.csv file is a storage compartment which
always fills but never drains (or the opposite). Some storage units are intended to have
this behavior, such as ATMOS PRECIP (which is always a water source, and is a proxy

16

for cumulative precipitation) and ATMOSPHERE (which is always a water sink, and is a
proxy for cumulative evapotranspiration losses). Others, such as deep GROUNDWATER,
may be used to represent external losses from the system. However, any other storage
unit should have means of decreasing and increasing in storage, as determined by the
hydrological process list (each storage unit should act as a To and From storage unit),
and the parameter lists.

(b) Look at the ForcingFunctions.csv file for clues. Again, poor parameter choices can lead to
significant underestimates or overestimates of system forcings, which propagate through
to hydrographs and other model outputs. Look for reasonable values for radiative,
precipitation, and temperature forcings to the watershed. What constitutes reasonable
is specific to the climate and landscape, and is up to you to define.

(c) Check your stream network topology. The surface water network is fully defined by the
list of DOWNSTREAM IDs in the :SubBasins command. If this is improperly constructed,
or if the entirety of an upstream watershed is not included in the model, you may need to
either correct the stream network or add user-specified inflows to account for upstream
parts of the watershed not explicitly included in the model.

(d) Check your cumulative watershed area. The area of each subbasin, and therefore also
the total drainage area of each subbasin, is dependent upon the areas of its constituent
HRUs. If these areas are incorrect, or if certain HRUs are not included in the model,
this can lead to mass balance errors.

(e) Check the units of your forcing functions. A common mistake for subdaily flow in-
formation is to supply precipitation in mm rather than as a precipitation intensity in
mm/d.

2.8 Version Notes

2.8.1 Major Changes from v2.6 to v2.7

The following features have been added:

1. Improvements to the Raven Documentation

2. Bug fixes

3. Improved QA/QC on model inputs

4. Significantly improved support for flexible reservoir simulation and calibration - time-varying
reservoir curves, unevenly spaced reservoir curves,

5. Support for gridded data in netCDF format (see appendix A.4.3)

6. Improved place- and time-specific control over application of processes using the :-->Conditional
command, :LandUseChange command, and :VegetationChange command.

7. :CreateRVPTemplate command can be used to generate a template .rvp file from specified
.rvi model configuration

8. Added a number of new diagnostics (LOG_NASH, NASH_DERIV, KLING_GUPTA)

9. Addition of the GAWSER-style snow balance and consolidation routine

17

10. Addition of US Army Corps snowmelt model

11. Run Name can be specified from the command line

The following backwards compatibility issues were introduced:

1. None

2.8.2 Major Changes from v2.5 to v2.6

The following features have been added:

1. Significant improvements to the Raven Documentation

2. Support for additional model quality diagnostic (R2)

3. Improved support for sub-daily emulation of the UBC watershed model

4. New elevation-based gauge interpolation algorithm (INTERP_INVERSE_DISTANCE_ELEVATION)

5. New two-layer snow melt model (SNOBAL_TWO_LAYER)

6. Improved support for blank observation values and non-zero observation weights in model
diagnostics

The following backwards compatibility issues were introduced:

1. The hydrograph observations file is now written in period-starting (rather than period-ending)
format, meaning that the single time step correction to the start date of a continuous obser-
vation hydrograph time series is no longer needed. ACTION: Existing observation .rvt files
will have to be amended with a simple date shift.

2. For models with more than one subbasin where the reference or initial stream discharges were
not user-specified, the algorithm used to estimate basin initial and reference flows has been
significantly modified. Automatic estimation of network flows now requires the specification
of the :AnnualAvgRunoff command in the .rvp file. ACTION: Recalibration of existing
models will likely be required if Q REFERENCE was not user-specified for all basins and a
celerity-dependent routing algorithm was used (e.g., a Muskingum variant, plug flow, or
diffusive wave).

3. For models with more than one gauge and gauge-specific :SnowCorrections and :RainCorrections,
the interpolation algorithm has been modified to more appropriately handle the spatial han-
dling of these corrections. ACTION: Recalibration of existing models may be required.

18

Chapter 3

Raven Code Organization∗

The Raven code is fully object-oriented code designed to, as much as possible, separate the nu-
merical solution of the coupled mass-balance and energy-balance ODEs from the evaluation of
flux-storage relationships, enabling the testing of various numerical schemes without having to dig
into each subroutine for each hydrological process.

3.1 Classes

The Class diagram for the Raven code is depicted in figure 3.1. The code operates by generating a
single instance of the CModel class, which may be considered a container class for all of the model
data, i.e. the arrays of basins, HRUs, land/vegetation classes, and meteorological gauges/gridded
forcing data that define the entirety of the model.

Figure 3.1: Raven class diagram

19

3.1.1 CModel class

The CModel class is a container class for all of the hydrological response units (HRUs), subbasins,
hydrologic processes (“HydroProcesses”) and measurement gauges/gridded data. It also has global
information about all of the state variables. It has a few key functions called by the solver routines:

• Initialize() Called before the simulation begins to initialize all variables. This also calls
all Subbasin, Gauge, HRU and other initialize functions.

• IncrementWB(), IncrementEB() increment the individual cumulative HRU water and energy
balances, stored within the CModel class

• WriteMinorOutput() Called at the end of each timestep, writes water and energy balance
and watershed-scale storage information (i.e., total storage in snowpack, etc.), in addition to
all custom output.

• WriteMajorOutput() Called at user-specified intervals, basically dumps a snapshot of all
system state variables and derived parameters to an output file

• UpdateHRUForcingFunctions() sifts through all of the HRUs and updates precip, tem-
perature, radiation, and other (external) atmospheric forcing functions, interpolated from
gauge/measurement data or gridded forcings. These values are then stored locally within
each HRU. Called at the start of each timestep.

• ApplyProcess() Based upon some assumed current water storage/state variable distribution,
returns a prediction of the rate of water (or energy) movement from one storage unit (e.g.,
canopy) to another (e.g., atmosphere) during the time step. This function DOES NOT actu-
ally move the water/energy - this is done within the solver. Basically returns Mk({φ}, {P})
in the above discussion for specified values of {φ}

The CModel class has an abstracted parent class, CModelABC, that ensures the model can only
provide information to, but cannot be modified by, other classes aware of its existence (e.g., any
hydrologic processes (CHydroProcess), or subbasin (CSubBasin), etc.)

3.1.2 CGauge class

The CGauge class stores a set of time series (of class CTimeSeries) corresponding to observations
of atmospheric forcing functions (precipitation, air temperature, radiation, etc.) at a single point
in the watershed. The model interpolates these forcing functions from gauge information in order
to determine forcing functions for individual HRUs at any given time step.

Interpolation is performed using the most appropriate local UTM coordinate system automati-
cally calculated from the specified lat-long centroid of the watershed.

3.1.3 CSubBasin class

A container class for HRUs - only used for routing of water, as it stores information about the con-
nectedness of itself to other subbasins in the modeled watershed(s). Conceptualized as a subbasin.

20

3.1.4 CHydroUnit class

An abstraction of an HRU - a homogeneous area of land to which the zero- or one-dimensional
water and energy balances are applied. It is unaware of the CModel class. It stores the state of all
local HRU-specific parameters that are valid for the current timestep, the values of the HRU forcing
functions (e.g., precipitation, PET, radiation) averaged over the entirety of the current timestep,
and the values of the state variables (water storage, energy storage, and snow parameters) that
are valid at the start of the current timestep. It also stores its membership to the landuse and
vegetation cover classes via pointers to those instances, so that it may be used to access properties
shared by all measures of that class.

Key routines:

• SetStateVarValue() updates the values of a specific state variable. Called at the end of
each time step by the main Raven solver

• UpdateForcingFunctions() updates the values of the forcing functions (rainfall, tempera-
ture, saturated water vapor, etc.) uniformly applied to the HRU at the beginning of each
time step. The HydroUnit is unaware of the source of these values, but they are interpolated
from measured data.

• RecalculateDerivedParams() Given some set of state variables and the current time of year,
updates all derived parameters (e.g., Leaf area index) stored locally within the HRU. These
are used within GetRatesOfChange functions

3.1.5 CHydroProcessABC class

An abstraction of any hydrological process that moves water or energy from one or more stor-
age units to another set of storage units (i.e., an abstraction of Mij for one-to-one transfer of
water/energy, or a summation of more than one Mij that moves water through multiple compart-
ments, as is required for PDE solution). Each CHydroProcess child class has three key subroutines:

• Initialize() initializes all necessary structures, etc. prior to solution

• GetParticipatingStateVars() returns the list of participating state variables for the model.
This is used to dynamically generate the state variables used in the model. For example, snow
will not be tracked in the model until a process (e.g., snowmelt) is introduced that moves
snow between storage compartments.

• GetParticipatingParameters() returns the list of algorithm-specific parameters needed to
simulate this process with the specified algorithm. This is used to dynamically ensure that
all parameters needed by the model are specified by the user within each HRU.

• GetRatesOfChange() calculates and returns rate of loss of one set of storage units to another
set, in units of mm/d (for water) or MJ/m2/d for energy.

• ApplyConstraints() Corrects the rates calculated by rates of change to ensure that model
constraints (e.g., state variable positivity) are met.

The CHydroProcessABC class is purely virtual - inherited classes each correspond to a single
(or coupled set of) hydrologic process(es) as described in section 3.1.6

21

3.1.6 Hydrological Processes

All hydrological process algorithms are specified as individual child classes of CHydroProcessABC.
Note that each HydroProcess may include multiple algorithms; distinction between classes is mostly
based upon physical interpretation, i.e., baseflow and snowmelt are fundamentally different. While
independent snow melt/snow balance algorithms may be very different, they are still grouped into
one class.

3.2 Contributing to the Raven Framework*

Source code for Raven is available online, with file support for MSDN Visual C++, both 2008 and
2010 version. Users are encouraged to develop custom-made algorithms for representing hydrologic
processes, estimating forcing functions from gauge data, or interpolating gauge data. If a new
algorithm is tested and found useful, feel free to submit your code to the Raven development team
to be considered for inclusion into the main Raven code.

3.2.1 How to Add a New Process Algorithm

1. Make sure the process algorithm is not already included in the framework with a slightly
different “flavour”

2. Determine whether the algorithm requires new state variable types to be added to the master
list. The complete list of state variables currently supported may be found in the enum

sv type definition in RavenInclude.h. If a new state variable is required, follow the directions
in section 3.2.2.

3. Determine whether the algorithm requires new parameters, and whether these parameters will
be fixed for the model duration or depend upon transient factors. The lists of existing param-
eters (all linked to soils, vegetation, land use, or terrain types) are found in Properties.h.
If a new parameter is needed, follow the directions in section 3.2.3

4. Determine whether the algorithm fits within an existing CHydroProcess class, i.e., is it a
different means of representing one of the many processes already simulated within Raven?
If so, you will be editing the code in 6 or 7 places, all within either the CHydroProcess

header/source files or the main input parsing routine:

(a) Add a new algorithm type to the enumerated list of algorithms for that process. For
example, if it is a new baseflow algorithm, you would add BASE MYALGORITHM to the
enum baseflow type in SoilWaterMovers.h. Follow the apparent naming convention.

(b) Edit the CHydroProcess constructor. Constructors should be dynamic for all routines
that have fixed input and output variables. Others, such as baseflow, can have user-
specified input/output pairs declared. The CmvBaseFlow and CmvSnowBalance codes
are excellent templates for class construction. Edit the if-then-else statement in the
constructor, specifying the iFrom and iTo state variables manipulated by the algorithm
connections. For example, most infiltration algorithms move water from ponded storage
to both topsoil and surface water, requiring the following specification:

CHydroProcessABC::DynamicSpecifyConnections(2);

iFrom[0]=pModel->GetStateVarIndex(PONDED_WATER);

22

iTo [0]=pModel->GetStateVarIndex(SOIL,0);

iFrom[1]=pModel->GetStateVarIndex(PONDED_WATER);

iTo [1]=pModel->GetStateVarIndex(SURFACE_WATER);

This creates two connections, one from ponded water to the topmost soil (soil 0) and
one from ponded water to surface water. The corresponding rates of exchange will later
be calculated in GetRatesOfChange() and stored in rates[0] and rates[1]. Note you
shouldn’t have to check for existence of state variables in the constructor - if they are
later specified in GetParticipatingStateVarList, they will be generated in the master
state variable list prior to instantiation of the class.

(c) Edit the if-then-else statement in the corresponding GetParticipatingParamList rou-
tine with the list of parameters needed by your new algorithm. This information is used
for quality control on input data (ensuring that users specify all parameters needed to
operate the model).

(d) Edit (if necessary) in GetParticipatingStateVarList the list of state variables required
for your algorithm, within a conditional for your specific algorithm. See CmvSnowBalance
for a good example.

(e) Add the actual flux calculation algorithm to the corresponding GetRatesOfChange()

function for this CHydroProcesss class. Some key things to keep in mind:
(a) parameters may be obtained from the corresponding soil, vegetation, or land use
structure via the HRU pointer, e.g.,

double lambda,K;

K =pHRU->GetSoilProps(m)->max_baseflow_rate;

lambda=pHRU->GetTerrainProps()->lambda;

(b) the final result of the algorithm (rates of change of modeled state variables) are
assigned to the rates[] array. The rates[i] array value corresponds to the flux rate
of mass/water/energy from state variable iFrom[i] to iTo[i], which you have defined
in the constructor (step b).
(c) Try to follow the following code habits:

• unless required for emulation of an existing code, constraints should not be used
except later in the ApplyConstraints routine. A good rule of thumb is that the
timestep should not appear anywhere in this code

• each algorithm longer than about 20-30 lines of code should be relegated to its own
private function of the class

• all unit conversions should be explicitly spelled out using the provided global con-
stants, defined in RavenInclude.h

• constants that might be used in more than one process subroutine should not be
hard-coded, where at all possible.

• references should be provided for all equations, where possible. The full reference
should appear in the back of this manual

• all variables should be declared before, not within, algorithm code

23

• All returned rates should be in mmd−1 or MJ/m2/d for water storage and energy
storage, respectively

(f) If needed, add special state variable constraints in the ApplyConstraints() function,
conditional on the algorithm type.

(g) Lastly, add the process algorithm option to the corresponding command in the ParseMainInputFile()
routine within ParseInput.cpp.

3.2.2 How to Add a New State Variable

1. Make sure the state variable is not already included in the framework with a slightly different
name. Note that proxy variables should be used cautiously. For example, right now snow (as
SWE) and snow depth are included in the variable list, while snow density is not (as it may
be calculated from the other two).

2. Add the state variable type to the sv type enumerated type in RavenInclude.h

3. Edit the following routines in the CStateVariables class (within StateVariables.cpp) (re-
visions should be self-evident from code):

• GetStateVarName()

• StringToSVType()

• IsWaterStorage()

• IsEnergyStorage()

4. Edit the CHydroUnit::GetStateVarMax() routine in HydroUnits.cpp if there is a maximum
constraint upon the variable

3.2.3 How to Add a New Parameter

1. Make sure that the parameter is not included in the framework by examining the available
parameters in the soil_struct, canopy_struct, terrain_struct defined in Properties.h

and the global parameters currently defined within the global_struct (RavenInclude.h). If
it is not, determine whether the parameter is (and should always be) global (i.e., not spatially
or temporally varying). If it is not global, determine whether the property is best tied to land
use/land cover, soil type, vegetation type, or terrain type.

2. Add the new global parameter to the global_struct structure, non-global parameters to the
corresponding soil_, canopy_, terrain_, or surface_struct. The units of the parameter
should generally be consistent with those used throughout Raven, i.e., SI units, with fractions
represented from 0 to 1 (not 1-100%), time units preferably in days, and energy in MJ.

3. Depending upon the type of parameter, different classes will have to be revised. As an
example, if it is a soil parameter, the following code must be revised:

• CSoilClass::WriteParamsToFile() (revisions evident from code)

• CSoilClass::AutoCalculateSoilProps(() In most cases, the new parameter will be
conceptual and therefore not autocalculable from the base parameters of soil composi-
tion. In this case, code may be replicated from other parameters (see, e.g., VIC zmin

code for an example.

24

• CSoilClass::InitializeSoilProperties() (revisions evident from code)

• CSoilClass::SetSoilProperty()(revisions evident from code)

• CSoilClass::GetSoilProperty()(revisions evident from code)

Similar functions exist in the alternate classes (e.g., CVegetationClass, CGlobalParams).
With these revisions, the parameter is now accessible via (for soils) pHRU->GetSoilProps(0)->new_param,
where pHRU is a pointer to a specific instantiated HRU. New global parameters (which are
not specific to an HRU) may be accessed via CGlobalParams::GetParams->new_param

3.2.4 How to Add a New Forcing Estimator

[UNDER CONSTRUCTION] To do (1)

25

Chapter 4

The Hydrological Process Library

The following chapter outlines the many process algorithms available for modelling the hydrological
cycle in Raven.

4.1 Precipitation Partitioning

The precipitation partitioning process moves water, in the form of snow and rain, to the appropriate
storage compartment. The order of application is depicted in figure 4.1. The specific distribution
of rainfall and snowfall to the canopy, and ground surface (in the form of ponded water) depends
upon the existence of particular storage compartments and a number of model parameters.

Figure 4.1: Partitioning of rainfall/snowfall to the appropriate surface storage compartments

The partitioning of precipitation proceeds as follows (for non-lake HRUs):

1. The amount of rain and snow captured by the vegetation canopy is controlled by the pre-
cipitation interception rate (calculated as described below) and the storage capacity of the
canopy. If the canopy exists as a storage state variable (i.e., CANOPY or CANOPY_SNOW) are
present in the model, these storage compartments are filled at the calculated interception rate
until filled. The remainder (if any) is allowed to proceed onward, with a correction included

26

for the percent forest cover, (land use parameter FOREST_COVER). If canopy water/snow stor-
age is not explicitly modeled, the amount of available canopy storage is not considered and
the amount of snow and rain that would be captured by the canopy is “evaporated” to the
atmosphere.

2. If there is a snow state variable in the model (determined usually by the presence of some
kind of snow balance or snow melt algorithm), the snow as SWE is increased by an amount
corresponding to snowfall. If rain hits the snowpack, it fills the unripe pores in the snowpack
and is allowed to proceed onward. If required by the model, cold content, and snow density
may also be updated. Some of the snow balance algorithms override the details of this process,
instead moving all snowfall to NEW_SNOW and all rainfall to PONDED_WATER where it waits to
be handled by the snow balance algorithm.

The water in the PONDED_WATER storage compartment, which typically also includes meltwater
from snow melt, waits to be distributed to the shallow subsurface or surface water storage through
subsequent application of an infiltration or abstraction algorithm.

For lake HRUs, all snow and rain are converted to liquid water and added directly to the
SURFACE_WATER store, ready to be routed downstream via in-catchment routing. Lake HRUs are
defined as those with a zero-layer soil profile whose name begins with LAKE.

4.1.1 Canopy Interception Algorithms

The canopy interception algorithms, specified by the model command :PrecipIceptFract are
used to determine the percent rain or snow captured by a full forest/crop canopy. In all cases, the
maximum interception rates are given as

Rint = θrain ·R
Sint = θsnow · S

where R and S are snowfall rates, in [mm/d], Rint and Sint are interception rates, in mm/d, and
θrain/θsnow are the interception percentages (values between 0 and 1). These maximum interception
rates may be limited (as mentioned above) by the current amount of water stored in the canopy.
Many of these rates are controlled by leaf area index, LAI, and stem area index, SAI, calculated as
follows:

LAI = (1− s) · LAImax · fLAI(m)

SAI = (1− s) · β · hveg

where s is the land use parameter FOREST_SPARSENESS, LAImax is the maximum LAI (vegeta-
tion parameter MAX_LAI, fLAI(m) is the relative LAI correction by month m, specified by the
:SeasonalRelativeLAI command for each vegetation type, and β is the vegetation parameter
SAI_HT_RATIO. The height of vegetation, hveg is calculated as

hveg = hmax · fveg(m)

where hmax is the maximum vegetation height (vegetation parameter MAX_HT) and fveg(m) is the
relative vegetation height correction by month m, specified using the :SeasonalRelativeHeight

command in the .rvp file.

The following algorithms are used to determine the percentages of rain and snow that will be
intercepted by the vegetative canopy:

27

User-specified throughfall fraction(PRECIP ICEPT USER)

The interception percentages are directly specified by the user θrain is the vegetation param-
eter RAIN_ICEPT_PCT and θrain is the vegetation parameter SNOW_ICEPT_PCT.

Linear LAI-based method (PRECIP ICEPT LAI)

From Dingman (2002), the interception percentages are given as a linear function of the LAI:

θrain = αrain · (LAI + SAI)

θsnow = αsnow · (LAI + SAI)

where αrain and αsnow are the vegetation parameters RAIN_ICEPT_FACT and SNOW_ICEPT_FACT,
respectively. The leaf area index LAI and stem area index SAI are calculated as indicated
above.

Exponential LAI-based method (PRECIP ICEPT EXPLAI)

The interception percentages are given as:

θrain = 1− exp(−0.5(LAI + SAI))

θsnow = 1− exp(−0.5(LAI + SAI))

Exponential LAI-based method (PRECIP ICEPT HEDSTROM)

As documented in Hedstrom and Pomeroy (1998).

28

4.2 Infiltration

Infiltration refers to the partitioning of ponded water (the residual rainfall and/or snowmelt) be-
tween the shallow surface soil (infiltrated water) and surface water (runoff). Infiltration is typically
controlled by the saturation of the soil and its hydraulic properties (e.g., hydraulic conductivity,
infiltration capacity).

4.2.1 Sources/Sinks

Infiltration always moves water from PONDED_WATER to SOIL[0] (the top soil layer), and depending
upon the soil structure model specified by the :SoilModel command, may additionally push water
to lower soil moisture stores. The remaining ininfiltrated water is typically treated as runoff and
moved to SURFACE_WATER.

4.2.2 Constraints/Notes

Infiltration is limited by the availability of soil/aquifer storage. Many of the following algorithms
use the quantities of maximum soil storage (φmax), maximum tension storage (φtens), and field
capacity storage (φfc) in a layer, always calculated as:

φmax = Hn(1− SF) (4.1)

φtens = φmax(Sfc − Swilt)
φfc = φmaxSfc

where H is the soil layer thickness, n is the porosity (soil property POROSITY), SF is the stone frac-
tion (soil property STONE_FRAC), Sfc is the saturation at field capacity (soil parameter FIELD_CAPACITY),
and Swilt is the saturation at the wilting point (soil parameter SAT_WILT).

4.2.3 Infiltration Algorithms

Partition Coefficient Method (INF PARTITION COEFF)

A simple linear relationship between precipitation and runoff (e.g., Chow et al. (1988)),
characterized by:

Minf = R · (1− Pc) (4.2)

where Minf is the infiltration rate [mmd−1], R is the rainfall/snowmelt rate [mmd−1] (alter-
nately, the current amount of ponded water divided by the model timestep), and Pc is the
partition coefficient, specified as the land use parameter PARTITION_COEFF. The remainder
of rainfall is routed to surface water.

29

SCS Method (INF SCS)

The standard Soil Conservation Society (SCS) method (Soil Conservation Service, 1986),
where infiltration is a function of the local curve number:

Minf = R ·

(
1− (R− 0.2S)2

R+ 0.8S

)
(4.3)

where Minf is the infiltration rate [mmd−1], R is the rainfall/snowmelt rate [mmd−1] (alter-
nately, the current amount of ponded water divided by the model timestep), and S [mm] is
the retention parameter

S = 25400/CN − 254 (4.4)

where CN is the SCS curve number (land use parameter SCS_CN. The curve number for
moderate antecedent moisture content (condition II) is user-specified with land use param-
eter SCS_CN and corrected for dry or wet conditions based upon 5-day precipitation history
and whether or not it is growing season. The SCS method should only be used for daily
simulations.

Explicit Green Ampt Method (INF GREEN AMPT)

The explicit calculation of Green-Ampt cumulative (Green and Ampt, 1911) infiltration

Minf = min

(
R, ksat

(
1 +
|ψf |(φmax − φsoil)

F

))
(4.5)

where F uses the nth recursive approximation of the Lambert W−1 function (Barry et al.,
2005). The variables ψf [-mm], φmax [mm], and φsoil [mm], are the Green-Ampt wetting
front suction (soil parameter WETTING_FRONT_PSI), maximum soil moisture content (defined
in equation 4.1), and soil moisture at the start of the time step. All parameters used are
those associated with the top soil.

Simple Green Ampt Method (INF GA SIMPLE)

The quick-and-dirty version of the Green-Ampt (Green and Ampt, 1911) analytical solution
for discrete time-stepping schemes:

Minf = min

(
R, ksat

(
1 +
|ψf |(φmax − φsoil)

F

))
(4.6)

where F , the cumulative infiltration, is accumulated as a state variable during simula-
tion, and reverts to zero after prolonged periods without precipitation. The variables ψf
[-mm], φmax [mm], and φsoil [mm], are the Green-Ampt wetting front suction (soil parame-
ter WETTING_FRONT_PSI), maximum soil moisture content (defined in equation 4.1), and soil
moisture at the start of the time step. All parameters used are those associated with the top
soil.

30

VIC Method (INF VIC)

From the variable infiltration capacity model (Wood et al., 1992):

Minf = R ·

(
K1

(
γαzmax + zmin −

φsoil
φmax

)γ (
1− φcrit

φmax

)−γ)
(4.7)

where γ = 1/(α+1), α is the soil parameter VIC_ALPHA, zmin and zmax are the soil parameters
VIC_ZMIN and VIC_ZMAX, and K1 is given by:

K1 = ((zmax − zmin)αγ)−γ (4.8)

VIC/ARNO Method (INF VIC ARNO)

The VIC/ARNO model as interpreted by (Clark et al., 2008).

Minf = R ·

1−

(
1− φsoil

φmax

)b (4.9)

where b is the soil parameter B_EXP, φsoil is the top soil layer water content [mm], and φmax
is the maximum topsoil storage [mm].

HBV Method (INF HBV)

The standard HBV model approach (Bergstrom, 1995).

Minf = R ·

1−

(
φsoil
φmax

)β (4.10)

where β is the soil parameter HBV_BETA, φsoil is the soil layer water content [mm], and φmax
is the maximum soil storage [mm].

PRMS Method (INF PRMS)

The PRMS model Leavesley and Stannard (1995) as interpreted by (Clark et al., 2008):

Minf = R ·
(

1− Fmaxsat min

(
φsoil
φtens

, 1

))
(4.11)

where φsoil is the soil layer water content [mm], φtens is the maximum tension storage [mm],
and Fmaxsat is the maximum saturated area fraction (land use parameter MAX_SAT_AREA_FRAC).

UBC Watershed Model Approach (INF UBC)

As documented in Quick (2003), the UBCWM infiltration algorithm partitions ponded water
to surface water, interflow, and two groundwater stores. The infiltration rate into the shallow
soil is calculated as

Minf = min

(
φmax − φsoil

∆t
, R

)
· (1− b2) (4.12)

31

where, b2, the effective impermeable area percentage, is calculated using a deficit-based es-
timate corrected with a special term for flash floods (corresponding to higher rainfall/melt
rates):

b2 = b1 + (1− b1) · FF (4.13)

here b1, the unmodified effective impermeable area percentage, calculated as

b1 = Fimp · 10

(
−φmax−φsoil

P0AGEN

)
(4.14)

where φsoil and φmax are as defined in equation 4.1 and FF , the flash factor (which is
constrained to vary between 0 and 1) is calculated as:

FF = ·
(

1 + log

(
φpond

V 0FLAX

)
/ log

(
V 0FLAX

1800

))
(4.15)

here, Fimp [-] is the land use parameter IMPERMEABLE_FRAC, V 0FLAS [mm] is the global pond-
ing parameter UBC_FLASH_PONDING, and P0AGEN [mm] is the soil property UBC_INFIL_SOIL_DEF,
the reference soil deficit used at which 10 percent of the soil surface generates runoff.

The remaining ponded water is distributed to groundwater (at rate Mperc), interflow (at
rate Mint, and runoff Mrun using the following expressions

Mperc = min (Mperc
max, R−Minf) · (1− b2) (4.16)

Mint = (R−Minf −Mperc) · (1− b2) (4.17)

Mrun = b2 ·R (4.18)

i.e., a percentage b2 of the rainfall/snowmelt runs off directly. The remainder first infiltrates
into the shallow soil, until the deficit is filled. Any remaining water then percolates into the
groundwater at a maximum rate Mperc

max [mmd−1], specified using the MAX_PERC_RATE param-
eter of the groundwater soil layers. This component will be partitioned such that a certain
percentage, UBC_GW_SPLIT [i], a global parameter specified using the :UBCGroundwaterSplit
command, goes to the lower groundwater storage, whereas the remainder goes to upper
groundwater storage The final remaining water (if any) goes to interflow storage, where it
will be routed to the surface water network.

GR4J Infiltration Method (INF GR4J)

From the GR4J model Perrin et al. (2003):

Minf = φmax ·

α · (1−
(
φsoil
φmax

)2

1 + αφsoil
φmax

 (4.19)

where α = tanh(φpond/φmax), φpond [mm] is the ponded water storage, φsoil is the top soil
layer water content [mm], and φmax is the maximum topsoil storage [mm].

32

4.3 Baseflow

Baseflow refers to the flow of water from an aquifer or deeper soil horizon to surface water, typically
due to a head gradient between fully saturated soil and stream. It may be considered the sum of
the contribution of deep groundwater exchange with a river and delayed storage in the streambank.

4.3.1 Sources/Sinks

Baseflow moves water from either SOIL[m] or AQUIFER state variables, depending upon the soil
structure model specified by the :SoilModel command. The water is always moved to SURFACE_WATER.

4.3.2 Constraints/Notes

Baseflow is rate-limited by the availability of soil/aquifer storage.

4.3.3 Available Algorithms

Constant Baseflow (BASE CONSTANT)

A constant, specified rate of baseflow:

Mbase = Mmax (4.20)

where Mmax [mm/d] is the maximum baseflow rate, soil parameter MAX_BASEFLOW_RATE.

Linear Storage (BASE LINEAR STORAGE or BASE LINEAR ANALYTIC)

A very common approach used in a variety of conceptual models. The baseflow rate is linearly
proportional to storage:

Mbase = kφsoil (4.21)

Where k [1/d] is the baseflow coefficient (soil parameter BASEFLOW_COEFF), and φsoil is the
water storage [mm] in the soil or aquifer layer. An alternate version, BASE_LINEAR_ANALYTIC
may be used to simulate the same condition, except using a closed-form expression for inte-
grated flux over the timestep:

Mbase = φsoil · (1− exp(−k∆t))/∆t (4.22)

The two methods are effectively equivalent for sufficiently small timesteps, but the second is
preferred for large values of k.

Non-Linear Storage (BASE POWER LAW)

A very common approach used in a variety of conceptual models, including HBV Bergstrom
(1995). The baseflow rate is non-linearly proportional to storage:

Mbase = kφnsoil (4.23)

33

Where k [1/d] is the baseflow coefficient (soil parameter BASEFLOW_COEFF), and φsoil is the
water storage [mm] in the soil or aquifer layer, and n is the user-specified soil parameter
BASEFLOW_N.

VIC Baseflow Method (BASE VIC)

From the VIC model Wood et al. (1992) as interpreted by (Clark et al., 2008):

Mbase = Mmax

(
φsoil
φmax

)n
(4.24)

whereMmax [mm/d] is the maximum baseflow rate at saturation (soil parameter MAX_BASEFLOW_RATE),
φsoil is the water storage [mm] in the soil or aquifer layer, φmax is the maximum soil storage
capacity , and n is the user-specified soil parameter BASEFLOW_N.

GR4J Baseflow Method (BASE GR4J)

From the GR4J model Perrin et al. (2003):

Mbase =
φsoil
∆t
·

1−

((
φsoil
φref

)4
) 1

4

 (4.25)

where φref [mm] is the reference soil storage, the user-specified soil parameter GR4J_X3, φsoil
is the water storage [mm] in the soil or aquifer layer..

Threshold-based Baseflow Method (BASE THRESH POWER)

Here, baseflow doesn’t commence until a threshold saturation of the soil layer is met. Above
the threshold, the outflow rate is controlled by saturation up to a maximum rate.

Mbase = Mmax ·

(
φsoil
φmax

− Sth
1− Sth

)n
(4.26)

where Sth [-] is the threshold saturation at which baseflow begins (soil parameter BASEFLOW_THRESH,
Mmax is the soil parameter MAX_BASEFLOW_RATE [mm/d], and the power law coefficient n is
the soil parameter BASEFLOW_N.

34

4.4 Percolation

Percolation refers to the net downward flow of water from one soil/aquifer unit to another. This
process is physically driven by a moisture gradient, but this is often simplified in conceptual per-
colation models.

4.4.1 Sources/Sinks

Percolation moves water between SOIL[m] or AQUIFER units, depending upon the soil structure
model specified by the :SoilModel command. The user typically has to specify both the ’from’
and ’to’ storage compartments.

4.4.2 Constraints/Notes

Percolation is rate-limited by the availability of soil/aquifer storage and by the capacity of the
receptor ’to’ compartment.

4.4.3 Available Algorithms

Constant Percolation (PERC CONSTANT)

A constant, specified rate of percolation from one soil layer to the next:

Mperc = Mmax (4.27)

where Mmax is the soil parameter MAX_PERC_RATE of the ’from’ soil compartment.

Constant Percolation (PERC GAWSER)

As used in the GAWSER hydrological model, (Schroeter, 1989).

Mperc = Mmax

(
φsoil − φfc
φmax − φfc

)
(4.28)

where Mmax is the soil parameter MAX_PERC_RATE and the moisture contents are defined in
equation 4.1. All parameters refer to that of the ’from’ soil compartment.

Power Law Percolation (PERC POWER LAW)

Percolation is proportional to soil saturation to a power:

Mperc = Mmax

(
φsoil
φmax

)n
(4.29)

where Mmax is the soil parameter MAX_PERC_RATE, n is the soil parameter PERC_N and φsoil
and φmax are defined in equation 4.1. All parameters refer to that of the ’from’ soil compart-
ment.

35

Power Law Percolation (PERC PRMS)

Percolation is proportional to drainable soil saturation to a power, as done in the PRMS
model (Leavesley and Stannard, 1995):

Mperc = Mmax

(
φsoil − φtens
φmax − φtens

)n
(4.30)

where Mmax is the soil parameter MAX_PERC_RATE, n is the soil parameter PERC_N and φsoil,
φtens, and φmax are defined in equation 4.1. All parameters refer to that of the ’from’ soil
compartment.

Sacramento Model Percolation (PERC SACRAMENTO)

Percolation is proportional to drainable soil saturation to a power, as done in the PRMS
model (Leavesley and Stannard, 1995):

Mperc = M base
max

1 + α

(
1−

φtosoil
φtomax

)ψ(φsoil − φtens
φmax − φtens

)
(4.31)

where M base
max is the saturated baseflow rate (soil parameter MAX_BASEFLOW_RATE), and φsoil

and φmax are defined in equation 4.1. All parameters refer to that of the ’from’ soil compart-
ment, unless they have the to superscript.

GR4J Model Percolation (PERC GR4JEXCH and PERC GR4JEXCH2)

Percolation (really here exchange between a conceptual soil store and a groundwater store)
is calculated as consistent with the original GR4J model (?):

Mperc = −x2 ∗ pow(min(φsoil/x3, 1.0), 3.5) (4.32)

where x2 is the soil parameter GR4J_X2 and x3 is the soil parameter GR4J_X3 (both properties
of the soil from which the water is percolating). In the case of PERC GR4JEXCH2, the soil water
content φsoil refers to the topsoil storage (in SOIL[0]) rather than the soil from which percolation
is being taken.

36

4.5 Interflow

Interflow refers to subsurface flow moving laterally through a shallow unsaturated soil horizon until
it enters a stream channel.

4.5.1 Sources/Sinks

Interflow moves water between SOIL and SURFACE_WATER units, and is typically used in conjunction
with a (slower) baseflow algorithm. The user typically has to specify the ’from’ storage compartment
(i.e. a specific soil layer); the ’to’ storage compartment is always SURFACE WATER.

4.5.2 Constraints/Notes

Interflow is rate-limited by the availability of soil/aquifer storage.

4.5.3 Available Algorithms

PRMS model Percolation (INTERFLOW PRMS)

Interflow is proportional to drainable soil saturation to a power, as done in the PRMS model
(Leavesley and Stannard, 1995):

Minter = Mmax ·

(
φsoil − φtens
φmax − φtens

)
(4.33)

where Mmax is the maximum interflow rate (soil parameter MAX_INTERFLOW_RATE), and φsoil,
φtens, and φmax are defined in equation 4.1. All parameters refer to that of the ’from’ soil
compartment.

37

4.6 Soil Evaporation

Soil evaporation involves converting water from the soil layers to water vapour in the atmosphere.
The rate of evaporation depends on soil moisture, plant type, stage of plant development and
weather conditions such as solar radiation, wind speed, humidity and temperature.

4.6.1 Sources/Sinks

Soil evaporation always moves water between SOIL[m] and ATMOSPHERE units. Which soil layers are
subjected to evaporation depend on the soil structure model specified by the :SoilModel command
and the particular evaporation algorithm.

4.6.2 Constraints/Notes

Soil evaporation is rate-limited by the availability of soil/aquifer storage and by the capacity of the
atmosphere to absorb water vapour.

4.6.3 Available Algorithms

VIC Soil Evaporation Algorithm (SOILEVAP VIC)

Soil ET is proportional to the topsoil saturation to a power, as done in the VIC model (Wood
et al., 1992):

Mevap = PET ·
(

1−
(

1− φsoil
φmax

)γ)
(4.34)

where PET is the potential evapotranspiration rate, γ is the soil parameter VIC_EVAP_GAMMA,
and φsoil, and φmax are defined in equation 4.1.

Linear Evaporation (SOILEVAP HBV or SOILEVAP TOPMODEL)

Soil ET is at PET if storage exceeds the tension storage, then is linearly proportional to the
soil saturation:

Mevap = PET ·min

(
φsoil
φtens

, 1

)
(4.35)

where PET is the potential evapotranspiration rate [mmd−1], and φsoil [mm] and φtens [mm]
are defined in equation 4.1. The HBV model uses an additional snow correction, such that
ET is zero in non-forested areas if snow depth is non-zero.

Root-distributed 2-layer Evaporation (SOILEVAP ROOT)

Soil ET [mmd−1] is linearly proportional to the soil saturation, but distributed by root
fraction, ξm. Soil ET is at ξm· PET if storage exceeds the tension storage.

MU
evap = PET · ξU ·min

(
φUsoil
φUtens

, 1
)

(4.36)

ML
evap = PET · ξL ·min

(
φLsoil
φLtens

, 1
)

(4.37)

38

where U and L refer to the upper and lower layers, respectively, and φsoil [mm] and φtens [mm]
are defined in equation 4.1. Currently, ξL and ξU are hardcoded as 0.3 and 0.7, respectively.

Sequential 2-layer Evaporation (SOILEVAP SEQUEN)

Daily soil ET [mmd−1] is linearly proportional to the soil saturation; the top layer storage is
exhausted first, then ET can be withdrawn from the lower layer.

MU
evap = PET ·

(
φUsoil
φUtens

)
(4.38)

ML
evap = (PET−MU

evap) ·
(
φLsoil
φLtens

)
(4.39)

where U and L refer to the upper and lower layers, respectively, and φsoil [mm] and φtens
[mm] are defined in equation 4.1.

UBC Watershed Model Approach (SOILEVAP UBC)

Evaporation is controlled by the soil moisture deficit, φmax − φsoil, where φmax is defined in
equation 4.1, and is corrected for effective saturated area.

Mevap = PET · (1− βfast)10

(
−φmax−φsoil

γe

)
(4.40)

where γe is the soil parameter UBC_EVAP_SOIL_DEF (the soil deficit at which the actual ET
depletes to 0.1 PET), and βfast, a proxy for the effective impermeable fraction is calculated
as

βfast = Fimp · 10

(
−φmax−φsoil

γa

)
(4.41)

where Fimp is the impermeable fraction (land use parameter IMPERMEABLE_FRAC) and γa is
the soil parameter UBC_INFIL_SOIL_DEF.

GR4J Soil Evaporation Method (SOILEVAP GR4J)

From the GR4J model Perrin et al. (2003):

Mevap = αφsoil
2.0− φsoil

φmax

1.0 + α
(

1.0− φsoil
φmax

) (4.42)

where α = tanh(PET′/φmax), PET′ is the PET remaining after ponded water storage is
depleted, φsoil is the water storage [mm] in the topsoil, φmax is the maximum storage in the
top soil.

39

4.7 Capillary Rise

Capillary rise is the rise of groundwater above the water table due to surface tension. The capillary
zone extends up from the water table to the limit of capillary rise, and varies based on pore size and
surface tension. In conceptual watershed models, the capillary rise term often refers to a process
that moves water from lower to higher soil water stores.

4.7.1 Sources/Sinks

Capillary rise occurs between SOIL and AQUIFER units, depending upon the soil structure model
specified by the :SoilModel command. The user typically has to specify the ’to’ and ’from’ storage
compartments.

4.7.2 Constraints/Notes

Capillary rise is rate-limited by the availability of soil/aquifer storage and by the capacity of the
receptor ’to’ compartment.

4.7.3 Available Algorithms

HBV model Capillary Rise (CRISE HBV)

Capillary rise rate is linearly proportional to soil saturation of the recipient soil, as done in
the HBV model (Bergstrom, 1995):

Mcrise = M cr
max

(
1− φsoil

φmax

)
(4.43)

where M cr
max is the maximum interflow rate (soil parameter MAX_CAP_RISE_RATE), and φsoil

and φmax are defined in equation 4.1. All parameters refer to that of the ’to’ soil compartment.

40

4.8 Canopy Evaporation

Canopy evaporation converts water from the vegetated canopy to water vapour in the atmosphere.
The rate of evaporation depends on plant type, stage of plant development and weather conditions
such as solar radiation, wind speed, humidity and temperature.

4.8.1 Sources/Sinks

Canopy evaporation always occurs between CANOPY and ATMOSPHERE units.

4.8.2 Constraints/Notes

Canopy evaporation is rate-limited by the availability of canopy storage.

4.8.3 Available Algorithms

Maximum Canopy Evaporation (CANEVAP MAXIMUM)

Moisture on the canopy evaporates at the potential ET rate, provided storage is available.

Mevap = PET · Fc (4.44)

where PET is the potential evapotranspiration rate, Fc is the forest cover of the HRU (land
use parameter FOREST_COVERAGE, and Fsparse is the vegetation sparseness factor (land use
parameter FOREST_SPARSENESS.

Complete Canopy Evaporation (CANEVAP ALL)

All moisture on the canopy evaporates instantaneously, i.e., all intercepted precipitation is
sent back to the atmosphere.

Rutter Canopy Evaporation (CANEVAP RUTTER)

From (Rutter et al., 1971):

Mevap = PET · Fc · (1− Ft)
(
φcan
φcap

)
(4.45)

where PET is the potential evapotranspiration rate, Fc is the forest cover of the HRU (land
use parameter FOREST_COVERAGE), Ft is the trunk fraction (vegetation parameter TRUNK_FRACTION),
φcan [mm] is the storage in the canopy over the forested region, φcap [mm] is the storage ca-
pacity of the canopy over the forested region.

41

4.9 Canopy Drip

Canopy drip is the loss of water from canopy to land surface.

4.9.1 Sources/Sinks

Canopy drip always occurs between CANOPY and PONDED WATER units.

4.9.2 Constraints/Notes

Canopy drip is rate-limited by the availability of canopy storage.

4.9.3 Available Algorithms

Rutter Canopy Evaporation (CANDRIP RUTTER)

Moisture on the canopy which exceeds storage falls instantaneously to the ground.

Slowdrain Canopy Evaporation (CANDRIP SLOWDRAIN)

Moisture on the canopy which exceeds storage falls instantaneously to the ground, but the
remaining drip is proportional to storage:

Mdrip = α ·
(
φcan
φcap

)
(4.46)

where α is the vegetation parameter DRIP_PROPORTION, and φcan [mm] and φcap [mm] are
the canopy storage and capacity in the forested region, respectively. Drip only occurs in the
forested region.

42

4.10 Abstraction

Abstraction refers to the redirection of rainfall to surface impoundments, such as swales, ponds,
and puddles. In Raven, these are collectively referred to as DEPRESSION storage.

4.10.1 Sources/Sinks

Abstraction always moves water from the PONDED_WATER state variable to the DEPRESSION storage
state variable.

4.10.2 Constraints/Notes

none

4.10.3 Available Algorithms

SCS Method (ABST SCS)

The abstraction rate is determined from the Soil Conservation Service method based upon
SCS curve number.

Mabst =
1

∆t
max

(
fSCS · 25.4

(
1000

CN
− 10

)
, φpond

)
Where CN is the curve number corrected for antecedent precipitation conditions, where the
type II (moderate wetness) curve number is given by the land use parameter SCS_CN. The
fraction fSCS is the land use parameter SCS_IA_FRACTION, and is 0.2 for the standard SCS
approach (i.e., Ia = 0.2S)

Percentage Method (ABST PERCENTAGE)

The abstraction rate is a given fraction of the ponded water accumulation rate,

Mabst = αMpond

where α is the land use parameter ABST_PERCENT

Fill Method (ABST FILL)

In this approach, all ponded water (the cumulative contribution of rainfall and snowmelt) is
redirected to depression storage until it is filled, then the remainder is available for infiltra-
tion/runoff.

The maximum depression storage amount is given by land use parameter DEP_MAX

43

4.11 Depression Storage Overflow

Depression overflow refers to water lost from ponds and wetlands to the main surface water network.

4.11.1 Sources/Sinks

Depression overflow moves water from the DEPRESSION storage variable and is always moved to
SURFACE_WATER.

4.11.2 Constraints/Notes

Depression overflow is rate-limited by the availability of water in depression storage.

4.11.3 Available Algorithms

Power-law threshold (DFLOW THRESHPOW)

The overflow to surface water is controlled by the amount of water in depression storage past
a certain threshold:

Mdflow = Mmax ·
(
φdep − φth
φmax − φth

)n
(4.47)

where Mmax [mm/d] is the maximum overflow rate, landuse parameter DEP_MAX_FLOW, φdep
is the current depression storage [mm], φth is the given threshold storage level [mm] (landuse
parameter DEP_THRESHHOLD, φmax is the maximum depression storage DEP_MAX [mm], and n
is the landuse parameter DEP_N (unitless).

44

4.12 Snow Balance

Snow balance algorithms are used to simulate the strongly coupled mass and energy balance equa-
tions controlling melting and refreezing of snow pack and the liquid phase in the snow pores.

4.12.1 Sources/Sinks

Most snow balance algorithms consists of multiple coupled equations, and there are also many
’to’ and ’from’ compartments, depending on which algorithm is selected. ’From’ compartments
include SNOW (as SWE), SNOW_LIQ and SNOW_DEPTH. ’To’ compartments include SNOW, ATMOSPHERE,
SNOW_LIQ, SNOW_DEPTH and SURFACE_WATER.

4.12.2 Constraints/Notes

Snow balance is rate-limited by the storage in ’from’ and ’to’ compartments.

4.12.3 Available Algorithms

Simple Melt (SNOBAL SIMPLE MELT)

The melt rate (in [mm/d]) is simply calculated by applying the potential melt rate to the
snowpack until it is gone.

Mmelt = M ′melt (4.48)

where M ′melt [mm/d] is calculated using one of the methods described in section ??. This is
the same as using :SnowMelt MELT POTENTIAL.

HBV Snow balance (SNOBAL HBV)

Potential melt and refreeze rates are calculating using a degree day method, with the melt
factor Ma corrected for forest cover and aspect. Meltwater fills the snow porespace first, then
is allowed to overflow. (Bergstrom, 1995)

Mmelt = Ma ·max(T − Tf , 0) (4.49)

Mrefreeze = Ka ·max(Tf − T, 0)

where Ka is the land use parameter REFREEZE_FACTOR [mm/d/ ◦C], Ma is the land use param-
eter MELT_FACTOR [mm/d/ ◦C], which is corrected seasonally using the land use parameters
MIN_MELT_FACTOR, HBV_MELT_ASP_CORR and HBV_MELT_FOR_CORR.

UBCWM Snow balance (SNOBAL UBCWM)

As described in the UBC Watershed model documentation (Quick, 1995). Potential melt is
typically calculated using the POTMELT_UBC method described in section 6.8.1. If the land
use/land type parameter SNOWPATCH_LIMIT is zero, the method is relatively straightforward -
SWE is melted at a rate equivalent to the potential melt, with some of the water melted first

45

filling up the Liquid holding capacity of the snow, the remainder becoming ponded water.
During melt of ripened snowpack, the liquid water is released along with the corresponding
SWE melted. The user is referred to the UBCWM documentation for the full description of
the snowmelt algorithm with snow patching.

Cema Niege Snow balance (SNOBAL CEMA NIEGE)

Often used with the GR4J model configuration, the Cema Niege snow balance uses the
potential melt rate calculated using the methods of section 6.8.1, but corrected with a snow
cover factor,

Mmelt =

(
0.1 + 0.9 ·min

(
φSWE

SAnn
, 1

))
·M ′ (4.50)

where M ′ is the potential melt rate, φSWE is the snow amount as snow water equivalent, SAnn
is the average annual snow amount, specified as the global parameter AVERAGE_ANNUAL_SNOW.

Two-layer Snow balance (SNOBAL TWOLAYER)

[documentation required]

46

4.13 Snow Sublimation

Sublimation is the process of snow transforming to water vapour without passing through the
intermediate liquid phase. It can be a significant part of the snow balance at high elevations, windy
regions, and when atmospheric water conent is low.

4.13.1 Sources/Sinks

Sublimation always occurs between SNOW and ATMOSPHERE units.

4.13.2 Constraints/Notes

Sublimation is limited by the availability of snow.

4.13.3 Available Algorithms

Kuzmin (1957) method (SUBLIM KUZMIN)

The sublimation rate (in [mm/d]) is calculated using the following empirical relationship
Kuzmin (1957):

Msubl = 0.18 + 0.098 · vave · (Psat − Pvap) (4.51)

where vave [m/s] is the wind velocity at 10m, Psat and Pave [mb] are the saturated vapour
pressure and vapour pressure, respectively.

Central Sierra method (SUBLIM CENTRAL SIERRA)

The sublimation rate (in [mm/d]) is calculated using the following empirical relationship U.S.
Dept. of Commerce (1956):

Msubl = 0.0063 · (hw · hv)−
1
6 · (Psat − Pvap) · vave (4.52)

where vave [m/s] is the wind velocity at reference height hw [ft], Psat and Pave [mb] are the
saturated vapour pressure and vapour pressure, respectively, and hv is the elevation of the
vapour pressure reference height [ft].

47

4.14 Snow Melt

Snow melt algorithms are used if the full :SnowBalance algorithms are not applied, and simply
convert SNOW to SNOW_LIQ or PONDED_WATER

4.14.1 Sources/Sinks

Snow melt always occurs between SNOW and a user-specified target unit, typically SNOW_LIQ (with
a cascade), PONDED_WATER, or SURFACE_WATER—

4.14.2 Constraints/Notes

Snow melt is limited by the availability of snow in the snowpack. Melt rates must be positive.

4.14.3 Available Algorithms

Potential Melt (MELT POTENTIAL)

The melt rate (in [mm/d]) is simply calculated by applying the potential melt rate to the
snowpack until it is gone.

Mmelt = M ′melt (4.53)

where M ′melt [mm/d] is calculated using one of the methods described in section ??. This is
the same as using :SnowBalance SNOBAL SIMPLE.

48

4.15 Snow Refreeze

Snow refreeze algorithms are used if the full :SnowBalance algorithms are not applied, and simply
convert SNOW_LIQ to SNOW

4.15.1 Sources/Sinks

Snow refreeze always occurs between SNOW_LIQ and SNOW units.

4.15.2 Constraints/Notes

Snow refreeze is limited by the availability of liquid water in the snowpack. Refreeze rates must be
positive

4.15.3 Available Algorithms

Degree Day Approach (FREEZE DEGREE DAY)

The refreeze rate (in [mm/d]) is calculated using the following degree-day relationship (much
like the degree-day melt approaches for calculating potential melt):

Mfrz = Kf ·min(Tf − Ta, 0) (4.54)

where Kf [mm/d/ ◦C] is the refreeze parameter (land use parameter REFREEZE_FACTOR, Tf
is the freezing temperature (0 ◦C) and Ta is the air temperature.

49

4.16 Snow Albedo Evolution

Snow albedo evolution is the process through which snow albedo changes due to snow compaction,
snowpack aging, or fresh snow accumulation.

4.16.1 Sources/Sinks

The snow albedo evolution algorithms have no sources or sinks, it simply models the rate of change
of albedo over time.

4.16.2 Constraints/Notes

Snow albedo is constrained to be in the range 0-1.

4.16.3 Available Algorithms

UBC Watershed Model Approach (SNOALB UBC)

The albedo, α, increases with accumulating snow and decreases as the season progresses.
It is bounded by the global parameters MIN_SNOW_ALBEDO MAX_SNOW_ALBEDO, defined in the
:UBCSnowParams command in the .rvp file.

Msnalb = −α · 1−K
∆t

+
(αmax − α)

∆t
min

(
SN

SNalb
, 1

)
if α > αb (4.55)

Msnalb = −αb exp

(
−Scum
Smax

)
dScum
dt

+
(αmax − α)

∆t
min

(
SN

SNalb
, 1

)
if α < αb (4.56)

where αmax is the global parameter MAX_SNOW_ALBEDO, αb is a threshold albedo value (ALBASE),
SN [mm/d] is the daily snowfall, SNalb [mm/d] is the total daily snowfall required to bring
albedo to that of new snow (global param ALBSNW), K is the global parameter ALBREC (a
recession constant), Scum is the cumulative snow deposited in the current winter season and
Smax is an estimate of the maximum cumulative snowfall in a year (MAX_CUM_MELT). All of
these global parameters are specified using the command :UBCSnowParams in the .rvp file.

50

4.17 Glacial Melt

Glacial melt refers to the process of melting of glacier ice. It is typically only applied to those
HRUs treated as glaciers.

4.17.1 Sources/Sinks

Glacial melt algorithms move water from GLACIER_ICE to either GLACIER (liquid water storage in
or on the glacier itself) or SURFACE_WATER. They may also modify the cold content of the glacier,
GLACIER_CC.

4.17.2 Constraints/Notes

Glacial melt is not limited by the available glacier ice, which is assumed to be abundant.

4.17.3 Available Algorithms

Simple Melt Approach (GMELT SIMPLE MELT)

The melt rate is equal to the potential melt rate, calculated using the methods described in section
6.8.1.

HBV Approach (GMELT SIMPLE MELT)

The melt rate is equal to the potential melt rate, calculated using the methods described in
section 6.8.1. A glacial melt correction factor may be used to modify the melt rate (land use
parameter HBV_MELT_GLACIER_CORR), which is 1 by default. No glacial melt occurs if there
is any snow cover, i.e., the snow must melt first.

UBC Watershed Model Approach (GMELT UBC)

The potential melt rate is applied to melt the glacier, but modified by the snow cover (i.e.,
no glacial melt occurs if there is 100% snow cover).

51

4.18 Glacier Release

Glacial release refers to the release of meltwater from the glacier to surface water.

4.18.1 Sources/Sinks

Glacial release algorithms move water from GLACIER to SURFACE_WATER.

4.18.2 Constraints/Notes

Glacial release is limited by the available glacier liquid water storage.

4.18.3 Available Algorithms

Linear Storage (GRELEASE LINEAR STORAGE)

A simple linear storage coefficient approach:

Mgrelease = −Kφglac

where φglac [mm] is the total glacial storage, and K [1/d] is a linear storage coefficient (land
use parameter GLAC_STORAGE_COEFF)

Linear Storage (Analytical) (GRELEASE LINEAR ANALYTIC)

A simple linear storage coefficient approach, but analytically solved for and integrated over
the timestep:

Mgrelease =
φglac
∆t

(1− exp(−K∆t))

where φglac [mm] is the total glacial storage,∆t is the model time step and K [1/d] is a linear
storage coefficient (land use parameter GLAC_STORAGE_COEFF)

HBV-EC approach (GRELEASE HBV EC)

A simple linear storage coefficient approach:

Mgrelease = −K∗φglac

where φglac [mm] is the total glacial storage, and K∗ [1/d] is a linear storage coefficient which
is corrected for snow cover, such that the glacier releases more water at times of less snow
cover, calculated as:

K∗ = Kmin + (K −Kmin) exp(−AG(SN + SNliq))

where Kmin [1/d] is a linear storage coefficient (land use parameter HBV_GLACIER_KMIN), K
[1/d] is a linear storage coefficient (land use parameter GLAC_STORAGE_COEFF), AG [1/mm]
is the land use parameter HBV_GLACIER_AG, and SN and SNliq [mm] are the SWE and liquid
snow content of the snowpack on top of the glacier, respectively.

52

4.19 Crop Heat Unit Evolution

Crop heat units (CHUs) are used by some municipalities in Ontario, Canada in order to assess soil
evaporation. ET is maximized when CHUs meet their maturity level. To be used in conjunction
with the soil evaporation algorithm SOILEVAP_CHU. The crop heat units grow in magnitude over
the course of a growing season based upon the daily temperature profiles.

4.19.1 Sources/Sinks

Crop heat unit evolution algorithm does not move water between storage compartments. The
method only revises the magnitude of the CROP_HEAT_UNITS state variable.

4.19.2 Constraints/Notes

Crop heat units are zero outside of the growing season.

4.19.3 Available Algorithms

Ontario method (CHU ONTARIO)

The growing season is determined to begin when the minimum temperature over a 3-day
period is 12.8 ◦C, at which time the crop heat units are set to zero. It ends when the
temperature dips below -2 ◦Cor after September 30th. During the growing season, CHUs are
incremented using the following expressions Brown and Bootsma (1993):

CHUd = 3.33 · (Tmax − 10)− 0.084 · (Tmax − 10)2

CHUn = 1.8 · (Tmin − 4.4)

CHUnew = CHUold + 0.5 · (CHUd + CHUn)

where Tmin and Tmax are the minimum and maximum daily temperatures

53

4.20 Special Processes

The flush, split, and overflow processes are used in conceptual models to represent the ’instan-
taneous’ movement of water from one water storage compartment to another. The convolution
process allows for a time lag of storage. As these are wholly conceptual in nature, they are most
often included in order to emulate the functioning of existing hydrologic models. These processes
may not work as intended when using a numerical method other than the ordered series approach.

• The Flush process instantaneously moves all of the water storage from one storage to another.

• The Overflow process moves the excess water storage (more than the maximum capacity of
the water storage unit) to another compartment.

• The Split process instantaneously moves all of the water storage from one storage compart-
ment into two, with the proportion specified in the input command.

• The convolution process temporarily stores water in a convolution storage compartment, to
be released using a transfer function approach. The output fluxes from a convolution process
are typically an attenuated and delayed version of the input fluxes.

4.20.1 Sources/Sinks

The flush, overflow, and split processes may move water from any water storage compartment to
any other. The convolution process (:Convolve command in the input) releases water added to a
convolution storage structure buy any other process to any storage compartment.

4.20.2 Constraints/Notes

Since convolution methods store the time history of inputs to convolution storage of a duration
consistent with the longest time delay in the convolution, it is not suggested to use convolution
with a time constant in days with an hourly time step. Typically the order of the time delay should
be on the order of the model time step.

4.20.3 Available Algorithms

The below convolution methods are available. All of them perform a discrete version of the following
convolution:

Mconv =

∞∫
0

UH(τ)I(t− τ)dτ

where I(t) is the input flux history (in mm/d) to the convolution storage unit and UH(t) is the
transfer function; the area under the transfer function is always equal to one to ensure mass balance.

54

GR4J Transfer function 1 (CONVOL GR4J 1)

The transfer function used is

UH(t) =

 5
2x4

(
t
x4

)3
2

for t ≤ x4

0 for t > x4

where x4 is the land use parameter GR4J_X4.

GR4J Transfer function 1 (CONVOL GR4J 2)

The transfer function used is

UH(t) =


5

4x4

(
t
x4

)3
2

for t ≤ x4

5
4x4

(
2− t

x4

)3
2

for x4 < t ≤ 2x4

0 for t > 2x4

where x4 is the land use parameter GR4J_X4.

55

To do (2)

56

Chapter 5

Routing

The following chapter outlines the routing algorithms available for modelling the downstream mi-
gration of water through a terrain/channel network in Raven. As briefly summarized in section
1.2.2, the routing process in Raven has two components: at the sub-basin level, rainfall and
snowmelt from all HRUs is released to surface water via overland runoff, interflow, and base flow.
There is some delay and/or redistribution of the timing of the release of this water to the sub-
basin river reach, then again a delay before the water reaches the outlet. This delay is handled in
Raven typically using a linear transfer function (e.g., Unit Hydrograph) approach, and is termed
in-catchment routing. The second form of routing is the hydraulic/hydrologic routing between
subbasins and within the main channel of each subbasin. This is referred to as in-channel routing.
The distinction between the two is shown in figure 1.4. In addition to in-catchment and in-channel
routing, a separate routine is used to route waters through reservoirs/lakes at the end of subbasins.

5.1 In-Catchment Routing

5.1.1 Overview

It is important to note that the rate of release of water from storage within an HRU is treated as
constant over a given time step. This is the most appropriate, since water storage state variables
are stored as snapshots in time (at the end of each time step). However, in the channel, the
state variable is no longer storage, but flow rates, as is consistent with the majority of routing
algorithms developed in the literature. Therefore, in addition to impacting the timing of the flows,
in-catchment routing is used to map flow rates which are constant over a time step (losses from the
HRU) to those which are varying linearly over a time step (in-channel flows).

In all cases, in catchment routing is treated using a discrete transfer function approach, i.e.,

Q(t+ ∆t) =

N∑
n=0

Qlat(t− n∆t) · UHn (5.1)

where Q(t) [m3d−1] is the flow rate into the channel from the subbasin, Qlat(t) [m3d−1] is the
lateral release flow rate from the HRU surface over the timestep from t to t + ∆t, and ~UH is a
unitless vector which describes the distribution of arrival times to the channel. The sum of values
of the ~UH vector equal 1, and the magnitude if UHn may be interpreted as the percentage of the

57

flow appearing in the channel n time steps after its release from the HRU. This is the discrete
generalization of a convolution:

Q(t) =

∞∫
0

Qlat(t− τ) · UH(τ)dτ (5.2)

Either of these may be interpreted as providing a distributed delay between when water is released
from the HRU and when it appears in the channel.

5.1.2 Algorithms

The following algorithms may be used for in-catchment routing. The sole difference between the
various catchment routing algorithms is the shape of the unit hydrograph used.

Dump Method (ROUTE DUMP)

In the “dump” method of catchment routing, all of the water released from the HRUs to
surface water over a time step appears in the channel at the end of the time step. This is
generally valid for small subbasins (those with small times of concentration) or large time
steps. This is equivalent to ~UH = {1, 0, 0, 0, ...}, and is an approximation of

UH(t) = δ(t)

where δ is the Dirac delta function.

Gamma Unit Hydrograph (ROUTE GAMMA CONVOLUTION)

Here, a Gamma distribution is used to represent the unit hydrograph, i.e.,

UH(t) =
ta−1

tapΓ(a)
exp(−t/tp)

where Γ is the Gamma function, tp is the time to peak, specified as the subbasin property
TIME TO PEAK. In Raven, a is fixed at a = 3.

Triangular Unit Hydrograph (ROUTE TRI CONVOLUTION)

A triangular unit hydrograph is used with a peak time of tp, specified as the subbasin property
TIME TO PEAK and total duration specified by the time of concentration, tc, specified using
the subbasin property TIME CONC. Note that variations in the time of concentration smaller
than the model time step will have no impact on model solution.

UH(t) =


2
tc

t
tp

for t < tp
2
tc

(
tc−t
tc−tp

)
for t ≥ tp

58

Nash Unit Hydrograph (ROUTE RESERVOIR SERIES)

The Nash unit hydrograph is used with a linear reservoir constant (k) specified using the
subbasin property RES CONSTANT and the number of reservoirs (N) equal to NUM RESERVOIRS.

UH(t) = tN−1kNe−kt

59

5.2 In-Channel Routing

5.2.1 Overview

In Raven, in-channel routing is the only means by which water, mass, and energy are exchanged
laterally between subbasins. It is assumed that this movement is unidirectional, i.e., water moves
downstream only through a one-dimensional branching stream network fully described by the suc-
cession of subbasins defined in the .rvh file. Each subbasin can have a single outlet and is con-
ceptualized as having a single primary channel running through it, which may or may not have a
reservoir at the end of the channel. Headwater subbasins (those without an upstream subbasin)
are assumed to have no corresponding channel, but may have a reservoir which is fed purely via
in-catchment routing and releases water to the next downstream basin.

This routing formalization leads to some implicit guidelines for subbasin discretization.

• Subbasin outlets should typically occur at stream network junctions.

• Surface water reservoirs should be located at the outlet of a subbasin

• All stream gauges used for calibration or model evaluation should be located at the outlet of
a subbasin

• For lumped (single subbasin) models, channel routing is usually disabled entirely.

In-Channel routing may be treated by a number of algorithms. However, as indicated in section
1.2.2, all of these algorithms may be generalized as

Qn+1
out = Froute(Q

n
out, ~Q

in, ~Ps) (5.3)

Where Froute is the routing algorithm, ~Qin is the recent time history of upstream (and upbasin)
inflows to the channel, ~Ps is a vector of channel parameters, typically a number of stored channel
rating curves, primary channel and bank roughness, and weir or reservoir relationships. Figure
1.4 indicates the meaning of these major parameters. The descriptions of the channel inputs are
detailed in section A.2.2 of the appendix, and specified using the :ChannelProfile command.

5.2.2 Algorithms

While more rigorous hydraulic routing algorithms (which handle backwater effects, etc.) may be
implemented in future incarnations of Raven, for the most part, the algorithms currently in Raven
are considered hydrologic routing methods based upon simple storage relationships, rather than
complete solution of the Saint-Venant equations for momentum and mass conservation. They fall
roughly into two categories: convolution approaches, which function in a manner identical to that of
the unit hydrograph approach used for in-catchment routing, and mass-balance approaches, which
solve for outflow through a discrete form of the mass balance equation. Both sets of approaches
are mass-conservative.

As with the in-catchment methods, the convolution-based methods (ROUTE_DIFFUSIVE_WAVE)
and (ROUTE_PLUG_FLOW), use a discrete transfer-function approach:

Qn+1
out =

N∑
i=0

Qn−i+1
in · UH ′i (5.4)

60

where Qn+1
out [m3d−1] is the flow rate from the subbasin at the end of the time step, Qnin [m3d−1] is

the inflow rate from upstream sources at the end of time step n, and ~UH ′ is a unitless vector which
describes the distribution of arrival times to the channel. The sum of values of the ~UH ′ vector
equal 1, and the magnitude if UH ′i may be interpreted as the percentage of the flow leaving from
the channel i time steps after its arrival in the channel from upstream sources.

Many of the in-channel routing routines require the reference celerity for the channel reach:

cref =
dQ

dA

∣∣∣∣∣
Qref

(5.5)

cref is the reference celerity for the reach, the velocity corresponding to the reference flow, Qref
[m3d−1] in the reach, usually specified as the bank full flow using the subbasin parameter Q_REFERENCE.
The slope of the Q vs. A relationship at Qref is interpolated from that generated for the specific
channel.

No Routing (ROUTE NONE)

All inflows (both lateral and upstream), are instantly routed to the channel outlet, i.e.,

Qn+1
out = Qn+1

in +Qn+1
lat

This option is mostly used for single subbasin models.

Simple Plug Flow (ROUTE PLUG FLOW)

Here, there is a delay between water entering and exiting the channel dictated by the celerity
of the channel reach, but there is no smearing out of the hydrograph as it migrates along the
channel.

UH ′(t) = δ

(
t− L

cref

)
where δ(t) is the Dirac delta function, L is the reach length within the subbasin (specified
from the subbasin property REACH_LENGTH, and c is the reference celerity of the channel, as de-
termined from the channel profile characteristics and the subbasin’s reference flow rate, Qref
specified as the subbasin parameter Q_REFERENCE. The reference celerity cref is calculated
using 5.5.

Diffusive Wave Model (ROUTE DIFFUSIVE WAVE)

Here, an analytical solution to the diffusive wave equation is used to smear out the flood wave
as it propagates through the reach. As with the simple plug flow approach, the reference
celerity is used to determine the mean travel time of the wave, and the channel diffusivity, D
[m2d−1] controls the smearing out of the wave signal prior to exiting the reach.

UH ′(t) =
1

2
√
πDt

exp

(
−

(L− cref t)2

4Dt

)

61

where L [m] is the channel reach length, cref is calculated using 5.5, and the channel diffusiv-
ity, D, is estimated from the channel reference flow Qref (subbasin parameter Q REFERENCE)
using the following relationship ?:

D =
Qref

2S · d(Qref)

where S is the channel bedslope and d(Q) is the relationship between flow depth, d and flow
rate, Q, in the channel, determined from the channel geometry.

Storage Coefficient Method (ROUTE STORAGE COEFF)

The storage coefficient method evaluates outflow using a discrete approximation of the water
balance for the channel over the time step ?:

Qn+1
out = c1 ·Qn+1

in + c2 ·Qnin + c3 ·Qnout (5.6)

here, the weights c1, c2, and c3 are calculated from the storage coefficient, k, given as:

k = min

(
1

K
∆t + 0.5

, 1

)
(5.7)

where K is the representative travel time for the reach (also the Muskingum K parameter,
calculated as ∆x/cref where ∆x is the reach segment length). Here, c1 = k/2, c2 = k/2, and
c3 = 1− k.

Caution should be used with this method on long reaches without finely discretizing the
reach, as water will arrive at the outlet immediately after entering, even with a large repre-
sentative travel time in the reach.

Muskingum-Cunge Method (ROUTE MUSKINGUM)

The standard Muskingum-Cunge approach also evaluates outflow using a discrete approxi-
mation of the water balance for the channel over the time step:

Qn+1
out = c1 ·Qn+1

in + c2 ·Qnin + c3 ·Qnout (5.8)

here, the weights c1, c2, and c3 are calculated from the Muskingum X and K parameters as

c1 =
∆t− 2KX

2K(1−X) + ∆t

c2 =
∆t+ 2KX

2K(1−X) + ∆t

c3 =
−∆t+ 2KX

2K(1−X) + ∆t

The Muskingum algorithm is well-documented in the literature. The Muskingum parameters
X and K are calculated using the following relations:

K =
∆x

cref

62

X =
1

2

(
1−

Qref
Swrefcref∆x

)
where cref is the reference celerity for the reach (calculated using equation 5.5), S is the
channel bedslope, wref is the channel width at the reference flow Qref (basin parameter
Q_REFERENCE, and ∆x is the reach segment length (or reach length, L, if only one segment
is used per reach). Care must be taken to ensure that X and K fall within a reasonable
range of values, notably that 2KX < ∆t < 2K(1−X). If the time step is too large, Raven
automatically employs local time stepping. However, the case where the time step is too
small (a warning will be thrown to RavenErrors.txt) must be handled via user intervention,
by increasing the number of segments in the reach.

Iterative Hydrologic Routing Approach (ROUTE HYDROLOGIC)

Here, the routing is performed using an iterative application of Newton’s root-finding algo-
rithm to the following discretization of the storage relationship for the reach,

V (Qn+1
out)− V (Qnout)

∆t
=

1

2
(Qnin +Qn+1

in)− 1

2
(Qnout +Qn+1

out)

Given that the channel volume, V (Q) may be written as a function of outflow from the reach
if a level-pool assumption is used, this may be expressed as a root-finding problem for Qn+1

out .
This method is very stable, fast, accurate, and mass-conserving. It avoids the numerical
pitfalls of the non-iterative Muskingum algorithm. Right now, it can only be applied to
reaches which constitute a single reach segment.

5.3 Reservoir Routing

5.3.1 Overview

Lakes or reservoirs may be specified using a :Reservoir-:EndReservoir command in the .rvh file
(see appendix A.3), and are always located a the outlet of a subbasin, i.e., a reservoir linked to
a given subbasin receives its water from that basin’s in-channel routing routine, then releases it
downstream.

Iterative Reservoir Routing Approach

Only one algorithmic option is available for routing water in a reservoir. In this approach, a Newton
solver is used to iteratively calculate the reservoir stage using the following time discretization of
the reservoir level-pool mass balance:

V (hn+1)− V (hn)

∆t
=

1

2
(Qnin +Qn+1

in)− 1

2

(
Q(hn) +Q(hn+1)

)
− E

2

(
A(hn+1) +A(hn)

)
where h is the stage and Q(h), V (h), and A(h) are the stage-discharge, stage-volume, and stage-
area relations defined in the :Reservoir command; E is the open-water evaporation rate for the
reservoir. Note that the reservoir should be included as an HRU with the average reservoir area.
All precipitation falling on this HRU gets added to the Qin component, where evaporation from
the surface of the reservoir is only included in the above expression. If no HRU is linked to the

63

reservoir in the reservoir command, evaporation is considered negligible and not included in the
mass balance.

It is critical that the entire range of likely stage elevations are included when specifying the
Q(h) and V (h) curves.

For large reservoirs (especially those with multiple subbasins draining into them), it is suggested
to treat the reservoir as a single-HRU subbasin with zero reach length.

Known inflows or outflows from the reservoir may be considered in the above mass balance
using the :ReservoirExtraction command in the .rvt file. These may also be used to override
the reservoir outflow with known discharge rates (in this case Q(h) must be set to zero for all h).
If reservoirs are present in the model, the file runname ReservoirStages.csv is automatically
created.

64

Chapter 6

Forcing Functions

In Raven, forcing functions, such as rainfall or incident radiation, are calculated from meteo-
rological information specified at gauge stations in the watershed or, alternatively, from gridded
weather/climate data. This information is interpolated between gauge stations or grid cells to
each hydrological unit (HRU), where it may be corrected for orographic or other effects. Forcing
functions are calculated at the beginning of each computational time step, and are always constant
over individual time steps.

Note that the basic data from which forcing functions are generated (often daily precipitation,
minimum/maximum daily temperature, etc.) must be reported in terms of rates (e.g., mm/d
or MJ/m2/d) for precipitation and radiation data, not total quantities for the time period. For
example, if hourly rainfall information is stored in mm, it must be converted to mm/d prior to
simulation. Missing data in the gauge information is currently not allowed. The time periods
of available forcing data must fully overlap the simulation duration, but they do not have to be
identical.

The minimum required forcing data for fueling a Raven simulation is daily precipitation and
daily maximum and minimum temperature. From this, Raven can partition precipitation into
snowfall and rainfall, estimate subdaily temperatures and PET, and provide estimates of incoming
shortwave and longwave radiation. Alternately, these parameters may be specified if available.
Raven has the ability to estimate the following forcings from simple records of total precipitation
and daily min/max temperatures:

• Snowfall/Rainfall

• Potential ET (or reference ET)

• Shortwave and longwave net radiation

• Cloud cover

• Potential melt

• Wind speed, relative humidity, and air pressure

• Orographic corrections to temperature, precip, and potential ET rates

• Sub-daily corrections to daily ET, SW radiation, and potential melt rates

Refer to section A.1.2 of Appendix A for more details about each of the available processes that
will be discussed in this chapter.

65

6.1 Spatial Interpolation

Spatial interpolation of forcing functions from gauge stations to HRUs is based upon the lat-long
locations of the gauges and HRUs as specified in the .rvt and .rvh files, respectively. These co-
ordinates are converted into the most appropriate local Universal Transverse Mercator (UTM)
coordinate system (as determined by Raven) to calculate distances between points. Raven cur-
rently supports nearest neighbor and inverse distance weighting interpolation, as documented under
the :Interpolation command in appendix A.3. It also supports the provision of a user-specified
gauge weighting file, such that gauges may be assigned specifically to individual HRUs or alternate
interpolation schemes may be used external to the program.

In general, any interpolated field value (e.g., temperature), is calculated for each HRU using a
relatively general weighted averaging scheme:

Vk =
NG∑
g=1

wkg · Vg

i.e., any value Vk for HRU k is generated by weighting the values from all gauges Vg, using an

HRU-specific weighting factor wkg. Note that
NG∑
g=1

wkg = 1 is required. Different interpolation

schemes differ only in the means by which they generate the weights, usually based upon the
relative geographic position of the HRUs and gauges.

For gridded data, the contributions to each HRU to each grid cell is similarly specified using a
weighting scheme, though in this case the most intuitive weighting scheme is to use an area-weighted
average of the cells that overlap each HRU, i.e.,

Vk =
NC∑
g=1

wkg · Vg

where NC is the number of cells and wkg = (Ag
⋂
Ak)/Ak, i.e., the weighting is determined by the

area of intersection (
⋂

) between the grid cell (Ag) and HRU (Ak). The user must define these
weights, typically using GIS.

66

6.2 Temperature

Daily average, sub-daily, and daily minimum and maximum temperatures are required for many
hydrological simulation algorithms. This forcing data is often used for partitioning of precipitation
into rainfall and snowfall components, estimating potential and actual evapotranspiration, driving
snow melt and refreezing, as a proxy for cloud cover, etc., etc. In Raven, one of three temperature
data sets are needed at each gauge or grid cell. Ideally, sub-daily (typically hourly) data is specified,
and daily minimum, maximum, and average temperatures are easily calculated. If daily minimum
and maximum temperature data are provided, daily averages are calculated as the average of
the two, and sub-daily temperatures (if needed) are specified using the approach dictated by the
:TemperatureDownscaling command. Lastly, if only daily average temperature is provided, the
daily min, max, and sub-daily temperatures are also generated using the approach specified in the
:TemperatureDownscaling command, but with the max and min calculated from the constant
:TemperatureSwing parameter associated with each gauge.

6.2.1 Orographic Temperature Effects

Orographic effects may be applied to correct temperature estimates at each HRU based on the
specified elevation of the HRU. The options available for orographic temperature adjustment are
described below. The orographic temperature effect is set in the RVI file using the :OroTempCorrect
keyword. Orographic corrections are typically only applied to gauged (not gridded) input data.

Simple Method (OROCORR SIMPLELAPSE)

The simple method for orographic temperature correction estimates the HRU through the
application of a lapse rate correction to the associated gauge temperature:

T = Tg − α(z − zg) (6.1)

where T is the estimated HRU temperature, Tg is the measured gauge temperature, z and
zg are the elevation of the HRU and gauge respectively, and α is the specified adiabatic
lapse rate. Equation 6.1 is applied to all temperature forcing variable time series, including:
daily average, minimum and maximum; and monthly average, minimum and maximum. The
adiabatic lapse rate is set with the :AdiabaticLapseRate keyword in the RVP file.

HBV Method (OROCORR HBV)

The HBV model method from Bergstrom (1995) employs the simple orographic temperature
correction method described above employing Equation 6.1, except that the monthly average
temperatures are not lapsed to be consistent with their treatment in the standard HBV
model.

UBC Method 1 (OROCORR UBC)

The UBC watershed model orographic temperature correction method 1 employs a series
of lapse rates and inflection points describing the orographic correction profile. The UBC
method 1 calculates four temperature lapse rates: above and below 2000 m elevation for both

67

daily maximum and daily minimum temperatures. The parameters are set in the RVP file
using the following keword and parameter sequence: :UBCTempLapseRates A0TLXM A0TLNM

A0TLXH A0TLNH P0TEDL P0TEDU The parameters listed above are described in Table 6.1.

Table 6.1: UBC Watershed Model temperature lapse rate parameters
Parameter Description Units

A0TLNH Lapse rate for minimum temperatures when the
station elevation is greater than 2000 m

C / 1000 m

A0TLNM Lapse rate for minimum temperatures when the
station elevation is less than 2000 m

C / 1000 m

A0TLXH Lapse rate for maximum temperatures when the
station elevation is greater than 2000 m

C / 1000 m

A0TLXM Lapse rate for maximum temperatures when the
station elevation is less than 2000 m

C / 1000 m

P0TEDL Lapse rate of maximum temperature range for el-
evations below 2000 m

C / 1000 m

P0TEDU Lapse rate of maximum temperature range for el-
evations above 2000 m

C / 1000 m

V =

{
min

(
P

A0PPTP , 1.0
)
, if A0PPTP > 0

0, if A0PPTP ≤ 0
(6.2)

where P is the precipitation rate, A0PPTP is the threshold precipitation for temperature
lapse rate in mm and V is a rainfall correction factor that transition a lapse rate from a
dry to wet adiabatic lapse rate based on current precipitation rate. A corrected adiabatic
lapse αc is determined by providing a weighted average between the specified dry adiabatic
lapse rate αd and the wet adiabatic lapse rate αw as shown in Equation 6.3. The wet and
dry adiabatic lapse rates are specified in the RVP file using the :WetAdiabaticLapse and
:AdiabaticLapseRate respectively.

αc = V αw + (1− V)αd (6.3)

A daily temperature range factor wt is calculated as the current daily temperature range
divided by the maximum temperature range parameter A0TERM shown in Equation 6.4.

wt =
Tmax − Tmin
A0TERM

(6.4)

The final equation for the maximum daily temperature lapse rate αmax and the minimum
daily temperature lapse rate αmin are shown in Equations 6.5 and 6.6 respectively. The lapse
rates have an inflection point at 2000 m in all cases, and as the daily temperature range
approaches zero the lapse rates approach the corrected adiabatic lapse rate.

αmax =

{
wtA0TLXM + (1− wt)αc, if elevation ≥ 2000 m

wtA0TLXH + (1− wt)αc, if elevation < 2000 m
(6.5)

αmin =

{
wtA0TLNM + (1− wt)αc, if elevation ≥ 2000 m

wtA0TLNH + (1− wt)αc, if elevation < 2000 m
(6.6)

To do (3)

68

UBC Method 2 (OROCORR UBC2)

The UBC Watershed Model method 2 for estimating orographic temperature effects is to
dynamically derive the lapse rate from the measured temperature data collected at the me-
teorological gauges. This routine uses only the first two meteorological gauges (the first two
listed in the RVT file) to derive the lapse rate relationships. The relationship for the max-
imum daily temperature lapse rate is shown in Equation 6.7 and the relationship for the
minimum daily temperature lapse rate is shown in Equation 6.8.

αmax =
Tmax2 − Tmax1

z2 − z1
(6.7)

αmin =
Tmin2 − Tmin1

z2 − z1
(6.8)

where Tmin1 and Tmin2 are the minimum daily temperatures at stations 1 and 2 respectively,
Tmax1 and Tmax2 are the maximum daily temperatures at stations 1 and 2 respectively, and
z1 and z2 are the elevations at stations one and two respectively.

This method requires two stations configured in the RVT file and subsequent stations are
ignored in the calculations.

69

6.3 Precipitation

Precipitation properties are interpolated directly from gauges or gridded data. At the very mini-
mum, total daily precipitation and daily average temperature is required to generate required time
series of rainfall and snowfall everywhere in the watershed.

Measured total precipitation, snow precipitation, or rain precipitation may be corrected on
a gauge-by-gauge basis by using gauge-dependent rainfall and snowfall corrections to correct for
observation bias. This is handled using the :RainCorrection and :SnowCorrection commands
outlined in appendix A.4.1.

6.3.1 Snow-Rain Partitioning

If only total precipitation is specified at a gauge station or grid cell, then this total precipitation is
partitioned into rain and snow, based upon the approach specified in the :RainSnowPartitioning

command. The following algorithms are available:

Temperature Range Approach (RAINSNOW DINGMAN)

In the temperature range approach, the snow fraction, α, is calculated from the maximum
and minimum daily temperatures:

α =
Ttrans − Tmin
Tmax − Tmin

(6.9)

where Ttrans is the rain/snow transition temperature (specified in the :RainSnowTransition

command) [default: 0 ◦C], and Tmin and Tmax are the min and max daily temperatures. If
Ttrans is outside of this temperature range, the precipitation is either all snow or all rain,
accordingly. This snow fraction is applied for the entire day.

Linear Approaches (RAINSNOW UBC or RAINSNOW HBV)

In these approaches, a linear transition between all snow and all rain is determined from the
average daily temperature:

α = 0.5 +
Ttrans − Tave

∆T
(6.10)

in the range from Ttrans −∆T/2 to Ttrans + ∆T/2, where Ttrans and ∆T are specified in the
:RainSnowTransition command. If Tave is outside of this temperature range, the precipi-
tation is either all snow or all rain, accordingly. This snow fraction is applied for the entire
day.

Interpolate From Data (RAINSNOW DATA)

To be used if snowfall (or the snow fraction) is explicitly reported in the gauge/gridded data.

70

6.3.2 Orographic Precipitation Effects

Orographic effects may be applied to correct total interpolated precipitation at each HRU based
upon HRU elevation. The fraction of precipitation in the form of snow or rain is not modified by
these corrections.

HBV Method (OROCORR HBV)

From the HBV model Bergstrom (1995):

P = Pg · (1.0 + α(z − zg)) (6.11)

where P is the total precipitation rate, Pg is the measured gauge precipitation, z and zg are
the elevation of the HRU and gauge, respectively, and α, the precipitation correction lapse
rate, is 0.00008 m−1 below 5000 masl, 0 above this elevation.

UBC Method 1(OROCORR UBC

The UBC Watershed Model method 1 for orographic correction of precipitation estimates
employs a temperature-corrected lapse rate with two inflection points (Quick, 2003). The
base orographic correction equation is shown in Equation 6.12:

P = Pg · (1 + αFt)
z−zg
100 (6.12)

where P is the total applied precipitation rate, Pg is the measured gauge precipitation, z and
zg are the elevation of the HRU and gauge, respectively, and α, the precipitation correction
lapse rate. Ft is a temperature correction factor shown in equation 6.13:

Ft =

{
1, if tband ≤ 0 C

1−A0STAB (tband)
2 , if tband > 0 C

(6.13)

where A0STAB is the precipitation gradient modification factor, and tband is the temperature
at the first listed elevation band in the model. Ft is constrained between 0 and 1.

Simple Method (OROCORR SIMPLELAPSE)

The simple precipitation lapse rate method employs a simple linear adiabatic method as
outlined in Equation 6.14 below:

P = Pg + α(z − zg) (6.14)

where P is the total precipitation rate, Pg is the measured gauge precipitation, z and zg
are the HRU and gauge elevations respectively and α is the precipitation correction lapse
rate specified using the :PrecipitationLapseRate key word in the RVP file. Checks azre
included to ensure positivity of the precipitation rate

71

Figure 6.1: UBC Watershed Model Orographic Correction

6.4 Potential Evapotranspiration (PET)

A variety of potential evapotranspiration (PET) estimation algorithms of varying complexity are
available for calculating PET within an HRU. These PET algorithms use many of the same rela-
tionships, including those for the saturated vapor pressure as a function of temperature,

es(T) = 0.6108 · exp

(
17.23T

T + 237.3

)
(6.15)

and the slope of this curve, ∆(T) = des/dT ,

∆ =
4098

(T + 237.3)
· es(T) (6.16)

where T is in ◦C. The latent heat of vaporization of water, λv, is estimable by:

λv = 2.495− 0.002361 ∗ T (6.17)

and the psychrometric constant, γ is here treated as varying with atmospheric pressure, P ,

γ =
ca

0.622 · λv
P (6.18)

where Ca is the specific heat of air, equal to 1.012x10−3 MJ/kg/K.

Note that all of the algorithms below estimate daily PET. Methods are required to downscale
these daily estimates to sub-daily timesteps, as discussed in 6.10.

72

6.4.1 PET Estimation

Constant PET (PET CONSTANT)

The daily PET value used is constant and uniform rate of 3 mmd−1.

From file (PET DATA)

The daily PET is explicitly specified at each gauge or grid cell (see section A.4 for details) and
interpolated in-between. This enables any measured ET or user-specified means of calculating
PET to be used.

From Monthly (PET FROMMONTHLY)

Used in the HBV Model Bergstrom (1995). Monthly PET and temperature norms are pro-
vided at the gauge using the :MonthlyAveEvaporation and :MonthlyAveTemperature com-
mands. These estimates are assumed not to vary year-to-year. Daily estimates of PET may
then be obtained from:

PET = PETmon ·min((1 + 1
2(Tave − Tmon), 2) (6.19)

where PETmon and Tmon are the daily PET [mm/d] and temperature norms for the current
month, and Tave is the average daily temperature. Checks are used to ensure PET is positive
and doesn’t exceed twice the average representative monthly PET.

Penman Monteith (PET PENMAN MONTEITH)

From Monteith (1965). The standard Penman-Monteith equation estimates daily reference
evapotranspiration over a reference vegetation,

PET =
1

λvρw
·
[

∆

∆ + γ∗
Rn +

ρaCaca
∆ + γ∗

(es − e)
]

(6.20)

where λv [MJ/kg] is the latent heat of vaporization of water, ρw [kgm−3] is the density of
water, ∆ = des/dT is the slope of the saturated vapor pressure curve, Rn [MJm−2d−1] is
the net radiation to the system, ρa is the air density, Ca [MJ/kg] is the specific heat of air,
catm [md−1] is the atmospheric conductance, e is the vapor pressure of the atmosphere, es(T)
[kPa] is the current saturated vapor pressure of the atmosphere, a function of temperature,
and γ∗ [kPa/ ◦C] is the corrected psychrometric constant,

γ∗ =

(
1 +

ca
ccan

)
γ (6.21)

where ccan [m/d] is the canopy conductance, and γ [kPa/ ◦C] is calculated using 6.18. The
final expression is converted from m/d to mm/d. The atmospheric conductance is calculated
using the following relationships Dingman (2002):

catm = v · V K2

ln
(
zref−z0
zrough

)
ln
(
zref−z0
zvap

) (6.22)

73

where V K is the Von Karman Constant (0.42), zref is the reference height [m] at which
the wind velocity v [m/d] is reported, z0 [m] is the zero-plane displacement height, zrough
is the roughness height [m], and zvap is the vapour roughness height [m]. These parameters
are predominantly calculated from the ground roughness and canopy heights. The canopy
conductance is calculated as a function of vegetative leaf area index Dingman (2002):

ccan = 0.5 · cleaf · LAI (6.23)

where cleaf is the leaf conductance [m/d], calculated using the expressions detailed in Ding-
man (2002).

Penman Combination (PET PENMAN COMBINATION)

From Penman (1948). A similar expression to the Penman Monteith equation, daily reference
ET is calculated from the following equation:

PET =
1

λvρw
·
[

∆

∆ + γ
Rn

]
+

[
γεvv

∆ + γ
(es − e)

]
(6.24)

i.e., here the deficit-driven evapotranspiration (the second term) is treated using the wind
velocity, v [m/s] and a vertical transport efficiency factor, εv, calculated as

εv =
0.622ρa

6.25 · eρw
·
(

ln (fraczref − z0zrough)−2
)

(6.25)

terms are defined as defined above in the description of the PET_PENMAN_MONTEITH algorithm.

Priestley-Taylor (PET PRIESTLEY TAYLOR)

From Priestley and Taylor (1972). A simplified version of the Penman-Monteith approach
where only net radiation explicitly drives daily ET, with an additional correction factor for
the unmodeled ET driven by vapor deficit. The Priestley-Taylor equation is given by:

PET = 1.26 · 1

ρwλv
·
[

∆

∆ + γ
Rn

]
(6.26)

where Rn is the net radiation [MJ/m2/d], and other terms are defined as above in the de-
scription of the PET_PENMAN_MONTEITH algorithm. The factor of 1.26 is used to scale the
radiation-driven ET to account for the unmodeled vapor-driven ET.

Hargreaves (PET HARGREAVES)

From Hargreaves and Samani (1982).

PET =
1

ρwλv
· SET · 0.000938 ·

√
Tmonmax,F − Tmonmin,FTave,F (6.27)

where SET [MJ/m2/d] is the extraterrestrial shortwave radiation, the temperatures Tmonmax,F

and Tmonmin,F are the maximum and minimum monthly temperatures in Farenheit, and Tave,F is
the daily temperature in Farenheit (converted internally within the code). The temperature
factors attend to the impact of cloud cover and atmospheric interference with the extrater-
restrial radiation.

74

Hargreaves 1985 (PET HARGREAVES 1985)

From Hargreaves and Samani (1985). The 1985 Hargreaves equation, an empirical approach
based solely on temperature and incoming solar radiation. Similar to PET_HARGREAVES, but
it metric units.

PET =
1

ρwλv
· SET · 0.0023 ·

√
Tmax − Tmin (Tave + 17.8) (6.28)

where Tave, Tmax, and Tmin are the average, maximum, and minimum daily air temperature,
and SET [MJ/m2/d] is the extraterrestrial shortwave radiation.

UBC (PET MONTHLY FACTOR)

Method used in the UBC Watershed Model (Quick, 1995). PET is calculated using the
following formula:

PET = Emon ·max(Tave, 0) · δforest
where Emon [mm/d/K] is a monthly PET factor (specified using the :MonthlyEvapFactor

command in the .rvt file), Tave is the daily average temperature and δforest is the land use
parameter FOREST PET CORR), applied only to forested regions.

Hamon (PET HAMON)

From Hamon (1961). PET is calculated using the following relationship:

PET = 1115 ·
esatL

2
d

Tave

where esat is the saturated vapor pressure [kPa], Tave is the average daily temperature [K], Ld is
the day length [d], and the PET is in mm/d. The constant 1115 includes both units conversion
factors and an approximate relationship to convert saturated vapor pressure and temperature to
absolute humidity.

Turc 1961 (PET TURC 1961)

From Turc (1961) as reported in Liu et al. (2005). This empirical PET estimation algorithm
has no additional parameters required.

PET =

0.013
(

Tave
Tave+15

)
(23.88 ∗ Sn + 50)

(
1 + 50−RH

70

)
for RH<50%

0.013
(

Tave
Tave+15

)
(23.88 ∗ Sn + 50) for RH≥50%

where the PET is in mm/d, Tave is the average daily temperature [◦C], Sn is the daily net
shortwave radiation [MJ/m2/d], and RH is the relative humidity expressed as a percentage.

75

Makkink 1957 (PET MAKKINK 1957)

From Makkink (1957) as reported in Liu et al. (2005).

PET = 14.57

(
∆

∆ + γ

)
Sn

58.5
− 0.12

where ∆ is the slope of the saturation vapor pressure-temperature curve [kPa/ ◦C], γ is the
psychrometric constant, and Sn is the net incoming solar radiation [MJ/m2/d].

6.4.2 PET Orographic Effects

Orographic effects are calculated using the following algorithms, specified using the :OroCorrPET

command in the .rvi file.

HBV Method (OROCORR HBV)

From the HBV model (Bergstrom, 1995):

PET = PETg · α (1− β) (z − zg) (6.29)

where α is the global PET correction factor (GLOBAL PET CORR), β is the HBV precip correc-
tion factor (HBV PRECIP CORR), and z and zg are the HRU elevation and the gauge elevation,
respectively.

PRMS Method (OROCORR PRMS)

To do (4) This orographic correction factor is described in the users’s manual of the PRMS
model (?). It uses the maximum saturated vapor pressure, emaxsat [kPa] (calculated from
the average August temperature) and the minimum saturated vapor pressure eminsat [kPa]
(calculated from the average February temperature).

PET = PETg ·
1

68− 0.0118z + 650
emaxsat −eminsat

) (6.30)

where z is the HRU elevation [masl] and PETg is the estimated PET at the gauge (presumed
to be calculated at an elevation of zero). Note that because this algorithm implicitly includes
orographic temperature effects, it must be used with care in combination with orographic
temperature corrections.

76

6.5 Shortwave Radiation

Solar radiation contributes to the earth surface’s energy balance, and is important for estimating
snow melt and evapotranspiration, amongst other things. Since solar radiation is not directly
measured in many places, here the standard routines documented in (Dingman, 2002) are used
to estimate critical terms needed to estimate extraterrestrial shortwave radiation. This can then
be corrected using information about cloud cover and/or optical air mass. Used in many of these
calculations is the day angle, Γ [rad], and the solar declination, δ [rad]:

Γ =
2πJ

365
(6.31)

δ = 0.006918− 0.399912 · cos(Γ) +

0.070257 · sin(Γ)− 0.006758 · cos(2 · Γ) +

0.000907 · sin(2Γ)− 0.002697 · cos(3 · Γ) +

0.001480 · sin(3Γ)

Day length is calculated as follows, with additional corrections for polar latitudes:

Day Length =
arccos(− tan(δ) · tan(Λ))

π

where Λ is the latitude of the location (in radians). In Raven, net shortwave is calculated as

Sn = (1− α) · fcan · fcloud · Sclear (6.32)

where fcan and fcloud [0..1] are correction factors for canopy cover and cloud cover, respectively,
and the clear sky solar radiation is given as

Sn = fatm · fasp · SET (6.33)

where fatm and fasp [0..1] are a correction factors for atmospheric refraction and slope/aspect of the
ground surface, SET is the extra terrestrial radiation. Section 6.5.1 details methods for calculating
SET , section 6.5.2 details methods for handling fatm, section 6.5.3 details methods for handling
fcloud and section 6.5.4 details methods for handling fcan.

6.5.1 Extraterrestrial Shortwave Generation

The following shortwave radiation estimation algorithms are available, and are specified using the
:SWRadiationMethod command in the .rvi file.

Default ET Flux (SW RAD DEFAULT)

Extraterrestrial radiation flux on a horizontal plane is calculated using Dingman (2002):

SET = Isc · E0 · [cos(δ) · cos(Λ) · cos(2πt) + sin(δ) sin(Λ)] (6.34)

where Isc is the solar constant (118.1 MJm−2d−1), E0 is an eccentricity correction (see Ding-
man (2002)), and t is the time of day in days (i.e., t = 0 is midnight, t = 0.5 is noon).
Corrections are applied for radiation on a sloping surface (i.e., on HRUs with a non-zero
slope). Aspects are corrected for in the default approach using the corrections put forth in
Dingman (2002), and can handle the two sunset effect.

77

UBC Watershed Model approach (SW RAD UBCWM)

Shortwave radiation is calculated using the same equations as the SW_RAD_DEFAULT approach
(equation 6.34), but employs a correction to the day length to account for mountain barrier
effects. Two sets of monthly correction parameters are employed in this method to correct
for SW radiation for north- and south-facing slopes. The parameters are included in the
UBCNorthSWCorr and UBCSouthSWCorr keywords in the RVP file with one parameter for each
month (January to December). The HRU orientation factor is calculated as a function of the
aspect of the HRU

O = 1−
∣∣∣∣ θπ − 1

∣∣∣∣
where θ is the dominant aspect direction and O is the orientation (eg. north = 0 and south
= 1, east/west = 0.5). The final SW radiation estimate is

fasp = [O · CS + (1−O) · CN]

where fasp is the correction factor for shortwave radiation on an inclined plane, SET is the
uncorrected shortwave radiation estimate based on equation 6.34, and CS and CN are the
south and north correction factors respectively (from UBC_S_CORR and UBC_N_CORR.

Interpolate From Data (SW RAD DATA)

The incident shortwave radiation is read from a file, specified at one or more gauge locations.
The radiation could be either measured, generated from an atmospheric model, or estimated
using an external preprocessor. If incident shortwave is provided directly, cloud cover correc-
tions (but not aspect, or canopy corrections) are implicitly contained in this figure. What is
actually being input is

·fcloudfatm · SET
Additional algorithms are required to attend to slope/aspect and canopy corrections.

6.5.2 Clear Sky Radiation

As radiation passes through the earths atmosphere, energy is absorbed and scattered by particles
and water vapor, both in cloudy and cloud-free areas. Corrections must be made to extraterrestrial
radiation to account for this.

Dingman (SW RAD DEFAULT)

The approach outlined in Dingman (2002), total incident radiation is calculated as:

fatm = (τdir + 0.5(1− τdiff)) · (1 + 0.5(1− τdiff)α)

where α is the surface albedo, and the scattering correction factors for diffuse and direct solar
radiation τdiff and τdir are given by

τdir = exp (−0.124− 0.0207Wp − (0.0682 + 0.0248Wp)Mopt) (6.35)

τdiff = exp (−0.0.363− 0.0084Wp − (0.0572 + 0.0173Wp)Mopt)

where the precipitable water vapor, Wp, is calculated as Wp = 1.12 exp(0.0614Td), where Td
is the dew point temperature, and the optical air mass, Mopt, is calculated using the methods
of Yin (1997).

78

UBC Watershed Model approach (SW RAD UBCWM)

In the UBC watershed model, the corrections for atmospheric scattering and adsorption are
given as

fatm = exp(−2.0 · (0.0128− 0.0234 ln(ma))

where the air mass, ma is given by

ma =
1− 0.001 · z

· [cos(δ) · cos(Λ) · cos(2πt) + sin(δ) sin(Λ)]
(6.36)

This product fatm · SET is numerically integrated over the course of the day to estimate the
daily clear sky radiation. The day length in this integration calculation is corrected for using
a mountain barrier correction.

6.5.3 Cloud Cover Corrections

Additional corrections are required to handle cloud cover. While the algorithms for estimating
actual cloud cover are included in section 6.7 below, the use of the cloud cover factor for estimating
incident radiation is treated here.

UBC approach (SW CLOUDCOV CORR UBC)

The UBC watershed model corrects shortwave radiation due to cloud cover using the following
equation

fcloud = (1− (1− POCAST) · Cc)

where SC is the shortwave radiation corrected for cloud cover, S is the uncorrected shortwave
radiation, CC is the cloud cover correction factor and POCAST is the cloud penetration
factor specified in the RVP file with the :UBCCloudPenetration keyword.

UBC Watershed model approach (SW CLOUDCOV CORR DINGMAN)

The cloud cover correction factor may also be estimated as outlined in Dingman (2002, Eq.
5-30):

fcloud = (0.355 + 0.68 · (1− Cc)) (6.37)

where Cc is cloud cover. This approach does not require any parameters to be set in the RVP
file.

6.5.4 Canopy Cover Corrections

Calculates the ratio of solar radiation under forest canopy relative to open. The default canopy
cover correction method is no correction (SW CANOPY CORR NONE).

79

UBC Method (SW CANOPY CORR UBC)

To correct for shortwave correction due to canopy cover the UBC watershed model method
employs the following equation

fcan = FE

where SC is the shortwave energy corrected for canopy cover, S is the uncorrected shortwave
energy, and FE is the forest cover correction factor specified using the :UBCExposureFactor

command in the RVP file.

Bulk transmittance approach (SW CANOPY CORR STATIC)

The Bulk transmittance approach provides a static canopy transimittance based on leaf-area
index and stem-area index estimates to produce a “sky view” factor, or the fraction of the
ground that receives sunlight (Dingman, 2002):

fcan = exp(−k(LAI + SAI))

where k is the extinction coefficient, LAI is the leaf-area index and SAI is the stem-area index.
The extinction coefficient, leaf-area index and stem-area index are supplied or calculated
from parameters within the :VegetationClasses parameter structure in the RVP file by the
SVF EXTINCTION, MAX LAI, and SAI HT RATIO columns respectively.

The leaf-area index is calculated based on the sparseness:

LAI = (1− fc)(LAImax)

where fc is the sparseness index (FOREST_SPARSENESS) and LAImax is the maximum leaf-area index.
Stem-area index is estimated as follows:

SAI = (1− fc)(Cs · hveg)

where Cs is the ratio between vegetation height and the maximum stem-area index and hveg is the
vegetation height.

6.6 Longwave Radiation

Longwave radiation is the electromagnetic radiation emitted by materials with near-earth-surface
temperatures. The net longwave is the difference between the incident longwave emitted (or back
scattered) by the atmosphere, clouds, and canopy and the outgoing radiation from the land surface.
Unlike with shortwave radiation, in Raven only the net longwave radiation is tracked.

6.6.1 Data method (LW RAD DATA)

The net longwave radiation is read from a file, specified at one or more gauge locations or
as a gridded climate product. The radiation could be either measured or estimated using an
external preprocessor.

80

6.6.2 Default method (LW RAD DEFAULT)

Net longwave radiation is treated using the Stefan -Boltzmann law, with a correction factor
for the inefficiency of the land and atmospheres as black-body emitters.

Ln = σ · εs ·
(
εatm · T 4

atm,K − T 4
s,K

)
Where σ is the Stefan Boltzmann constant (4.9x10−9 MJm−2d−1K−4), Tatm,K and Ts,K [◦K]
are the effective temperatures of the atmosphere and ground surface (here presumed equal
to the air temperature in Kelvin), and εs and εatm are the effective emissivities of the surface
and atmosphere, respectively. In Raven, the surface emissivity is held constant as εs = 0.99
and the atmospheric emissivity is calculated as Dingman (2002)

εatm = (1− Fc) · 1.72 ·
(

e

Ta,K

)1/7

· (1 + 0.22 · C2
C) + Fc

where Fc [0..1] is the forest cover (treated as a blackbody), e is the vapor pressure, Ta,K is
the air temperature in Kelvin, and Cc is the cloud cover.

6.6.3 UBC Method (LW RAD UBC)

The longwave radiation is estimated in the UBC Watershed model separately for open and
forested covers. The open longwave radiation is estimated using

Lo = (1− fcloud) · λfρw · (−20 + 0.94Tavg) + fcloud · λfρw · (1.24Tmin

where Lo is the net longwave radiation estimate for open forest cover in mmd−1, Tavg
◦Cis

the daily average temperature, Tmin
◦Cis the daily minimum temperature, f is the UBC

cloud cover correction factor (see Section 6.7), and λf is the latent heat of fusion. The net
longwave radiation estimate for forest covered areas is:

Lf = λfρwfLWTavg

where Lf is the longwave radiation estimate for open forest cover in mmd−1, tavg is the daily
average temperature, and fLW is the temperature multiplier factor in mmd−1K−1 which is
set in the RVP file using the :UBCLWForestFactor keyword. If the forest cover for an HRU is
greater than zero then Equation ?? is employed. Note that this expression is a linearization
of the Stefan-Boltzmann law.

6.6.4 HSPF Method (LW RAD HSPF)

Net longwave radiation is given as a simple function of average daily temperature, Tavg [◦C]

Ln = 0.361 ∗ (Tavg − 6.6) (6.38)

where Ln is in MJm−2d−1.

6.7 Cloud Cover

This section outlines the various method for the estimation of a cloud cover in the model and
the associated cloud cover corrections for incident short wave radiation. The default cloud cover
method is CLOUDCOV NONE, implying no cloud cover estimation or cloud cover correction.

81

6.7.1 No cloud cover calculations (CLOUDCOV NONE)

No cloud cover is the default approach to cloud cover for Raven and can be set explicitly
in the RVI file using the :CloudCoverMethod keyword of NONE, or by excluding the keyword
entirely.

6.7.2 Interpolate From Data (CLOUDCOV DATA)

The cloud cover data [0-1] may be incorporated from gauge data if available in which case the
CLOUDCOV DATA option for the CloudCoverMethod keyword should be employed in the RVI
file. The cloud cover data is stored in the meteorological time series data files (see Section
A.4 for details).

6.7.3 UBC approach (CLOUDCOV UBC)

Cloud cover factor in the UBC watershed model are estimated by determining the daily tem-
perature range as observed at the meteorological gauges that influence an HRU and comparing
that range to specified cloud temperature range parameters. The observed temperature range
for the HRU is calculated as

∆T = Tmax − Tmin) (6.39)

where Tmax and Tmin are the interpolated maximum and minimum temperatures and ∆t is
the temperature range at HRU. The cloud cover correction factor is

Cc =


1, if ∆T ≤ Tcmin
1− ∆T−Tcmin

Tcmax−Tcmin , if Tcmin > ∆T > Tcmax

0, if ∆t ≥ Tcmax
(6.40)

where Cc is the cloud cover factor [0-1], and Tcmin and Tcmax are the cloud cover tem-
perature ranges in ◦Cas specified for each gauge within the RVT file using the keyword
:CloudTempRanges.

6.8 Energy

This section includes a number of processes that are involved in the energy balance in the Raven
model, including the estimates of potential snowmelt

6.8.1 Potential Melt

Potential snow melt can be estimated using a number a methods in the Raven model. To set the
appropriate process in the model the RVI must include the :PotentialMeltMethod keyword along
with the appropriate value for the method selected.

82

Degree Day Method (POTMELT DEGREE DAY)

The degree day method estimates a potential snow melt using an temperature index approach
as described in, e.g., Dingman (2002):

Mmelt = Ma ·max(T − Tf , 0)

where Mmelt is the potential melt rate [mm/day], T is the atmospheric temperature of the
HRU [deg C], Tf is the freeze/melt temperature [◦C] (zero by default), and Ma is the melt
factor [mm/day/deg C], specified using the land use/land type parameter MELT_FACTOR.

UBC approach (POTMELT UBC)

The UBC watershed model approach to calculating potential snowmelt is described be-
low. The model requires a certain number of participating parameters defined in the RVP
file: FOREST COVERAGE supplied in the :LandUseClasses table, and UBC MIN SNOW ALBEDO,
UBC SW S CORR and UBC SW N CORR provided as global variables. The total snow melt is an
accumulation of separate melt components:

Mmelt =
1

λfρw
((1− αs)S + Ln +Qc +Qa +Qr)

where Mmelt is the total potential melt rate [mm/d], S is the incoming shortwave radiation,
αs is the snow albedo, Ln [MJ/m22/d] is the long wave radiation, Qc [MJ/m22/d] is the
convective melt energy, Qa [MJ/m22/d] is the condensation or advective melt energy and Qr
[MJ/m22/d] is the melt energy due to rainfall. The convective and advective melt energy is
estimated using

Qc = 0.113 · p · Ta · V ·RM
Qa = 0.44 · Tmin · V ·RM · [(1− fc)p+ fc]

where p is the air pressure Ta is the average air temperature, Tmin is the minimum daily air
temperature, V is the wind velocity, fc is the fraction of forest cover and RM is a reduction
factor as described below

RM = 1.0− 7.7 ·RI
0 ≤ RM ≤ 1.6

where RI is a linearized estimate of Richardson’s number

RI =
0.095 · Tavg

V 2

The rainfall related melt is estimated using the following equation

Qr = k · Ta · Pr

where k represents the heat content of the rain mm/C and Pr is the rainfall over the time
step.

83

HBV Method (POTMELT HBV)

The potential melt in the HBV method is given by a corrected version of the degree day
approach, with the corrected melt coefficient given by

M ′a = Cf · Ca
(
Ma.min + (Ma.max −Ma.min) · 1.0− cos(Γ− Γs)

2

)
(6.41)

where M ′a is the potential melt coefficient, Cf is the forest correction factor, Ca is the as-
pect correction factor, Ac is the aspect correction factor, Ma.max and Ma.min are the max-
imum and minimum potential melt rate parameters specified using the MELT FACTOR and
MIN MELT FACTOR keywords respectively, and are specified in the land use parameters. Γ is
the day angle calculated using equation 6.31 and Γs is the winter solstice angle and is a model
constant of 23.5◦. The forest and aspect correction factors are described below:

Cf = (1.0− Fc) · (1.0 + (Fc) ·MRF) (6.42)

Ca = max (1−Am · Cs · cos(θ), 0.0) (6.43)

where Fc is the fraction of forest cover, MRF is the forest melt correction parameter specified
using HBV MELT FOR CORR, Am is the aspect melt correction parameter HBV MELT ASP CORR,
and θ is the landscape aspect angle. Cs is slope correction factor described below:

Cs = (1.0− Fc) · (1.0 + (Fc) · sin(θs)) (6.44)

where θs is the landscape slope.

Mmelt = M ′a · (T − Tf) (6.45)

Restricted Method (POTMELT RESTRICTED)

The potential melt rate is given by the degree day method plus a correction term due to net
incoming radiation:

Mmelt = Ma · (T − Tf) +
Sn + Ln
λfρw

(6.46)

where Sn and Ln are the net incoming radiation, and the melt factor, Ma is the land surface
parameter MELT_FACTOR.

Energy Balance Method (POTMELT EB)

Similar to the POTMELT_UBC approach, except the estimates for Qc, Qa and Qr are obtained
using the methods of Dingman (2002). This approach requires no additional parameters:
all energy estimates are taken from the current air and surface temperatures, and roughness
heights of the land/vegetation.

6.9 Atmospheric Variables

This section includes various methods for estimating wind speed, relative humidity,

84

6.9.1 Wind Speed

The following methods can be used to estimate the wind speed at 2 metres, as used for a number
of ET and potential melt estimation algorithms.

Constant Method (WINDVEL CONSTANT)

Returns a constant value of 2.0 m/s (the global average).

Interpolate From Data (WINDVEL DATA)

Wind velocity is interpolated from data supplied at a gauge location, as specified in the .rvt
file.

UBC Watershed model approach (WINDVEL UBC)

An algorithm adapted from the UBC Watershed model. The base wind speed, vb [km/hr] is
first estimated to be between a reasonable range using the temperature range for the day

vb = (1− ω)vmax + (ω)vvmin

where vmax = 8 km/hr, vmin = 1 km/hr, and ω = 0.04 · min(Tmax − Tmin,∆Tmax). Here
Tmax and Tmin are the orographically corrected minimum and maximum daily temperature,
∆Tmax is the global parameter MAX_RANGE_TEMP, which may be corrected for elevation. If
the following maximum temperature range is smaller than MAX_RANGE_TEMP, it overrides
MAX_RANGE_TEMP:

∆Tmax = 25.0− 0.001 · P0TEDL · zg − 0.001 · P0TEDU(z − zg)

where P0TEDL and P0TEDU are global lapse rate parameters specified using the :UBCTempLapseRates
command, and zg and z are the elevation of the temperature gauge and HRU, respectively.
The wind velocity is then converted to m/s, then corrected for forest cover and elevation,

v = αf · (0.001 · z)1/2 · vb

where αf is equal to 1 for bare ground and 0.7 if FOREST_COVER is greater than zero.

6.9.2 Relative Humidity

The following algorithms may be used to estimate relative humidity in Raven:

Constant Method (RELHUM CONSTANT)

The relative humidity is (somewhat arbitrarily) estimated to be 0.5.

Interpolate From Data (RELHUM DATA)

Relative humidity is interpolated from data supplied at a gauge location or gridded data, as
specified in the .rvt file.

85

Minimum Daily Temp as estimator of dew point (RELHUM MINDEWPT)

The minimum daily temperature is assumed to be equal to the dew point, allowing relative
humidity to be estimated as

RH =
es(Tmin)

es(Tave)

where Tmin and Tave are the minimum and average daily temperatures and es(T) is the
saturated vapor pressure, a function of temperature.

6.9.3 Air Pressure

The following approaches may be used to estimate atmospheric pressure:

Constant Method (AIRPRESS CONSTANT)

A constant air pressure of 101.3 kPa is used (air pressure at standard temperature of 25 ◦C)

Interpolate From Data (AIRPRESS DATA)

Air pressure is interpolated from data supplied at a gauge location, as specified in the .rvt
file.

UBC Watershed model approach (AIRPRESS UBC)

Air pressure is corrected for elevation above mean sea level, z,

P = 101.3 · (1− 0.001z)

where P is in kPa.

Basic Approach (AIRPRESS BASIC)

Air pressure is corrected for both temperature and pressure using the following relationship

P = 101.3 ·
(

1− 0.0065
z

TKave

)5.26

where TKave is the average temperature for the time step in ◦K, and z is the HRU elevation.

6.10 Sub-daily Corrections

Many of the above algorithms estimate incoming radiation, potential melt, and/or ET on a daily
timescale. When simulating at a sub-daily timescale, it is advantageous to be able to downscale
these estimates for smaller time intervals. If a time step less than ∆t=1.0 is used, the sub-daily
corrections are used to modify the following quantities:

86

• potential melt

• shortwave radiation

• PET

Simple Method (SUBDAILY NONE)

No modification is used.

Simple Method (SUBDAILY SIMPLE)

The half-day length is used to scale a cosine wave which peaks at midday, is zero after sunset
and before sunrise, and has a total area of 1.0 underneath; the average value of this sine wave
over the time step is used as the subdaily correction.

δ =
1

∆t

t+∆t∫
t

− 1

2
cos

(
πt

DL

)
dt

where DL is the day length, in days.

UBC Watershed model approach (SUBDAILY UBC)

To do (5)

6.11 Monthly Interpolation

Various methods to be used for interpolation and use of all monthly data.

Uniform Method (MONTHINT UNIFORM)

Monthly values are assumed to be uniform throughout the month, jumping abruptly when
moving from month to month.

Related To Data Of The First Day Of The Month (MONTHINT LINEAR FOM)

Monthly values are linearly interpolated, assuming that the specified value refers to the first
day of the month.

Related To Data Of The Median Day Of The Month (MONTHINT LINEAR MID)

Monthly values are linearly interpolated, assuming that the specified value refers to the middle
of the month.

87

Related To Data Of The Twenty-First Day Of The Month (MONTHINT LINEAR 21)

Monthly values are linearly interpolated, assuming that the specified value refers to the 21st
day of the month (as done in the UBC Watershed model).

88

Chapter 7

Tracer and Contaminant Transport

Raven can be used to track contaminants and/or tracers (referred to as constituents) through a
watershed via advection. It also has the capacity to (in the future) simulate dispersion, turbulent
dispersion, and single and multi-species chemical reactions, volatilization, and settling; these ca-
pabilities have yet to be implemented. Transport is now limited to single-subbasin models; mass
cannot yet be routed downstream through the channel reach.

The advective transport capabilities of Raven are relatively simple in concept. During each
time step, water exchange in the HRU is first calculated. Using the known water fluxes between
storage compartments over a given time step, and the mass of a given constituent in each storage
compartment, the net mass flux is calculated between all storage compartments for the time step.
Internally, the mass density (in mg/m2) is stored in each storage compartment (i.e., soils, surface
water, snow, etc.), though concentrations of constituents are reported in more natural concentration
units of mg/L. Advective fluxes between all water storage compartments are calculated as

J = M ·
(
m

φ

)
where J is the advective flux [mg/m2/d], M is the water exchange rate between compartments
[mm/d], m is the constituent mass [mg/m2], φ is the water storage of the compartment which the
mass is leaving [mm]. In any of the storage compartments, constituent concentration is calculated
as

C =
m

φ

With the ORDERED SERIES global numerical algorithm, mass balance errors for each constituent
should be exactly zero. Because the transport module wraps around the hydrologic water balance
model, the addition of new hydrologic processes and algorithms does not require the addition of
new code for simulating mass transport.

For flow tracers, the option may be used to ignore the inherent units of mass density, and
instead track the percent of flows sourced from particular sources. This can be useful, for example,
in tracking snow vs. rain components of streamflow, or determining the timing of outflow coming
from a given HRU. In the case of a tracer, the same expression as above is valid, though using an
equivalent flux and equivalent mass, i.e.,

J ′ = M ·
(

(
m′

φ

)
where J ′ is the advective flux [mm/d], and m′ is the effective mass [mm]. In this case, J ′/M may
be interpreted as the fraction of the flow which contains the tracer fluid; likewise, m′/φ, the tracer

89

concentration [unitless] can be interpreted as the fraction of storage which is marked by tracer.
Tracer concentrations should range from 0 to 1.

The primary outputs from the transport simulation are the average concentrations of a given
constituent in each of the various storage compartments and pollutographs at subbasin outlets.

7.1 Constituent Sources

Sources of constituents may be handled in one of two ways:

• As Dirichlet conditions, where the constituent concentration in a given compartment is fixed
at a user-specified value

• As Neumann conditions, where a user-specified (dry) mass flux is applied to a given compart-
ment

Other source types may be incorporated into Raven at a later date.

7.2 Catchment Routing

Constituents are routed through the catchment in a manner consistent with the catchment routing
process described in section 5.1. A discrete transfer function approach is used,

QC(t+ ∆t) =
N∑
n=0

QClat(t− n∆t) · UHn (7.1)

where QC [mg/d] is the mass loading, QClat is the loading released from the catchment at time t,
and ~UH is a unitless vector which describes the distribution of arrival times to the channel, and is
the same distribution used by the catchment routing for water, described in section 5.1.

7.3 In-channel Routing

To do (6)

90

Chapter 8

Model Diagnostics

While Raven doesn’t have built-in calibration functionality, it supports it’s own assessment by
internally comparing observation data to model output. The model diagnostic output can readily
be used by model-independent optimization and parameter estimation tools (as briefly discussed
in section 2.5). This chapter includes information about all of the available diagnostics.

8.1 Pointwise vs. Pulsewise comparison

Note that in all cases, Raven is comparing a time series of observations to a time series of model
output. It is assumed that the observations are instantaneous observations at a point in time
(e.g., a single soil moisture measurement or snow depth measurement). The key exception to
this is observed hydrographs. Most observed hydrographs available from government or municipal
agencies report averaged data over discrete time intervals, e.g., daily average flows. Raven is
careful to treat this continuous data as is appropriate, and compares the modeled average flows
over each time interval to the observed average flows.

For non-hydrograph data, the model output is interpolated to the exact time of observation.

The documentation for the relevant .rvi and .rvt input commands (:ObservationData :ObservationWeights
and :EvaluateMetrics) can be found in appendix A.

8.2 Diagnostic Algorithms

In all of the algorithms below, φi is an observation of interest, φ̂i is the corresponding modeled
value, wi is the corresponding weight of the observation (1.0 by default, 0 for blank observation
data) and N is the number of non-blank observations. Note that many of these diagnostics are
useful for hydrographs but may not make particular sense for other observed state variables (even
though we can calculate them anyhow).

91

8.2.1 Nash-Sutcliffe Efficiency (NASH SUTCLIFFE)

NS = 1−

N∑
i=1
wi

(
φ̂i − φi

)2

N∑
i=1
wi
(
φ̄− φi

)2
where φ̄ is the weighted mean of observations,

φ̄ =
1

N

N∑
i=1

wiφi

8.2.2 Log-transformed Nash-Sutcliffe Efficiency (LOG NASH)

NS = 1−

N∑
i=1
wi

(
ln(φ̂i)− ln(φi)

)2

N∑
i=1
wi
(¯ln(φ)− ln(φi)

)2
where φ̄ is the weighted mean of observations,

φ̄ =
1

N

N∑
i=1

wiφi

8.2.3 Root-mean-squared Error (RMSE)

RMSE =

√√√√ N∑
i=1

wi

(
φ̂i − φi

)2

8.2.4 Percentage Bias (PCT BIAS)

Returns the percent bias. Non-zero weights have no effect on this calculation, but zero weights will
force the corresponding data points to be ignored.

PCT BIAS =

N∑
i=1

(
φ̂i − φi

)
N∑
i=1

(φi)

8.2.5 Average Absolute Error (ABSERR)

Returns the weighted average absolute error.

ABSERR =
1

N

N∑
i=1

wi

∣∣∣φ̂i − φi∣∣∣
92

8.2.6 Maximum Absolute Error (ABSMAX)

The maximum absolute error between observed and modeled data. Non-zero weights have no effect
on this calculation, but zero weights will force the corresponding data points to be ignored.

ABSMAX = max
{∣∣∣φ̂i − φi∣∣∣}

8.2.7 Peak difference (PDIFF)

The difference between the peak modeled data and peak observed data. Non-zero weights have no
effect on this calculation, but zero weights will force the corresponding data points to be ignored.

PDIFF = max
{
φ̂i

}
−max {φi}

8.2.8 Monthly Mean Squared Error (TMVOL)

Describes the total monthly mean error between modeled data and observed data.

TMVOL =
M∑
j=1

 1

N

Nj∑
i=1

wi

(
φ̂i − φi

)2


where M is the number of months in the simulation and Nj is the number of data points in month
j.

8.2.9 Correlation of Error (RCOEF)

Describes the correlation of error between adjacent time steps. It represents the tendency for the
error to remain constant from one time step to the next and should only be applied to continuous
time series.

RCOEF =
1

σφσφ̂

1

N∗ − 1

N−1∑
i=1

(φ̂i − φi)(φ̂i+1 − φi+1)

where σφ is the standard deviation of the observed data and σφ̂ is the standard deviation of the
modeled data. N∗ is the number of adjacent non-blank data entries. Non-zero observation weights
are ignored.

8.2.10 Number of Sign Changes (NSC)

NSC describes the number of sign changes in the error from one data point to the next. A low
NSC (as compared to the total number of data points) would imply that the modeled values are
constantly above or below the observed values.

8.2.11 Kling Gupta Efficiency (KLING GUPTA)

Kling-Gupta efficiency metric as defined in Gupta et al. (2009).

93

Appendix A

Input Files

A.1 Primary Input file (.rvi)

The primary input file stores the model simulation options and numerical options. An example .rvi
file is shown below.

Example File: modelname.rvi

* --

* Raven Input (.rvi) file

* --

:StartDate 2000-01-01 00:00:00

:Duration 366.0

:Method EULER

:TimeStep 1.0

* -Options-----------------------------------

:Routing ROUTE_MUSKINGUM

:CatchmentRoute ROUTE_GAMMA_CONVOLUTION

:Evaporation PET_PENMAN_MONTEITH

:SoilModel SOIL_TWO_LAYER

* -Processes----------------------------------

:HydrologicalProcesses

:Precipitation PRECIP_RAVEN ATMOS_PRECIP MULTIPLE

:Infiltration INF_GREEN_AMPT PONDED_WATER SOIL[0]

:SoilEvaporation SOILEVAP_SEQUEN SOIL[0] ATMOSPHERE

:Percolation PERC_POWER_LAW SOIL[0] SOIL[1]

:Percolation PERC_POWER_LAW SOIL[1] GROUNDWATER

:Baseflow BASE_LINEAR SOIL[1] SURFACE_WATER

:EndHydrologicalProcesses

* -Custom Output------------------------------

:CustomOutput Daily Average SOIL[0] BY_HRU

:CustomOutput Monthly Maximum SOIL[1] BY_BASIN

Note that comments may be included on individual lines using the * or # characters as the first
word on the line.

94

A.1.1 Required Commands

The .rvi file consists of the following required commands:

• :StartDate [yyyy-mm-dd hh:mm:ss]

(Required) Starting time of the simulation.

• :Duration [days]

(Required) Duration of the simulation, in decimal days, beginning from the start date speci-
fied.

• :Method [method string]

(Optional) Numerical method used for simulation. Can be one of the following strings:

– ORDERED SERIES (default) - Process ordering is defined as being the same as the order
of hydrological process in the input file

– EULER - uses the classical Euler method, with operator-splitting. Process order as specified
in the input file does not matter

• :TimeStep [time step in days]

(Required) Time step for the simulation. As Raven is intended for sub-daily calculations, it
is suggested that the time step be less than or equal to 1.0.

• :TimeStep [hh:mm:ss]

Time step for the simulation (alternate format).

• :SoilModel [soilmodel string] {optional other data}
(Required) Soil model used in the simulation, one of the following:

– SOIL ONE LAYER Single soil layer

– SOIL TWO LAYER Two soil layers

– SOIL MULTILAYER [number of layers] Any number of soil layers

• :HydrologicalProcesses-:EndHydrologicalProcesses
(Required) These commands bracket the list of hydrological processes to be modeled (see
section A.1.5)

95

A.1.2 Model Operational Options

The following section discusses about the several hydrological processes that are supported by
Raven and their respective algorithms. Some of these algorithms require specific parameters to be
entered by the users. Refer to section A.1.3 for more details about the required parameters.

• :CatchmentRoute [approach string]

Catchment routing method, used to convey water from the catchment tributaries and rivulets
to the subbasin outlets. Can be one of the following methods, discussed in section ??:

– DUMP (default) - water from the catchment is dumped directly to the basin outlet.

– ROUTE GAMMA CONVOLUTION - a Gamma distribution is used to represent the unit hydro-
graph

– ROUTE TRI CONVOLUTION - a triangular distribution is used for the unit hydrograph

– ROUTE RESERVOIRS SERIES - series of linear reservoirs (Nash Hydrograph)

• :Routing [approach string]

Channel routing method which is used to transport water from upstream to downstream
within the main subbasin channels. Can be one of the following methods, as described in
section 5.2:

– ROUTE NONE - water is not routed from subbasin to subbasin. Intended for single-subbasin/single
catchment models or numerical testing only.

– STORAGE COEFF (default) - From Williams (1969)

– ROUTE PLUG FLOW - water travels as a pulse of uniform celerity along the reach

– ROUTE MUSKINGUM - reach storage is updated using the Muskingum-Cunge routing algo-
rithm

– ROUTE DIFFUSIVE WAVE

– ROUTE HYDROLOGIC

• :InterpolationMethod [method]

(Optional) Means of interpolating forcing function data (e.g., precipitation, PET, etc.) be-
tween monitoring gauges. The centroid of the HRU is used as the interpolation point. The
following methods, discussed in section 6.1 are supported:

– INTERP NEAREST NEIGHBOR (default) - the nearest neighbor (Voronoi) method

– INTERP INVERSE DISTANCE - inverse distance weighting

– INTERP AVERAGE ALL - averages all specified gauge readings

– INTERP FROM FILE [filename]- weights for each gauge at each HRU are specified in a
tabular format, given by

[NG] [# of HRUs]

{w_n1 w_n2 ... w_nNG} x {# of HRUs}

where NG is the number of gauges. The sum of the weights in each row (i.e., for each
HRU) should be 1. It is assumed that the number of HRUs is the same as in the current
model .rvh file; the orders are also assumed to be consistent.

96

• :RainSnowFraction [method]

(Optional) Means of partitioning precipitation into snow and rain, if these values are not
specified as time series data. The following methods, discussed in detail in section 6.3.1, are
supported:

– RAINSNOW DINGMAN (default)

– RAINSNOW DATA - gauge or gridded time series of snowfall used

– RAINSNOW UBC

– RAINSNOW HBV

– RAINSNOW HSPF

• :Evaporation [method]

PET calculation method for land surface. Can be one of the following methods, described in
detail in section 6.4:

– PET CONSTANT

– PET PENMAN MONTEITH

– PET PENMAN COMBINATION

– PET PRIESTLEY TAYLOR

– PET HARGREAVES

– PET HARGREAVES 1985 (default)

– PET FROM MONTHLY

– PET DATA - gauge or gridded time series used

– PET HAMON 1961

– PET TURC 1961

– PET MAKKINK 1957

– PET MONTHLY FACTOR

• :OW Evaporation [method]

(Optional) PET calculation method for open water. Has the same options as Evaporation

command.

• :OroPrecipCorrect [method]

(Optional) Method for correcting total precipitation for orographic (elevation) effects. The
following methods, discussed in detail in section 6.3.2, are supported:

– OROCORR NONE (default)

– OROCORR HBV

– OROCORR UBC

– OROCORR UBC 2

– OROCORR SIMPLE

97

• :OroTempCorrect [method]

(Optional) Method for correcting estimated Temperatures for orographic (elevation) effects.
The following methods are supported:

– OROCORR NONE (default)

– OROCORR HBV

– OROCORR UBC

– OROCORR UBC 2

– OROCORR SIMPLE

• :OroPETCorrect [method]

(Optional) Method for correcting estimated PET for orographic (elevation) effects. The
following methods are supported, as discussed in section 6.3.2:

– OROCORR NONE (default)

– OROCORR HBV

– OROCORR UBC

– OROCORR UBC 2

– OROCORR PRMS

Note: No specific parameter required for any of the methods mentioned above.

• :SWRadiationMethod [method]

(Optional) Means of estimating shortwave radiation to the surface. The following methods,
described in detail in section 6.5, are supported:

– SW RAD DEFAULT(default) - From Dingman (2002)

– SW RAD DATA - gauge or gridded time series used

– SW RAD UBCWM - From Quick (2003)

• :SWCanopyCorrect (Optional) Means of correcting shortwave radiation to the surface due to
canopy cover. The following methods, described in detail in section 6.5, are supported:

– SW CANOPY CORR NONE(default)

– SW CANOPY CORR STATIC

– SW CANOPY CORR DYNAMIC

– SW CANOPY CORR UBC - From Quick (2003)

• :SWCloudCorrect (Optional) Means of correcting shortwave radiation to the surface due to
cloud cover. The following methods, described in detail in section 6.5, are supported:

– SW CLOUDCOV CORR NONE(default)

– SW CLOUDCOV CORR DINGMAN

– SW CLOUDCOV CORR UBC - From Quick (2003)

• :LWRadiationMethod [method]

(Optional) Means of estimating longwave radiation. The following methods are supported,
as discussed in section 6.6:

98

– LW RAD DATA - gauge or gridded time series used

– LW RAD DEFAULT(default) - From Dingman (2002)

– LW RAD UBC - From Quick (2003)

– LW RAD HSPF

• :CloudCoverMethod [method]

(Optional) Means of calculating cloud cover percentages, if used. The following methods, as
described in section 6.7, are supported:

– CLOUDCOV NONE (default)

– CLOUDCOV DATA - gauge or gridded time series used

– CLOUDCOV UBC - From Quick (2003)

• :WindspeedMethod [method]

(Optional) Means of calculating wind speed at a reference height. The following methods are
supported, as described in section 6.9.1:

– WINDVEL CONSTANT (default) - constant wind velocity of 3 m/s

– WINDVEL DATA - gauge or gridded time series used

– WINDVEL UBC - From Quick (2003)

• :RelativeHumidityMethod [method]

(Optional) Means of calculating relative humidity. The following methods are supported, as
described in section 6.9.2:

– RELHUM CONSTANT (default) - constant relative humidity of 0.5

– RELHUM MINDEWPT

Note: No specific parameter required for any of the methods mentioned above.

• :AirPressureMethod [method]

(Optional) Means of estimating air pressure. The following methods are supported, as de-
scribed in section 6.9.3:

– AIRPRESS BASIC (default)

– AIRPRESS CONST - standard atm. pressure at 20 ◦C

– AIRPRESS DATA - gauge or gridded time series used

– AIRPRESS UBC - From Quick (2003)

• :PrecipIceptFract [method]

(Optional) Means of estimating the precipitation interception fraction (i.e., what percentage
of precip is intercepted by the canopy). The following methods are supported, as described
in section 4.1.1:

– PRECIP ICEPT USER (default)

– PRECIP ICEPT LAI

– PRECIP ICEPT EXPLAI

99

• :PotentialMelt [method]

(Optional) If used, estimates the potential melt. The following methods are supported , as
discussed in section 6.8.1:

– POTMELT DEGREE DAY (default)

– POTMELT EB

– POTMELT RESTRICTED

– POTMELT UBC

– POTMELT HBV

• :MonthlyInterpolationMethod [method]

(Optional) If used, performs monthly interpolations. The following methods, as discussed in
section 6.11, are supported:

– MONTHINT UNIFORM

– MONTHINT LINEAR MID (default)

– MONTHINT LINEAR FOM

– MONTHINT LINEAR 21

Note: No specific parameter required for any of the methods mentioned above.

• :SubDailyMethod [method]

(Optional) Used for sub-daily temporal downscaling of daily average PET and snowmelt. The
supported methods are, as described in section 6.10:

– SUBDAILY NONE (default)

– SUBDAILY UBC

– SUBDAILY SIMPLE

Note: No specific parameter required for any of the methods mentioned above.

100

A.1.3 Required Parameters for Model Operation Options

The following table (Table A.1) shows the required parameters in order to use the different Model
Operation Options that were listed in the previous section (Section A.1.2).

Table A.1: Required Parameters for All Model Operation Options.
*=Default Algorithm

OPTIONS ALGORITMHS REQUIRED PARAMETERS

Interpolation INTERP_FROM_FILE GaugeWeights Table required

INTERP_AVERAGE_ALL -

INTERP_NEAREST_NEIGHBOR* -

Routing ROUTE_NONE Channel Geometry and Manning’s n

ROUTE_DIFFUSIVE_WAVE* Channel Geometry and Manning’s n

ROUTE_PLUG_FLOW Channel Geometry and Manning’s n

ROUTE_STORAGE_COEFF Channel Geometry and Manning’s n

ROUTE_MUSKINGUM Channel Geometry and Manning’s n

ROUTE_MUSKINGUM_LAGGED Channel Geometry and Manning’s n

ROUTE_MUSKINGUM_CUNGE Channel Geometry and Manning’s n

ROUTE_HYDROLOGIC Channel Geometry and Manning’s n

CatchmentRoute ROUTE_DUMP* -

ROUTE_LAG TIME_LAG

ROUTE_DELAYED_FIRST_ORDER TIME_LAG and RES_CONSTANT

ROUTE_GAMMA_CONVOLUTION TIME_TO_PEAK

ROUTE_TRI_CONVOLUTION TIME_TO_PEAK and TIME_CONC

ROUTE_RESERVOIR_SERIES NUM_RESERVOIRS and RES_CONSTANT

ROUTE_EXPONENTIAL RES_CONSTANT

Evaporation PET_CONSTANT -

and PET_FROMFILE [gridded PET data or time series at gauge]

OW_Evaporation PET_FROMMONTHLY :MonthlyAveEvaporation and

:MonthlyAveTemperature

PET_MONTHLY_FACTOR FOREST_PET_CORR, FOREST_COVERAGE and

:MonthlyEvapFactor

PET_PENMAN_MONTEITH MAX_HEIGHT, RELATIVE_HT, MAX_LAI,

RELATIVE_LAI, MAX_LEAF_COND and

FOREST_SPARSENESS

PET_PENMAN_COMBINATION MAX_HEIGHT and RELATIVE_HT

PET_HAMON -

PET_HARGREAVES TEMP_MONTH_MAX and TEMP_MONTH_MIN

PET_HARGREAVES_1985* -

PET_TURC_1961 -

PET_MAKKINK_1957 -

PET_PRIESTLEY_TAYLOR -

OroPETCorrect OROCORR_NONE* -

OROCORR_SIMPLELAPSE -

OROCORR_HBV [hard coded for now]

OROCORR_UBC & OROCORR_UB2 -

OROCORR_PRMS -

SWRadiationMethod SW_RAD_DATA [gridded data or time series at gauge]

SW_RAD_DEFAULT* SLOPE and ASPECT

SW_RAD_UBCWM HORIZON_CORR and TURBIDITY

LWRadiationMethod LW_RAD_DATA [gridded data or time series at gauge]

LW_RAD_DEFAULT* FOREST_COVERAGE

LW_RAD_UBCWM FOREST_COVERAGE

CloudCoverMethod CLOUDCOV_NONE* -

Continued on next page

101

Table A.1 – continued from previous page
OPTIONS ALGORITMHS REQUIRED PARAMETERS

CLOUDCOV_DATA [gridded data or time series at gauge]

CLOUDCOV_UBC -

RainSnowFraction RAINSNOW_DATA [gridded data or time series at gauge]

RAINSNOW_DINGMAN RAINSNOW_TEMP

RAINSNOW_HBV RAINSNOW_TEMP and RAINSNOW_DELTA

RAINSNOW_UBC RAINSNOW_TEMP and RAINSNOW_DELTA

PrecipIceptFract PRECIP_ICEPT_USER RAIN_ICEPT_PCT and SNOW_ICEPT_PCT

PRECIP_ICEPT_LAI RAIN_ICEPT_FACT and SNOW_ICEPT_FACT

PRECIP_ICEPT_EXPLAI -

PRECIP_ICEPT_HEDSTROM -

OroPrecipCorrect OROCORR_NONE* -

OROCORR_UBC :UBCPrecipLapseRates

OROCORR_HBV :RainCorrection and :SnowCorrection

OROCORR_SIMPLELAPSE -

OroTempCorrect OROCORR_NONE* -

OROCORR_UBC :UBCPrecipLapseRates

OROCORR_HBV ADIABATIC_LAPSE

OROCORR_SIMPLELAPSE ADIABATIC_LAPSE

PotentialMeltMethod POTMELT_DEGREE_DAY* MELT_FACTOR

POTMELT_RESTRICTED MELT_FACTOR

POTMELT_HBV MIN_MELT_FACTOR, HBV_MELT_ASP_CORR,

HBV_MELT_FOR_CORR and FOREST_COVERAGE

POTMELT_UBC MIN_SNOW_ALBEDO, FOREST_COVERAGE and

ASPECT,

:UBCNorthSWCorr, :UBCSouthSWCorr and

F0ERGY,

SubDailyMethod SUBDAILY_NONE* -

SUBDAILY_SIMPLE -

SUBDAILY_UBC -

WindspeedMethod WINDVEL_CONSTANT* -

WINDVEL_DATA [time series at gauge]

WINDVEL_UBC :UBCTempLapseRates and FOREST_COVERAGE

RelativeHumidityMethod RELHUM_CONSTANT* -

RELHUM_DATA -

RELHUM_MINDEWPT -

AirPressureMethod AIRPRESS_BASIC* -

AIRPRESS_UBC -

AIRPRESS_DATA [gridded data or time series at gauge]

AIRPRESS_CONST -

MonthlyInterpolationMethod MONTHINT_UNIFORM -

MONTHINT_LINEAR_FOM -

MONTHINT_LINEAR_MID* -

MONTHINT_LINEAR_21 -

To do (7)

102

A.1.4 Input/Output Control Commands

• :RunName [name]

(Optional) The name of the model run. This acts as a prefix to all output files generated by
the program. The default is no run name, and no prefix is appended to the file outputs.

• :rvh Filename [name]

(Optional) The name of the *.rvh file. By default, the .rvh file has the same name as the .rvi
file; this command allows the user to override this. If no directory is specified, it is assumed
the file exists in the working directory. Equivalent to the command prompt argument -h
[name].

• :rvc Filename, :rvp Filename, :rvt Filename

(Optional) Same as :rvh Filename [name] above, but for .rvc,.rvp, and .rvt files, respectively

• :OutputDirectory [directory name]

(Optional) Sets the output directory, which by default is the working directory from which
the executable is called. Directory name is usually in a system independent format, using all
forward slashes for folders, ending with a forward slash, e.g., C:/Temp/Model Output/run
3/. Equivalent to the command line argument -o [directory name]. If used, this should be
called as early as possible in the .rvi file.

• :CreateRVPTemplate

(Optional) Produces a template .rvp file in the same directory as the .rvi file based upon the
hydrological process list and model options in the .rvi file, so the user knows what parameters
need to be specified for the given model configuration. NOTE: this turns off model operation,
only the template file will be created.

• :OutputInterval [frequency]

The frequency of printing output to the output files. Default of 1 (printing every timestep).
Typically used for simulations with small timesteps (e.g., if frequency=60 for a model with a
timestep of 1 minute, output is printed hourly).

• :WriteMassBalanceFile

(Optional) The file runname WatershedMassEnergyBalance.csv (or .tb0) is generated (see
appendix B)

• :WriteForcingFunctions

(Optional) The file runname ForcingFunctions.csv (or .tb0) is generated (see appendix B)

• :WriteEnergyStorage

(Optional) The file runname WatershedEnergyStorage.csv is generated (see appendix B)

• :WriteParametersFile

(Optional) The file runname WatershedEnergyStorage.csv is generated (see appendix B)

• :WriteEnsimFormat [yes or no]

(Optional) Specify whether the output files generated by Raven should be in an EnSim format
(e.g. tb0, ts3, etc.) or standard text files (.csv). String values can be one of:

– yes - file output in Ensim formats, or

– no - file output in standard formats

The default is standard format

103

• :WriteExhaustiveMB

(Optional) The file runname ExhaustiveMB.csv is generated (see appendix B

• :EndPause [yes or no]

(Optional) if :EndPause is set to ’yes’ then the program output will stay on the screen (e.g.,
as a DOS window) until the user exits manually.

• :DebugMode [yes or no]

(Optional) If set to ’yes’, the equivalent of including :WriteMassBalanceFile, :WriteForcingFunctions,
:WriteEnergyStorage, and :WriteParameters.

• :SilentMode

(Optional) If the SilentMode command is included, output to the command prompt is mini-
mized.

• :SuppressOutput

(Optional) Suppresses all standard output, incuding creation of Hydrographs, transport out-
put, and watershed storage files. Does not turn off optional outputs which were requested
elsewhere in in the input file. Does not turn off creation of diagnostics.csv.

• :WaterYearStartMonth [integer month]

(Optional) Changes the start of the water year from October 1st (the default) to the 1st of
another month (for example, 7=July for Australian application). The water year is only used
for reporting of annual (WATERYEARLY) budget reporting in the :CustomOutput command.

• :CustomOutput [time per] [processing] [variable/parameter] [space aggregation]

filename

(Optional) This command is used to create a custom output file that tracks a single variable,
parameter, or forcing function over time at a number of basins, HRUs, or across the water-
shed. Here, the variable is specified using either the state variable name(for an exhaustive
list, see table C.1), the forcing name (see table C.2), or parameter name. time per refers to
the time period, one of:

– DAILY

– MONTHLY

– YEARLY

– WATER YEARLY

– CONTINUOUS (for output created every time step)

For the water year aggregation, a default water year of October 1-September 30 is used. The
start month can be changed using the :WaterYearStartMonth command above. processing
is the statistic reported over each time interval, one of:

– AVERAGE

– MAXIMUM

– MINIMUM

– RANGE

– MEDIAN

– QUARTILES

104

– HISTOGRAM [min] [max] [num. of bins]

If HISTOGRAM is selected, the command should be followed (in the same line) with the minimum
and maximum bounding values of the histogram range and the number of evenly spaced bins.

space aggregation refers to the evaluation domain, and is either BY BASIN, BY HRU, BY HRU GROUPS,
or ENTIRE WATERSHED.

If the state variable is not used in the model (it does not participate in any of the user-specified
hydrologic processes), the output file will not be created; a warning will be generated.

As an example, the custom output command may be used as follows:

:CustomOutput DAILY MAXIMUM SNOW BY_BASIN

This would create the file runname DailyMaximumSnowByBasin.csv, which would include a
time series of daily maximum snow contents (as mm SWE) for all subbasins in the model.
An optional specified filename may be appended to the end of any command to override the
default filename.

• :LakeStorage [lake storage variable]

(Optional) Specifies variable to be used for rainfall on lake HRUs, typically SURFACE WATER

(default) or LAKE STORAGE

• :OutputDump [timestamp (YYY-MM-DD hh:mm:ss)] Outputs snapshot of all state variables
to file state (timestamp).rvc. Format is the same as solution.rvc. This can later be used as
an initial condition file. Multiple calls to this command will cause snapshots to be written at
all requested dump times.

• :SnapshotHydrograph Hydrographs are reported using the values at the end of each time
step. By default, hydrographs are reported as averaged over the time step, to be consistent
with observation data, typically reported using time-averaged values.

• :EvaluationMetrics [metric1] metric2 metric3 ... metricN If observation time se-
ries are provided (see :ObservationData command in appendix A.4.2), Raven will generate
the evaluation metrics listed in this command. The metrics include:

– NASH_SUTCLIFFE

– RMSE

– PCT_BIAS

– ABSERR

– ABSMAX

– PDIFF

– TMVOL

– RCOEF

– NSC

– RSR

– R2

– LOG_NASH

105

– KLING_GUPTA

These metrics are defined in section 8.2.

A.1.5 Hydrologic Processes

In addition to the above commands, the .rvi file must include the list of all of the necessary hydro-
logical processes to be included in the model, which are bracketed by the :HydrologicalProcesses
and :EndHydrologicalProcesses commands. The process commands are typically in some vari-
ation of the following format:

• :ProcessName ProcessAlgorithm {ProcessFrom} {ProcessTo}

Where :ProcessName is the name of the process (e.g., :CanopyDrip), ProcessAlgorithm refers
to the particular algorithm used for simulation (e.g., RUTTER corresponds to the (Rutter et al.,
1971) model for loss of water from canopy to ground surface), and ProcessFrom and ProcessTo

are the state variable code for the source and sink storage compartments, which are selected from
the complete list of state variables in table .

The state variables SURFACE WATER, PONDED WATER, ATMOS PRECIP and ATMOSPHERE are auto-
matically included in all models. The others will be dynamically included in the model as processes
are added. For example, the SNOW variable will be automatically added if a snowmelt or sublimation
hydrological process is added to the list. Note that the computational cost of a model is directly
related to the number of state variables and number of processes included in that model. Note
that the SOIL variable is followed by the index of the soil layers in the model, with [0] corre-
sponding to the topmost layer. The MULTIPLE tag is a placeholder, indicating that there are more
than one compartments either receiving water/energy/mass, or more than one losing. The specific
compartments are determined from the chosen algorithm.

Important: depending upon the numerical method chosen, the ordering of the processes in the
input file may determine the accuracy and/or behavior of the solution.

Table A.2 includes a detailed description of the process commands available in Raven.

Table A.2: Hydrologic Process Commands for the .rvi file. Com-
partments with an asterisk must be specified within the command
(placeholder [T]-’To’ or [F]-’From’).

Valid “From” Valid “To”
Process Command Algorithms Compartments Compartments

:Precipitation PRECIP RAVEN ATMOS PRECIP MULTIPLE

section 4.1
:Infiltration [F] INF_PARTITION_COEFF PONDED_WATER SURFACE_WATER∗

section 4.2 INF_SCS SOIL[0]∗

INF_GREEN_AMPT SOIL[m]∗

INF_GA_SIMPLE

INF_VIC

INF_VIC_ARNO

INF_HBV

INF_PRMS

INF_UBC

INF_GR4J

:Baseflow [F] BASE_LINEAR SOIL[m]∗ SURFACE_WATER

section 4.3 BASE_VIC AQUIFER∗

Continued on next page

106

Table A.2 – continued from previous page
Valid “From” Valid “To”

Process Command Algorithms Compartments Compartments
BASE_POWER_LAW

BASE_TOPMODEL

BASE_SAC

BASE_CONSTANT

BASE_THRESH_POWER

:Percolation [F] [T] PERC_CONSTANT SOIL[m]∗ SOIL[m]∗

section 4.4 PERC_GAWSER

PERC_POWER_LAW

PERC_PRMS

PERC_SACRAMENTO

PERC_GR4JEXCH

PERC_GR4JEXCH2

:Interflow [F] INTERFLOW_PRMS SOIL[m]∗ SURFACE_WATER

section 4.5
:SoilEvaporation SOILEVAP_VIC SOIL[0] ATMOSPHERE

section 4.6 SOILEVAP_HBV SOIL[m]

SOILEVAP_TOPMODEL

SOILEVAP_ROOT

SOILEVAP_SEQUEN

SOILEVAP_GR4J

:CapillaryRise [F] [T] CRISE_HBV SOIL[m]∗ SOIL[m]∗

section 4.7

:CanopyEvap CANEVAP_MAXIMUM CANOPY ATMOSPHERE

section 4.8 CANEVAP_ALL

CANEVAP_RUTTER

:CanopyDrip CANEVAP_RUTTER CANOPY PONDED_WATER

section 4.9 CANEVAP_SLOWDRAIN

:SnowBalance SNOBAL_SIMPLE_MELT MULTIPLE MULTIPLE

section 4.12 SNOBAL_HBV

SNOBAL_UBCWM

SNOBAL_CEMA_NIEGE

SNOBAL_TWO_LAYER

:SnowMelt [T] MELT_SIMPLE SNOW PONDED_WATER∗

SNOW_LIQ∗

:Sublimation SUBLIM_KUZMIN SNOW ATMOSPHERE

section 4.13 SUBLIM_CENTRAL_SIERRA

:SnowAlbedoEvolve SNOALB_UBC SNOW_ALBEDO SNOW_ALBEDO

section 4.16
:GlacialMelt GMELT_DEGREE_DAY GLACIER_ICE GLACIER

section 4.17 GMELT_UBC GLACIER_CC GLACIER_CC

:GlacierRelease GRELEASE_LINEAR_STORAGE GLACIER SURFACE_WATER

section 4.18 GRELEASE_HBV_EC

:OpenWaterEvaporation OPEN_WATER_EVAP PONDED_WATER ATMOSPHERE

DEPRESSION

:Flush N/A any any
section 4.20
:Overflow N/A any any
section 4.20

To do (8)

107

Note that application of any given process algorithm can be made conditional using the :-->Conditional
command immediately after the process command. For example,

:Flush PONDED_WATER SURFACE_WATER

:-->Conditional HRU_TYPE IS_NOT GLACIER

:Flush PONDED_WATER GLACIER

:-->Conditional HRU_TYPE IS GLACIER

The above input file snippet moves ponded water to surface water, unless the HRU type is a
glacier (as defined by its soil profile properties). Currently, the conditional command supports

• conditionals based upon HRU type (HRU_TYPE), where the type is one of {GLACIER,LAKE,ROCK,STANDARD})

• conditionals based upon land use type, e.g., :-->Conditional LAND_USE IS WETLAND where
LAND_USE names are as defined in the :LandUseClasses command in the .rvp file

• conditionals based upon HRU group, e.g., :-->Conditional HRU_GROUP IS_NOT BURNED_FOREST

where the HRU_GROUPs are defined using the :HRUGroup command in the .rvh file.

The only available comparison operators are IS and IS_NOT.

To do (9)

A.1.6 Transport Commands

• :Transport [constituent name] {units}
(Optional) This command declares a new transport constituent named constituent_name

which can be advected through the system. The optional units command should be either
mg/l or none (for tracers).

• :FixedConcentration [constituent name] [storage compartment] [concentration] {HRU group}
(Optional) This command specifies a type one boundary condition in all water storage com-
partments of type storage_compartment (taken from the state variable list of ??) in HRU
group HRU_group. All water passing through this storage compartment will be assigned
the specified concentration. Note that the constituent name needs to be specified using the
:Transport command prior to calling this command. If the optional HRU_group is omitted,
then the condition applies to all storage compartments of this type throughout the watershed.
For tracers, it is useful to specify a concentration of 1 (no units).

108

A.2 Classed Parameter Input file (.rvp)

The classed parameter input file stores a database of soil, vegetation, river, aquifer, and land class
properties. Not all classes specified in the *.rvp file need to be included in the model. An example
.rvp file is shown below.

Example File: modelname.rvp

* --

* Raven Classed Parameter File

* --

:SoilClasses

:Attributes, %SAND, %CLAY, %SILT, %ORGANIC

:Units, none, none, none, none

SAND, 1, 0, 0, 0

LOAM, 0.5, 0.1, 0.4, 0.4

:EndSoilClasses

:SoilProfiles

* name, #horizons, hor1, th1, hor2, th2

LAKE, 0

GLACIER, 0

LOAM_SEQ, 2, LOAM, 0.5, SAND, 1.5

ALL_SAND, 1, SAND, 2.0

:EndSoilProfiles

:VegetationClasses

:Attributes, MAX_HT, MAX_LAI, MAX_LEAF_COND

:Units, m, none, mm_per_s

CONIFER_FOREST, 25, 6.0, 5.3

BROADLEAF, 25, 5.0, 5.3

:EndVegetationClasses

:LandUseClasses

:Attributes, IMPERMEABLE_FRAC, FOREST_COVERAGE,

:Units , fract, fract,

GRASSLAND, 0, 0,

SUBURBAN, 0.3, 0.3,

:EndLandUseClasses

As with the *.rvi file, * or # denotes a comment.

A.2.1 Required Commands

• :SoilClasses

:Attributes, %SAND, %CLAY, %SILT, %ORGANIC

:Units, none, none, none, none

{soil_class_name,%sand,%clay,%silt,%organic}x[NSC]

:EndSoilClasses

or

:SoilClasses

{soil_class_name}x[NSC]

:EndSoilClasses

109

Defines each soil class and (optionally) specifies the mineral and organic composition of the
soil which can be used to automatically generate some physical properties such as porosity
or hydraulic conductivity. These parameters are defined as follows:

– soil class name is the code (less than 30 characters) used to identify the soil class,
within the code, the .rvp file and in the .rvh file, discussed below. The name may not
contain spaces or special characters.

– %SAND,%CLAY,%SILT,%ORGANIC [0..1] are the percent sand, clay, and organic matter of
the soil, expressed in decimal form, between 0 and 1. The sand, silt, and clay fractions re-
fer to the non-organic component of the soil, i.e., specifying %SAND=0.5, %CLAY=0.3,
%SILT=0.2, %ORGANIC=0.1 indicates a soil composition of 45% sand, 27% clay,
18%silt, and 10% organic matter. The sum of the mineral components (%SAND,
%CLAY, and %SILT) must be 1.

With soil information provided, Raven can autogenerate many other physically-based (i.e.,
measurable) soil properties such as hydraulic and thermal conductivities, wilting pressure, etc.
To override these autogenerated parameters or to specify other soil parameters, an additional
command (:SoilParameterList), described below, may optionally be added to the input file
after the SoilProperties command has been called. For conceptual (i.e., box) models, the
soil composition should generally not be specified.

• :SoilProfiles

{profile_name,#horizons,{soil_class_name,thickness}x{#horizons}}x[NP]

:EndSoilProflles

Defines all NP stored soil profiles, which is a collection of soil horizons with known depth and
thickness, each belonging to a soil class. The soils should be specified from the top down-
ward. Because soil class name is required, this command must come after the SoilClasses
command. The thickness of each horizon is specified in meters.

The special cases of lakes and glaciers (land surface elements with ’no’ surface soils, or where it
is not appropriate to simulate using soil infiltration and evaporation routines, are represented
with the special profile names LAKE, ROCK, and GLACIER, all with zero horizons. ANY soil
profile that starts with these terms is not subject to soil-based process algorithms.

• :VegetationClasses

:Attributes, MAX_HT, MAX_LAI,MAX_LEAF_COND

:Units, m, none, mm_per_s

{veg_class_name,MAX_CANOPY_HT,MAX_LAI,MAX_LEAF_COND}x[NVC]

:EndVegetationClasses

Defines the basic parameters for each vegetation class, which are used to optionally autogen-
erate many canopy and root properties. Here,

– veg class name is the tag (less than 30 characters) used to identify the vegetation class,
within the code, the .rvp file and in the .rvh file, discussed below.

– MAX CANOPY HT [m] is the maximum canopy height reached during the year

– MAX LAI [m2/m2] is the maximum leaf area index (LAI) of the vegetation

– MAX LEAF COND [mm/s] is the maximum leaf conductance of the vegetation

• :LandUseClasses

:Attributes, IMPERMEABLE_FRAC, FOREST_COVERAGE

110

:Units , fract, fract

{LU_class_name,IMPERMEABLE_FRAC,FOREST_COVERAGE}x[NLUC]

:EndLandUseClasses

Defines all NLU land use/land type classes in the model. Land use is assumed to determine
many of the surface roughness, albedo, and snow parameters. Here,

– LU class name is the tag (less than 30 characters) used to identify the land use class,
within the code, the .rvp file and in the .rvh file, discussed below.

– IMPERMEABLE_FRAC [0..1] is the percentage of the land surface that is considered imper-
meable.

– FOREST_COVERAGE [0..1] is the percentage of the land surface that is covered with a
vegetation canopy.

A.2.2 Optional Classes and Objects

Terrain classes and channel profiles do not need to be included in all models.

• :TerrainClasses

:Attributes, HILLSLOPE_LENGTH, DRAINAGE_DENSITY

:Units , m, km/km2

{terrain_class_name, HILLSLOPE_LENGTH, DRAINAGE_DENSITY}x[NTC]

:EndTerrainClasses

Defines all NTC physiographic terrain classes in the model, ranging from flat to hilly to steep
and mountainous. Here,

– terrain class name is the tag (less than 30 characters) used to identify the terrain
class, within the code, the .rvp file and in the .rvh file, discussed below.

– HILLSLOPE LENGTH [m] is the representative hillslope length within the terrain

– DRAINAGE DENSITY [km/km2] is the terrain drainage density

If no terrain classes are specified, the tag [NONE] should be placed in the :HRUs command
under terrain class.

• :ChannelProfile [channel_name]

:Bedslope [slope]

:SurveyPoints

{[x] [bed_elev]}x num survey points

:EndSurveyPoints

:RoughnessZones

{[x_zone] [mannings_n]} x num roughness zones

:EndRoughnessZones

:EndChannelProfile

Defines a channel profile with the unique name channel name. The channel geometry is fully
defined by a number of survey points (at least 2) along a transect. At the leftmost and
rightmost points along the transect, it is assumed that the channel is bounded with infinitely
steep sides. The x-coordinate system is arbitrary. In the same coordinate system, at least
one zone with one Manning’s n value must be specified. The coordinate xzone is the leftmost
boundary of the zone, and therefore the leftmost xzone must be to the left of the leftmost

111

(smallest) survey coordinate x. The channel configuration definitions are depicted in figure
A.1. A representative bedslope is also needed: this is used to calculate flow rates using
Manning’s equation.

Figure A.1: Channel Profile definition. Each channel is defined by a cross sectional profile and a
number of zones with different Manning’s n values.

• :ChannelRatingCurves [channel_name]

:Bedslope [slope]

:StageRelationships

{[stage] [area] [width] [flow]} x num curve points

:EndStageRelationships

:EndChannelRatingCurves

Defines a channel profile with the unique name channel name, and is used as an alternative
to :ChannelProfile. Here, the stage-area, stage-top width, and stage-flow rating curves are
explicitly provided. The first data point should correspond to stage and flow equal to zero,
with all values entered with increasing stage. The units are stage [m], area [m2], width [m],
flow [m3/s].

112

A.2.3 Parameter Specification

In addition to the required terms above, the following optional commands may be used to override
autogeneration of parameters and specify parameters that cannot be autogenerated. If these are
not included, either for an entire class or individual parameter, it is assumed that the parameter is
to be autogenerated.

Soil Parameter Specification

• The following command is used to specify parameters linked to each soil class.

:SoilParameterList

:Parameters , { param_name1, param_name1,..., param_nameNP}

:Units , { unit_type1, unit_type2,..., unit_typeNP}

{[DEFAULT] , {default_val1,default_val2,..., default_valNP} [optional]

{soil_class_name, { param_val1, param_val2,..., param_valNP}}x[<=NSC]

:EndSoilProperties

where, available soil parameter names (param name) are described in the table A.2 and the
soil class names (with the exception of the special [DEFAULT] tag) must already have been
declared in the :SoilClasses command.

The [DEFAULT] soil class name is used to specify parameter values for all classes not explicitly
included as rows in the parameter list. Only soil classes which have parameters different from
the default soil properties need to be specified in this list. If the user desires to autogenerate
any of the parameters in the list (if Raven has the capacity to autogenerate these parameters),
the _AUTO flag should be placed instead of a numerical value, as depicted in the example file.
The _DEFAULT flag may be used if the default property (which can also be _AUTO) should be
applied.

Note that the units must be consistent with the native units of each parameter indicated in
table A.2 - this line is intended for user interface processing and readability; units will not
be automatically converted if alternative unit specifiers are used.

While many watershed model and algorithm parameters have a physical basis (e.g., hydraulic
conductivity), certain algorithms, particularly for lumped models, abstract a physical process
so that coefficients in the relationships between storage and fluxes are completely artificial.
These artificial parameters, which cannot be automatically generated based upon soil type,
need to be specified directly by the user, and are often used as calibration (or ’tuning’)
parameters. These parameters are described in the second section of table A.2.

113

Figure A.2: Soil Parameters. The top section described autocalculable parameters which may be
generated automatically using only the base soil class information (sand, clay, silt, and organic
content). The bottom section must be user-specified.

114

Vegetation Parameter Specification

• :VegetationParameterList

:Parameters , { param_name1, param_name1,..., param_nameNP}

:Units , { unit_type1, unit_type2,..., unit_typeNP}

[DEFAULT] , {default_val1,default_val2,..., default_valNP} [optional]

{VEG_CLASS_NAME , { param_val1, param_val2,..., param_valNP}}x[<=NVC]

:EndSoilProperties

The :VegetationParameterList command operates in the same fashion as the :SoilParameterList
command described above. The available vegetation parameters in Raven are described in
table A.3

Figure A.3: Vegetation Parameters. The parameters with an asterisk can be autogenerated by
Raven or overriden by the model user

• :SeasonalCanopyLAI

{[DEFAULT] , J, F, M, A, M, J, J, A, S, O, N, D} {optional}

{ veg_class_name, J, F, M, A, M, J, J, A, S, O, N, D}x[<=NVC]

:EndSeasonalCanopyLAI

The :SeasonalCanopyLAI command provides a monthly correction factor that can be used

115

to adjust leaf area indices as the seasons change, i.e., LAI = LAImax · f , where f(t) is
the monthly correction factor for time t. By default, no correction factor is applied. This
correction factor must be between zero and one for all months and will be interpolated based
upon the specification of the :MonthlyInterpolationMethod command in the .rvi file.

• :SeasonalCanopyHeight

{[DEFAULT] , J, F, M, A, M, J, J, A, S, O, N, D} {optional}

{ veg_class_name, J, F, M, A, M, J, J, A, S, O, N, D}x[<=NVC]

:EndSeasonalCanopyHeight

The :SeasonalCanopyHeight command provides a monthly correction factor that can be
used to adjust vegetation height as the seasons change, i.e., hveg = hmax · f , where f(t) is
the monthly correction factor for time t. By default, no correction factor is applied. This
correction factor must be between zero and one for all months and will be interpolated based
upon the specification of the :MonthlyInterpolationMethod command in the .rvi file.

116

Land Use / Land Type Parameter Specification

• :LandUseParameterList

:Parameters , { param_name1, param_name1,..., param_nameNP}

:Units , { unit_type1, unit_type2,..., unit_typeNP}

{[DEFAULT] , {default_val1,default_val2,..., default_valNP} [optional]

{lult_class_name, { param_val1, param_val2,..., param_valNP}}x[<=NSC]

:EndSoilProperties

The :LandUseParameterList command operates in the same fashion as the :SoilParameterList
command described above. The available land use parameters in Raven are described in table
A.4

Figure A.4: Land Use Parameters. The parameters with an asterisk can be autogenerated by
Raven or overriden by the model user

117

Global Parameter Specification

The following global parameters can also be specified, anywhere in the .rvp file:

• :AdiabaticLapseRate [rate]

The base adiabatic lapse rate [◦C/m]

• :WetAdiabaticLapseRate [rate]

The wet adiabatic lapse rate [◦C/m]

• :PrecipitationLapseRate

The simple linear precipitation lapse rate [mm/d/km], as used in the OROCORR_SIMPLELAPSE

orographic correction algorithm.

• :RainSnowTransition [rainsnow_temp] [rainsnow_delta]

Specifies the range of temperatures (rainsnow_delta, [◦C]) over which there will be a
rain/snow mix when partitioning total precipitation into rain and snow components. The
midpoint of the range is rainsnow_temp.

• :IrreducibleSnowSaturation [saturation]

Maximum liquid water content of snow, as percentage of SWE [0..1]

• :ReferenceMaxTemperatureRange [range]

A parameter (A0TERM) used in the UBC watershed model orographic corrections for tem-
perature [◦C]

• :AverageAnnualRunoff

This parameter should be the average annual runoff for the entire modeled watershed, in mm.
It is used to autogenerate initial flows and reference flows in the channel network. While the
resultant estimates of initial flows will wash out with time, reference flows may be critical
and modelers may wish to overwrite these by specifying the Q_REFERENCE parameter for each
channel in the :SubBasinProperties command of the .rvp file.

• :AvgAnnualSnow

This parameter is the average annual snow for the entire watershed in mm SWE. It is used
in the CEMA_NIEGE snowmelt algorithm.

• :UBCTempLapseRates [A0TLXM A0TLNM A0TLXH A0TLNH P0TEDL P0TEDU]

Parameters used in the UBC watershed model orographic corrections for temperature. A0TLXM
and A0TLXH [◦C/km] are the low and high elevation lapse rates of the maximum daily tem-
perature; A0TLNM and A0TLNH [◦C/km] are the low and high elevation lapse rates of the
minimum daily temperature; P0TEDL and P0TEDU [◦C/km] are the low and high elevation
lapse rates of the maximum temperature range. Low and high elevation refer to below or
above 2000 masl.

• :UBCPrecipLapseRates [E0LLOW E0LMID E0LHI P0GRADL P0GRADM P0GRADU A0STAB]

Parameters used in the UBC watershed model orographic corrections for precipitation. E0LLOW
E0LMID and E0LHI, are the low, medium, and high reference elevations; P0GRADL, P0GRADM,
and P0GRADU are the precipitation gradient factors (%) applied below E0LMID, between
E0LMID and E0LHI, and above E0LHI, respectively; A0STAB is a precipitation gradient
modification factor.

• :UBCEvapLapseRates [A0PELA]

The PET lapse rate [◦C/km].

118

• :UBCNorthSWCorr [J F M A M J J A S O N D]

Monthly correction factors for shortwave radiation on north-facing slopes, used in the UBC
shortwave generation routine.

• :UBCSouthSWCorr [J F M A M J J A S O N D]

Monthly correction factors for shortwave radiation on south-facing slopes, used in the UBC
shortwave generation routine.

• :UBCSnowParams [P0ALBMIN P0ALBMAX P0ALBREC P0ALBASE P0ALBSNW P0ALBMLX]

Parameters used in the UBCWM-style snow albedo evolution algorithm. P0ALBREC [-] is the
recessional constant for albedo decay of new snow (0.9); P0ALBSNW [mm] is the daily snowfall
required to bring albedo to that of new snow; P0ALBMAX is the albedo of fresh snow (0.95);
P0ALBMIN is the albedo of an aged snowpack or glacier (0.30); P0ALBMLX [mm] is a constant on
the order of total snowmelt in one year; P0ALBASE is the albedo initial decay value (0.65).

• :UBCGroundwaterSplit [value]

The UBC watershed model deep zone share, which controls how much infiltration goes to
deep vs. shallow storage.

• :UBCExposureFactor

The UBCWM sun exposure factor for forested areas (0.01), indicating the percentage of
forested areas exposed to solar radiation. Used in the SW_CANOPY_CORR_UBCWM canopy cor-
rection algorithm.

• :UBCCloudPenetration

The UBCWM fraction of solar radiation penetrating cloud cover [0..1], as used in the SW_CLOUD_CORR_UBCWM
cloud cover correction algorithm.

• :UBCLWForestFactor

The UBCMW Longwave correction factor for forests [mm/d/K](0.75), as used in the LW_RAD_UBCWM
longwave radiation estimation routine.

• :AirSnowCoeff

This is the air/snow heat transfer coefficient in units of [1/d], as used in the SNOTEMP_NEWTONS
snow temperature evolution routine.

119

Special Commands

The following special commands can be used for temporally variable landscape change (e.g.,
to simulate urbanization, forest fire impacts, or changes in agricultural practices).

– :LandUseChange [HRU group] [new LULT tag] [YYYY-mm-dd]

The land use for the specified HRU group is changed to the new LULT type (as specified
in the :LandUseClasses-:EndLandUseClasses block) on the specified date in ANSI
YYYY-mm-dd format. The change occurs just after midnight of the night before. Note
that all parameters from the new land use class are applied to all of the specified HRUs
in the group. There is no limit to the number of land use changes in the model.

– :VegetationChange [HRU group] [new vegetation tag] [YYYY-mm-dd]

The vegetation for the specified HRU group is changed to the new vegetation type (as
specified in the :VegetationClasses-:EndVegetationClasses block) on the specified
date in ANSI YYYY-mm-dd format. The change occurs just after midnight of the night
before. Note that all parameters from the new vegetation class are applied to all of the
specified HRUs in the group. There is no limit to the number of vegetation changes in
the model.

– :TransientParameter [PARAM_NAME] [Parameter_class] {(optional) ClassName}

[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [number of entries (N)]

{double value} x N

:EndTransientParameter

This command may be used to replace any (usually fixed) parameter specified in the
.rvp file with a time series of user-specified parameter values. This is often used to
represent the influence of changing land use, seasonal impacts of agriculture, or unmod-
eled hydrologic processes such as frozen soils. Here, PARAM NAME corresponds to one of
the parameters included in tables A.2, A.4, or A.3. Parameter class is one of SOIL,
VEGETATION, LANDUSE, TERRAIN or GLOBALS. The optional ClassName specifies the par-
ticular soil/vegetation/land use class to override; if not included, the parameter will
be overridden for all soil/vegetation/land use classes. Note that the specified transient
parameter completely overwrites the static value specified earlier in the .rvp file. It is
common to put this time series in another file and point to it via the :RedirectToFile

command.

– :RedirectToFile [filename]

This treats the contents of file “filename” as if they were simply inserted into the .rvp file
at the location of the :RedirectToFile command. This is useful for storing individual
sets of commands in an organized format (e.g., the :TransientParameter time series). If
no path is specified, the filename must be reported relative to the working directory. Note
that this command cannot work within data blocks (e.g., a the entire :SoilParameters-
:EndSoilParameters block would have to be in a single file, not just the tabular data
in that block).

120

A.3 HRU / Basin Definition file (.rvh)

The HRU/basin definition file describes the topology of the basin network and the class member-
ship of all constituent HRUs. An example .rvh file is shown below:

Example File: modelname.rvh

* --

* Raven HRU Input file

* TEST input

* Author: JRC

* --

:SubBasins

:Attributes, NAME, DOWNSTREAM_ID, PROFILE, REACH_LENGTH, GAUGED

:Units, none, none, none, km, none

1, Downstream, -1, DEFAULT, 3.0, 1

2, Upstream, 1, DEFAULT, 3.0, 0

:EndSubBasins

:HRUs

:Attributes, AREA, ELEVATION, LATITUDE, LONGITUDE, BASIN_ID, LAND_USE_CLASS, ...

VEG_CLASS,SOIL_PROFILE, AQUIFER_PROFILE, TERRAIN_CLASS, SLOPE, ASPECT

:Units, km2, m, deg, deg, none, none, ...

none, none, none, none, deg, degN

101, 10,143, 43,-80, 1,FORESTED,BROADLEAF, ALL_SAND,SAND_AQ, HILLY,0.0,0.0

102, 10,145, 43,-80, 1,URBAN ,BROADLEAF, ALL_SAND,SAND_AQ, HILLY,0.0,0.0

103, 10,143, 43,-80, 2,FORESTED,BROADLEAF, TILL,SAND_AQ, HILLY,0.0,0.0

104, 10,147, 43,-80, 2,FORESTED,BROADLEAF, TILL,SAND_AQ, HILLY,0.0,0.0

:EndHRUs

:HRUGroup ForestedHRUs

101,103,104

:EndHRUGroup

:RedirectToFile Reservoirs.rvh

Note that, as with the .rvi file, comments may be included on individual lines using the * or #

characters as the first word on the line.

A.3.1 Required Commands

The .rvh file consists of the following required commands:

• :SubBasins

:Attributes, ID, NAME, DOWNSTREAM_ID, PROFILE, REACH_LENGTH, GAUGED,

:Units , none, none, none, none, km, none,

{ID,name,downstream_ID profile,reach_length,gauged}x[number of subbasins]

:EndSubBasins

To specify an array of SubBasins of the watershed and the connectivity between subbasins.
Each subbasin may only have one outlet subbasin, specified by ID (a unique positive integer).
The subbasin-specific parameters are defined as follows:

121

– ID A positive integer unique to this subbasin. Used to refer to the subbasin in other
parts of the input file.

– name The nickname for the basin (cannot include commas or spaces)

– downstream ID The ID of the basin that receives this subbasins outflowing waters. If the
drainage for this subbasin leaves the modeled watershed, a value of -1 for the downstream
ID should be specified.

– profile The representative channel profile code (channel profiles specified in the .rvp
file)

– reach length The length of the primary reach channel in the basin (in km). If this is a
headwater basin, in-channel routing can be avoided by setting reach length to zero. If
set to AUTO, the reach length will be estimated from total subbasin area.

– gauged Flag which determines whether modeled hydrographs for this subbasin are gen-
erated as output from the model (either 1 or 0, true or false)

• :HRUs

:Attributes,AREA,ELEVATION,LATITUDE,LONGITUDE,BASIN_ID,LAND_USE_CLASS,

VEG_CLASS,SOIL_PROFILE,AQUIFER_PROFILE,TERRAIN_CLASS,SLOPE,ASPECT

:Units ,km2, m, deg, deg, none, none,

none, none, none, none, deg, degN

{ID,area,lat,long,basin_ID,...

LU/LT,veg_class_name,soil_profile_name,...

terrain_class_name,slope,aspect}x[number of HRUs]

:EndHRUs

To specify an array of HRUs within the subbasins defined above. Each HRU is defined by
an ID (a unique positive integer), a total HRU area (in km2), a latitude-longitude location of
the HRU centroid (in decimal degrees), the ID of the basin in which the HRU is located (as
defined in the :SubBasins command), land use,terrain, aquifer classes and a soil profile (as
defined in the .rvp file), an average slope (in degrees), and average aspect (in degrees).

If terrain classes or aquifer profiles are not used in the model, the flag [NONE] goes in the
place of the class specifier.

A.3.2 Optional Commands

• :SubBasinProperties

:Parameters, {PARAM_1, PARAM_2, .. , PARAM_N}

:Units , {UNITS_1, UNITS_2, .. , UNITS_N}

{[basin ID], [p_1] , [p_2] , .. , [p_N] }} x NSB

Subbasin properties are used to control the in-catchment routing behaviour of individual
subbasins. Here, PARAM_i represents the name of a subbasin parameter (the full list of valid
parameters can be found in table C.3), UNITS_i is the units tag (not used by Raven), p_i
refers to numeric values of each parameter, basin id is the subbasin ID as defined in the
:SubBasins command, and NSB is the number of subbasins in the model.

• :HRUGroup [group_name]

17,18,30-37

:EndHRUGroup

122

HRU Groups are used for a number of reasons: to generate custom output only for a select
set of HRUs (or organize/aggregate output for multiple sets) or to control which processes are
applied in what locations. Group names are typically specified using the :DefineHRUGroups

command in the .rvi file; this command populates the memberships of these predefined groups.
Individual HRUs are specified with their ID numbers (as defined in the :HRUs command),
separated by commas. Ranges of HRUs can be specified using the hyphen, as shown above.

• :SubBasinProperties

:Parameters PARAMETER_1 PARAMETER_2 PARAMETER_3, ...

:Units unit_1 unit_2 unit_3,...

{basin ID,v_1, v_2, v_3,...}x[number of SubBasins]

:EndSubBasinProperties

This command allows the user to specify subbasin properties, mostly those use to control the
in-catchment routing schemes. The list of sub-basin parameters is included in table C.3

• :Reservoir {name}

:SubBasinID {SBID}

:HRUID {HRUID}

:StageRelations

{# of points on rating curve}

{stage [m], flow [m3/s], volume [m3], area [m2]}x[# of points on rating curve]

:EndStageRelations

:EndReservoir

This command creates a reservoir at the outlet of the subbasin referenced by SBID. Evap-
oration from the reservoir surface are obtained from the HRU referenced by HRUID (this is
the only purpose for this; a special HRU for the reservoir is not strictly required, though
often appropriate if the reservoir is relatively large). The reservoir volume, outflow, and net
precipitation to the reservoir surface are obtained by interpolating their value from the spec-
ified stage-discharge, stage-area, and stage-volume relations. Note that the minimium stage
supplied in the :StageRelations should be the minimum expected stage (usually the bottom
of the reservoir).

123

A.4 Time Series Input file (.rvt)

The time series input file is used to store time series of forcing functions (precipitation, temperature,
etc.).

Example File: modelname.rvt

* --

* Raven Time Series Input file

* --

:Gauge Stratford MOE (ID:6148105)

:Latitude 43.37250

:Longitude -80.55360

:Elevation 53

:RedirectToFile StratfordMOEData.rvt

:EndGauge

:RedirectToFile UpstreamInflow.rvt

:RedirectToFile LandCoverChange.rvt

:RedirectToFile ObservedHydrograph.rvt

A.4.1 Gauge Data Commands

The entries in the .rvt file are predominantly meteorological gauge locations (either real or hy-
pothetical) that provide time series of needed precipitation, temperature and other atmospheric
forcings used by the model (see appendix A.4.3 for information about using gridded model in-
puts instead of gauges). This is supplemented by information about other time series needed for
simulation. Each gauge entry is specified within a bracketed statement,

:Gauge [gaugename]

:Latitude [latitude]

:Longitude [longitude]

:Elevation [elevation]

[other gauge data and time series information here]

:EndGauge

and must contain the latitude/longitude (using the :Latitude, :Longitude commands) and typi-
cally contain a number of time series. Two formats, :Data (for a single time series) and :MultiData

(for multiple time series), may be used to specify collections of forcing functions measured at the
gauge. These are often stored in their own individual file and accessed via the :RedirectToFile

command.

• :Data PARAMETER

[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [number of entries (N)]

v_1

v_2

v_3

...

v_N

:EndData

124

Where here, v i are the ith time series values and the PARAMETER term is one of the forcings
listed in table C.2 (e.g., PRECIP, TEMP MIN. etc.).

It is assumed that the array of values specified are time-averaged values over the specified
time interval. All forcings are in period-starting format, so that if the start date is 2002-10-
01 00:00:00 with a time interval of 1.0 days, then the first data item represents the average
forcing value on October 1st. Note that the terms may be space-, comma-, or tab-delimited
and would typically be entered as a single column. Also note that the time interval must be
specified as a double, and cannot be specified using a format of 00:00:00.

IMPORTANT: The default units of the forcing functions (as tabulated in C.2) must be
respected. Though non-intuitive to many hydrologists, precipitation intensity (in mm/d)
must be specified even for hourly data intervals, e.g., 1 cm of rain in an hour would be
specified as a rainfall rate of 240 mm/d.

• :MultiData

[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [number of entries (N)]

:Parameters PARAMETER_1 PARAMETER_2 ... PARAMETER_J

:Units units_tag_1 units_tag_2 ... units_tag_J

v_11, v_12, v_13

v_21, v_22, v_23

...

v_N1, v_N2, v_N3

:EndMultiData

This command is an alternate to the :Data approach, allowing multiple data to be included as
a single data table using the :MultiData command, with columns corresponding to individual
data types. Here, PARAMETER i corresponds to the name of the input parameter (one of the
forcing values in table C.2), and the units tags should be consistent with the actual desired
units in table C.2. Again, note that the time interval must be specified as a double, and
cannot be specified using a format of 00:00:00.

Other additional terms may be associated with each gauge, contained between the :Gauge-:EndGauge
brackets:

• :Elevation [elevation]

elevation of gauge, typically in meters above mean sea level

• :MonthlyAveTemperature [J F M A M J J A S O N D]

a list of 12 representative monthly average temperatures at the gauge, from Jan to Dec, in
◦C.

• :MonthlyMinTemperature [J F M A M J J A S O N D]

a list of 12 representative monthly minimum temperatures at the gauge, from Jan to Dec, in
◦C.

• :MonthlyMaxTemperature [J F M A M J J A S O N D] a list of 12 representative monthly
maximum temperatures at the gauge, from Jan to Dec, in ◦C.

• :MonthlyAveEvaporation [J F M A M J J A S O N D]

a list of 12 representative monthly average potential evapotranspiration rates at the gauge,
from Jan to Dec, in mm/d.

• :MonthlyEvapFactor [J F M A M J J A S O N D]

125

a list of 12 monthly evaporation factors [mm/d/K]. This is used in the UBCWM PET esti-
mation routine.

• :RainCorrection [value]

a multiplier (hopefully near 1.0) applied to all reported rainfall rates at this gauge; often used
as a correction factor for estimating proper rainfall volumes

• :SnowCorrection [value]

a multiplier (hopefully near 1.0) applied to all reported snowfall rates at this gauge; often
used as a correction factor for estimating proper snow volumes.

• :CloudTempRanges [cloud temp min] [cloud temp max]

temperature ranges used for estimation of cloud cover using the UBCWM model approach
(CLOUDCOV UBCWM).

• :RedirectToFile [filename]

This treats the contents of file “filename” as if they were simply inserted into the .rvt file at the
location of the :RedirectToFile command. This is useful for storing individual time series or
gauges in separate files. If no path is specified, the filename must be reported relative to the
working directory. Note that this command can work within a :Gauge-:EndGauge structure,
but not within other structures (e.g., a :Multidata entry cannot be split into multiple files
in this manner).

• :EnsimTimeSeries [filename]

A table of timeseries (similar to the :MultiData command may be specified using the Ensim
.tb0 format. The input parameter names are the same which are provided in table C.2. An
example is provided below:

###

:FileType tb0 ASCII EnSim 1.0

#--

:ColumnMetaData

:ColumnName TEMP_MAX TEMP_MIN PRECIP

:ColumnUnits DegC DegC mm/d

:ColumnType float float float

:EndColumnMetaData

#

:StartTime 1983/02/01 00:00:00.000

:DeltaT 24:00:00.000

#

:EndHeader

4.4000001 -0.60000002 0

5 -2.5 0.60000002

...

5.5999999 -3 0.30000001

4.4000001 -4.5999999 0

1.1 -4.4000001 0

For dense gauge networks, it may be more practical to generate gauge inputs in bulk. Therefore,
the following commands have been supplied:

• :GaugeList

:Attributes, LATITUDE, LONGITUDE, ELEVATION, ...

:Units, dec.deg, dec.deg, masl, ...

126

[name1, lat1, long1,elev1,...]

...

[nameN, latN, longN,elevN,...]

:EndGaugeList

The Gauge List command allows specification of single-valued parameters for each gauge. In
addition to LATITUDE (which corresponds to a :Longitude entry in a :Gauge-:EndGauge
command), it also supports all of the other single-valued entries listed above, including
RAINFALL_CORR, SNOWFALL_CORR, CLOUD_MIN_RANGE, and CLOUD_MAX_RANGE.

• :GaugeDataTable

:DataType PRECIP

:Units mm/d

:StartTime 01-01-2012 00:00:00.0

:TimeIncrement 01:00:00.0

:NumMeasurements 730

:Gauge, Cell_11,Cell_12,Cell_13, ... Cell_240360

1, 0.0,0.0,0.0, ...,0.2

2, 0.0,0.0,0.0, ...,0.1

...

:EndGaugeDataTable

• :MonthlyMaxTemperatures

This command does the same thing as :MonthlyMaxTemperature but for a list of gauges, and
would therefore typically be used in conjunction with the :GaugeList and :GaugeDataTable

commands. The format is

:MonthlyMaxTemperatures

{[gaugename1], J,F,M,A...O,N,D} x NG

:EndMonthlyMaxTemperatures

where each of the month initials would be replaced by an typical maximum temperature for
the month.

• :MonthlyMinTemperatures

This command is identical to MonthlyMaxTemperatures, but for representative minimum
monthly temperatures.

• :MonthlyAveEvaporations

This command is identical to MonthlyMaxTemperatures, but for representative average monthly
evaporation rates (in mm/d).

• :MonthlyAveTemperatures

This command is identical to MonthlyMaxTemperatures, but for representative average monthly
temperatures.

• :MonthlyEvapFactors

This command is identical to MonthlyMaxTemperatures, but for monthly evaporation factors
[mm/d/K] as defined using the :MonthlyEvapFactor command above.

Here, the :DataType entry corresponds to a forcing tag as specified in table C.2.

127

A.4.2 Other Time Series Commands

Time series of known flows and model parameters may also need to be specified to support the
model. These are not linked to a specific Gauge, and would therefore not be included in an
:Gauge...:EndGauge bracket. Most of these time series would be stored in a separate .rvt file and
referred to in the main .rvt file using the :RedirectToFile command.

• :ObservationData [data_type] [basin_ID or HRU_ID] {units}

[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [number of entries (N)]

v_1 v_2 v_3 v_4 v_5

...

v_N-2 v_N-1 v_N

:EndObservationData

Similar to the :Data command above. This specifies a continuous time series of observations
of type data_type with units units located either at the outlet of the basin specified with
basin_ID or the HRU specified with HRU_ID. The data types correspond to state variables
in the model, and the data_type therefore must be taken from table C.1, unless the data
is (1) a hydrograph, in which case the HYDROGRAPH tag is used or (2) a reservoir stage, in
which case the RESERVOIR_STAGE tag is used. For hydrographs and reservoir stages, the basin
ID is specified. For all other variables, the HRU ID is specified. With the exception of the
hydrograph, it is assumed that the observations correspond to instantaneous observations in
time rather than time-averaged quantities. This command defines a time series of regularly
spaced consecutive values. If the time series time interval doesn’t match the model time step
then the time series is re-sampled to match the model. For irregularly spaced observations,
use the :IrregularObservations command.

Missing or unknown observations should be specified using the flag -1.2345. Note that the
observation time series does not have to overlap the model simulation duration. All data
outside the supplied time interval is treated as blank.

If an observed hydrograph is supplied, it will be output to the Hydrographs.csv file. Hydro-
graphs should be specified in period-starting format, i.e., for a time series of daily discharges
starting on October 1, 2006, the start time would be 2006-10-01 00:00:00, at the start of the
first data period provided.

• :IrregularObservations [data type] [ID] [number of entries (N)] {(optional) units}

[date yyyy-mm-dd] [time hh:mm:ss.0] v_1

[date yyyy-mm-dd] [time hh:mm:ss.0] v_2

...

[date yyyy-mm-dd] [time hh:mm:ss.0] v_N

:EndIrregularObservations

This command is used for time series where observations are discontinuous or irregularly
spaced. Values in these time series are assumed to be instantaneous and modelled values are
linearly interpolated to match the observation times for comparison.

Missing or unknown observations should be specified using the flag -1.2345. Note that the
observation time series does not have to overlap the model simulation duration. All data
outside the supplied time interval is treated as blank.

• :ObservationWeights [data type] [ID]

[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [number of entries (N)]

v_1 v_2 v_3 v_4 v_5

128

...

v_N-2 v_N-1 v_N

:EndObservationWeights

This command is used apply weights to observation data for the calculation of diagnostics.
The data type, ID, and number of entries all need to match an existing :ObservationData

time series. Not all evaluation metrics can be weighted, in which case all weights are ignored
except weights of zero.

• :IrregularWeights [data type] [ID] [number of entries (N)]

[date yyyy-mm-dd] [time hh:mm:ss.0] v_1

[date yyyy-mm-dd] [time hh:mm:ss.0] v_2

...

[date yyyy-mm-dd] [time hh:mm:ss.0] v_N

:EndIrregularWeights

This command is used apply weights to irregular observations. The data type, ID, and number
of entries all need to match an existing :IrregularObservations time series.

• :BasinInflowHydrograph [Basin ID]

[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [number of entries (N)]

Q_1 Q_2 Q_3 Q_4 Q_5

...

Q_N-2 Q_N-1 Q_N

:EndBasinInflowHydrograph

where Q i is the ith inflow in m3d−1. This command is typically used to (1) specify inflows
coming from an unmodeled portion of the domain; (2) override modeled inflow to a stream
reach with observed inflows from a stream gauge, as might be done during calibration; or (3)
add additional inflows to a stream reach from human activities, e.g., a wastewater treatment
plant inflow.

• :ReservoirExtraction [Basin ID]

[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [number of entries (N)]

Q_1 Q_2 Q_3 Q_4 Q_5

...

Q_N-2 Q_N-1 Q_N

:EndReservoirExtraction

where Q i is the ith inflow in m3d−1. Discharges are positive for reservoir extraction and
negative for injection of water into the reservoir located at the outlet of the subbasin indicated
by the basin ID.

129

A.4.3 Gridded Input Data

Raven supports gridded forcing inputs exclusively in netCDF format (*.nc files). In case of gridded
inputs, the user needs to define some information about the variables and structure of the gridded
NetCDF input file; in addition, the mapping of grid cells to HRUs needs to be specified through a
weighting table.

Example File: modelname.rvt

* --

* Example Raven Gridded Input file

* --

:GriddedForcing PRECIPITATION

:ForcingType PRECIP

:FileNameNC gridded_precip.nc

:VarNameNC pre

:DimNamesNC lon lat ntime # must be in the order of (x,y,t)

:GridWeights

:NumberHRUs 3

:NumberGridCells 24

HRU GridCell Weight

1 15 0.4

1 16 0.6

2 14 1.0

3 14 0.2

3 15 0.3

3 13 0.5

:EndGridWeights

:EndGriddedForcing

The forcing inputs like precipitation and temperature are traditionally given as time series per
gauging station (see sections A.4.2 and A.4.1). This becomes inconvenient if you have inputs
available for multiple gauging stations or you even have the forcings available on a grid covering
your whole modeling domain. Hence, Raven supports gridded input in NetCDF format. Instead
of specifying a time series per gauge or grid cell in the .rvt file, one can specify a single input grid
inside a :GriddedForcing-:EndGriddedForcing command structure:

:GriddedForcing {forcing name}

:ForcingType {type}

:FileNameNC {path/filename of .nc file}

:VarNameNC {name of variable in .nc file}

:DimNamesNC {long_name} {lat_name} {time_name} # must be in the order of (x,y,t)

:GridWeights

:NumberHRUs {total number of HRUs}

:NumberGridCells {total number of grid cells}

{HRU ID} {Cell ID} {weight}

...

:EndGridWeights

:EndGriddedForcing

One has to specify the type of the forcing input in the :ForcingType command, e.g. PRECIP or
TEMP_AVE (see Table C.2 for complete list). The name of the file containing the data has to be given

130

:FileNameNC. The file can contain more data than only this specific forcing; only the data of the
specified variable :VarNameNC will be read and used by Raven. Since the order of the dimensions in
a NetCDF file is not unique, one has to specify the dimension names starting with the x-dimension
(usually longitudes), y-dimension (usually latitudes) and at last the name of the time dimension. To
obtain the information about variable name :VarNameNC and dimension names :DimNamesNC, one
can use the command line tool ncdump available with the netCDF library. Running the command

> ncdump -h gridded_precip.nc

will display the header information of the NetCDF file gridded_precip.nc and provide all the
necessary information. The last required information is the :GridWeights block specifying how
much each grid cell is contributing to each HRUs. Only non-zero weights have to be given; missing
pairs are automatically assumed to be zero. The HRU ID has to correspond to the numbering in
the :HRUs block of the .rvh file. The numbering of the grid cells is linewise starting with zero in
the upper left corner of the grid. The weights per HRU ID have to sum up to 1.0 otherwise Raven
raises an error messsage. The list of grid weights will get very long with large grids and multiple
HRUs. In such a case, the :GridWeights block would typically be stored in a separate file then
and the :RedirectFile functionality be used instead.

131

A.5 Initial Conditions Input file (.rvc)

The initial conditions input file is used to store the initial conditions for the model. By default,
the initial conditions for all model state variables is zero, and there are no required commands in
this file (it could even be completely empty).

Example File: modelname.rvc

* --

* Raven Initial Conditions Input file

* --

:HRUStateVariableTable

:Attributes, SOIL[0], SNOW,

:Units , mm, mm,

1, 145, 33,

2, 150, 13,

...

:EndHRUStateVariableTable

:BasinInitialConditions

:Attributes, Q

:Units , m3/s

1 , 3.6

:EndBasinInitialConditions

A.5.1 Optional Commands

• :HRUStateVariableTable

:Attributes, {SV_TAG_1, SV_TAG_2,...,SV_TAG_NSV}

:Units , {units_1, units_2,...,units_NSV}

{HRUID, SV_value_1,SV_value_2,...,SV_value_NSV}xNHRUs

:EndHRUStateVariableTable

Provides initial conditions for state variables in each HRU within the model. Here, NSV is
the number of state variables for which initial conditions are provided, and NHRUs is the
number of HRUs in the model. SV_TAG refers to the state variable tag, with the complete
list of state variable tags in table C.1. Note that initial conditions have to be provided for
all HRUs in the model and initial conditions have to be entered in the same order as in the
:HRUs command in the .rvh file.

• :BasinInitialConditions

:Attributes, Q

:Units , m3/s

{SBID, FLOWRATE} x nSubBasins

:EndBasinInitialConditions

A list of initial outflow rates from the subbasins, indexed by subbasin ID as specified within
the :SubBasins command of the .rvh file.

• :UniformInitialConditions [SV_TAG] [value]

Applies a uniform initial condition (value) to the state variable corresponding to SV_TAG, with

132

the complete list of state variable tags in table C.1. If called after :HRUStateVariableTable,
it will overwrite the initial conditions previously specified.

• :BasinStateVariables

:BasinIndex ID, name

:ChannelStorage [val]

:RivuletStorage [val]

:Qout [nsegs] [aQout x nsegs] [aQoutLast]

:Qlat [nQlatHist] [aQlatHist x nQlatHist] [QlatLast]

:Qin [nQinHist] [aQinHist x nQinHist]

{reservoir variables}

:BasinIndex 1D, name

...

:EndBasinStateVariables

This command is usually generated only as part of the Raven solution file and would not
typically be modified by the user. It fully describes the flow variables linked to the subbasin.
Here, :ChannelStorage [m3] is the volume of water in the channel, :RivuletStorage [m3] is
the volume of water waiting in catchment storage, Qout [m3/s] the array of outflows at each
reach segment, Qlat [m3/s] is an array storing the time history of outflows to the channel,
Qin [m3/s] is the time history of inflows to the uppermost segment of the reach.

• :TimeStamp

Specifies time stamp linked to the initial conditions file. This is generated automatically by
Raven when it produces a snapshot of the state variables, such as when it generates the
solution.rvc output file. The time stamp should be consistent with the start time of the
model.

133

Appendix B

Output Files

• WatershedStorage.csv

A comma-delimited file describing the total storage of water (in mm) in all water storage
compartments for each time step of the simulation. Mass balance errors, cumulative input
(precipitation), and output (channel losses) are also included. Note that the precipitation
rates in this file are period-ending, i.e., this is the precipitation rate for the time step preceding
the time stamp; all water storage variables represent instantaneous reports of the storage at
the time stamp indicate. Created by default.

• Hydrographs.csv

A comma-delimited file containing the outflow hydrographs (in m3/s) for all subbasins spec-
ified as ’gauged’ in the .rvh file. If the :SnapshotHydrograph command is used, this reports
instantaneous flows at the end of each time step (plus the initial conditions at the start of the
first time step). Without, this reports period-ending time-averaged flows for the preceding
time step, as is consistent with most measured stream gauge data (again, the initial flow con-
ditions at the start of the first time step are included). If observed hydrographs are specified,
they will be output adjacent to the corresponding modelled hydrograph. Created by default.

• ForcingFunctions.csv (optional)
A comma-delimited file containing the time series of all watershed-averaged system forcing
functions (e.g., rainfall, radiation, PET, etc.). The output is all period-ending, i.e., the values
reported correspond to the time-averaged forcings for the time step before the indicated time
stamp. Created if :WriteForcingFunctions command included in .rvi file.

• WatershedMassEnergyBalance.csv (optional)
A comma-delimited file describing the total cumulative fluxes of energy and water (in MJ/m2

or mm) from all energy storage compartments for each time step of the simulation. Created
if :WriteMassBalanceFile command included in .rvi file.

• Parameters.csv (optional)
A comma-delimited file containing the values for all static specified and auto-generated param-
eters for all soil, vegetation, land use, and terrain classes. Created if :WriteParametersFile
command included in .rvi file.

• ReservoirStages.csv (optional)
A comma-delimited file reporting the instantaneous stage of all modeled reservoirs. Created
automatically if reservoirs are present in the model.

• {constituent}concentrations.csv (optional)

134

A comma-delimited file reporting the instantaneous watershed-averaged concentration of the
transport constituent in all water storage units. Created automatically if transport is included
in the model.

• {constituent}pollutograph.csv (optional)
A comma-delimited file reporting the instantaneous concentration of water flowing out from
all gauged subbasins. Created automatically if transport is included in the model.

• Diagnostics.csv (optional)
A comma-delimited file reporting the quality of fit between model and supplied observations.
Created if observations are present and the :EvaluateMetrics command is used.

If the :RunName parameter is specified in the .rvi file, this run name is pre-appended to the
above filenames.

135

Appendix C

Reference Tables

136

Figure C.1: All state variables currently available in Raven. This list of state variables is supported
by the :HydroProcesses commands and :CustomOutput commands, amongst others.

137

Figure C.2: All forcing functions currently available in Raven. This list of forcing functions is
supported by the :Data, :MultiData, :CustomOutput, and :GaugeMultiData commands, amongst
others.

Figure C.3: All subbasin parameters currently available in Raven. These parameters may be
specified in the :SubBasinParameters command in the .rvh file

138

Appendix D

Template Files

The following section provides template .rvi files.

To do (10)

D.1 UBCWM Emulation

--

Raven Template Input File

UBC Watershed Model v5 Emulation

--

:StartDate 1991-10-01 00:00:00

:Duration 365

:TimeStep 24:00:00

#

:Method ORDERED_SERIES

:Interpolation INTERP_NEAREST_NEIGHBOR

:Routing ROUTE_NONE

:CatchmentRoute ROUTE_DUMP

:Evaporation PET_MONTHLY_FACTOR

:OW_Evaporation PET_MONTHLY_FACTOR

:SWRadiationMethod SW_RAD_UBCWM

:SWCloudCorrect SW_CLOUD_CORR_UBCWM

:SWCanopyCorrect SW_CANOPY_CORR_UBCWM

:LWRadiationMethod LW_RAD_UBCWM

:WindspeedMethod WINDVEL_UBCWM

:RainSnowFraction RAINSNOW_UBCWM

:PotentialMeltMethod POTMELT_UBCWM

:OroTempCorrect OROCORR_UBCWM

:OroPrecipCorrect OROCORR_UBCWM2

:OroPETCorrect OROCORR_UBCWM

:CloudCoverMethod CLOUDCOV_UBCWM

:PrecipIceptFract PRECIP_ICEPT_USER

139

:MonthlyInterpolationMethod MONTHINT_LINEAR_21

:SoilModel SOIL_MULTILAYER 6

:SnapshotHydrograph

#

-Processes--

:Alias TOP_SOIL SOIL[0]

:Alias INT_SOIL SOIL[1]

:Alias SHALLOW_GW SOIL[2]

:Alias DEEP_GW SOIL[3]

:Alias INT_SOIL2 SOIL[4]

:Alias INT_SOIL3 SOIL[5]

-UBCWM EMULATION:---

:HydrologicProcesses

:SnowAlbedoEvolve SNOALB_UBCWM

:SnowBalance SNOBAL_UBCWM MULTIPLE MULTIPLE

:Flush RAVEN_DEFAULT PONDED_WATER INT_SOIL2 # moves snowmelt to fast runoff

:-->Conditional HRU_TYPE IS GLACIER

:GlacierMelt GMELT_UBC GLACIER_ICE PONDED_WATER

:Precipitation PRECIP_RAVEN ATMOS_PRECIP MULTIPLE

:SoilEvaporation SOILEVAP_UBC MULTIPLE ATMOSPHERE

:Infiltration INF_UBC PONDED_WATER MULTIPLE

:Flush RAVEN_DEFAULT SURFACE_WATER INT_SOIL2 # from infiltration to routing

:GlacierInfiltration GINFIL_UBCWM PONDED_WATER MULTIPLE

:Percolation PERC_LINEAR_ANALYTIC INT_SOIL INT_SOIL2 #routing

:Percolation PERC_LINEAR_ANALYTIC INT_SOIL2 INT_SOIL3 #routing

:Baseflow BASE_LINEAR INT_SOIL3 SURFACE_WATER #routing

:Baseflow BASE_LINEAR SHALLOW_GW SURFACE_WATER

:Baseflow BASE_LINEAR DEEP_GW SURFACE_WATER

:GlacierRelease GRELEASE_LINEAR GLACIER SURFACE_WATER

:EndHydrologicProcesses

See the Alouette tutorial example for a template .rvp file for UBCWM emulation, indicating all
required parameters.

140

D.2 HBV-EC Emulation

--

Raven Input file

HBV-EC Emulation

--

--Simulation Details -------------------------

:StartDate 1991-10-01 00:00:00

:Duration 365

:TimeStep 1.0

#

--Model Details -------------------------------

:Method ORDERED_SERIES

:Interpolation INTERP_NEAREST_NEIGHBOR

:Routing ROUTE_NONE

:CatchmentRoute TRIANGULAR_UH

:Evaporation PET_FROMMONTHLY

:OW_Evaporation PET_FROMMONTHLY

:SWRadiationMethod SW_RAD_DEFAULT

:SWCloudCorrect SW_CLOUD_CORR_NONE

:SWCanopyCorrect SW_CANOPY_CORR_NONE

:LWRadiationMethod LW_RAD_DEFAULT

:RainSnowFraction RAINSNOW_HBV

:PotentialMeltMethod POTMELT_HBV

:OroTempCorrect OROCORR_HBV

:OroPrecipCorrect OROCORR_HBV

:OroPETCorrect OROCORR_HBV

:CloudCoverMethod CLOUDCOV_NONE

:PrecipIceptFract PRECIP_ICEPT_USER

:MonthlyInterpolationMethod MONTHINT_LINEAR_21

:SoilModel SOIL_MULTILAYER 3

--Hydrologic Processes-------------------------

:Alias FAST_RESERVOIR SOIL[1]

:Alias SLOW_RESERVOIR SOIL[2]

:LakeStorage SLOW_RESERVOIR

:HydrologicProcesses

:SnowRefreeze FREEZE_DEGREE_DAY SNOW_LIQ SNOW

:Precipitation PRECIP_RAVEN ATMOS_PRECIP MULTIPLE

:CanopyEvaporation CANEVP_ALL CANOPY ATMOSPHERE

:CanopySnowEvap CANEVP_ALL CANOPY_SNOW ATMOSPHERE

:SnowBalance SNOBAL_SIMPLE_MELT SNOW SNOW_LIQ

:-->Overflow RAVEN_DEFAULT SNOW_LIQ PONDED_WATER

:Flush RAVEN_DEFAULT PONDED_WATER GLACIER

:-->Conditional HRU_TYPE IS GLACIER

:GlacierMelt GMELT_HBV GLACIER_ICE GLACIER

141

:GlacierRelease GRELEASE_HBV_EC GLACIER SURFACE_WATER

:Infiltration INF_HBV PONDED_WATER MULTIPLE

:Flush RAVEN_DEFAULT SURFACE_WATER FAST_RESERVOIR

:-->Conditional HRU_TYPE IS_NOT GLACIER

:SoilEvaporation SOILEVAP_HBV SOIL[0] ATMOSPHERE

:CapillaryRise RISE_HBV FAST_RESERVOIR SOIL[0]

:LakeEvaporation LAKE_EVAP_BASIC SLOW_RESERVOIR ATMOSPHERE

:Percolation PERC_CONSTANT FAST_RESERVOIR SLOW_RESERVOIR

:Baseflow BASE_POWER_LAW FAST_RESERVOIR SURFACE_WATER

:Baseflow BASE_LINEAR SLOW_RESERVOIR SURFACE_WATER

:EndHydrologicProcesses

#

:AggregatedVariable FAST_RESERVOIR AllHRUs

:AggregatedVariable SLOW_RESERVOIR AllHRUs

See the Alouette2 tutorial example for a template .rvp file for HBV-EC emulation, indicating
all required parameters.

142

D.3 GR4J Emulation

--

Raven Input file

GR4J Emulation

--

:StartDate 2000-01-01 00:00:00

:Duration 365

:TimeStep 1.0

:Method ORDERED_SERIES

:Interpolation INTERP_NEAREST_NEIGHBOR

:Routing ROUTE_NONE

:CatchmentRoute ROUTE_DUMP

:Evaporation PET_DATA

:RainSnowFraction RAINSNOW_DINGMAN

:PotentialMeltMethod POTMELT_DEGREE_DAY

:OroTempCorrect OROCORR_SIMPLELAPSE

:OroPrecipCorrect OROCORR_SIMPLELAPSE

:SoilModel SOIL_MULTILAYER 4

--Hydrologic Processes-------------------------

:Alias PRODUCT_STORE SOIL[0]

:Alias ROUTING_STORE SOIL[1]

:Alias TEMP_STORE SOIL[2]

:Alias GW_STORE SOIL[3]

:HydrologicProcesses

:Precipitation PRECIP_RAVEN ATMOS_PRECIP MULTIPLE

:SnowTempEvolve SNOTEMP_NEWTONS SNOW_TEMP

:SnowBalance SNOBAL_CEMA_NIEGE SNOW PONDED_WATER

:OpenWaterEvaporation OPEN_WATER_EVAP PONDED_WATER ATMOSPHERE

:Infiltration INF_GR4J PONDED_WATER MULTIPLE

:SoilEvaporation SOILEVAP_GR4J PRODUCT_STORE ATMOSPHERE

:Percolation PERC_GR4J PRODUCT_STORE TEMP_STORE

:Flush RAVEN_DEFAULT SURFACE_WATER TEMP_STORE

:Split RAVEN_DEFAULT TEMP_STORE CONVOLUTION[0] CONVOLUTION[1] 0.9

:Convolve CONVOL_GR4J_1 CONVOLUTION[0] ROUTING_STORE

:Convolve CONVOL_GR4J_2 CONVOLUTION[1] TEMP_STORE

:Percolation PERC_GR4JEXCH ROUTING_STORE GW_STORE

:Percolation PERC_GR4JEXCH2 TEMP_STORE GW_STORE

:Flush RAVEN_DEFAULT TEMP_STORE SURFACE_WATER

:Baseflow BASE_GR4J ROUTING_STORE SURFACE_WATER

:EndHydrologicProcesses

See the Irondequoit tutorial example for a template .rvp file for GR4J emulation, indicating all
required parameters.

143

Bibliography

Barry, D., Parlange, J.-Y., Li, L., Jeng, D.-S., Crappert, M., 2005. Green ampt approximations.
Advances in Water Resources 28 (1), 1003–1009.

Bergstrom, S., 1995. Computer models of watershed hydrology. Water Resources Publications,
Highlands Ranch, Colorado, Ch. The HBV Model, pp. 443–476.

Brown, D. M., Bootsma, A., 1993. Crop heat units for corn and other warm season crops in ontario.
Tech. Rep. Fact sheet 93-119, Ontario Ministry for Food and Rural Affairs.

Chow, V., Maidment, D., Mays, L., 1988. Applied Hydrology. McGraw-Hill.

Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A., Gupta, H. V., Wagener, T.,
Hay, L. E., 2008. Framework for Understanding Structural Errors (FUSE): A modular framework
to diagnose differences between hydrological models. Water Resources Research 44, w00B02,
doi:10.1029/2007WR006735.

Dingman, S., 2002. Physical Hydrology. Waveland Press Inc.

Green, W. H., Ampt, G. A., 1911. Studies on soil physics. The Journal of Agricultural Science-
Doi:10.1017/S0021859600001441.

Gupta, H. V., Kling, H., Yilmaz, K. K., Martinez, G. F., 2009. Decomposition of the mean squared
error and nse performance criteria: Implications for improving hydrological modelling. Journal
of Hydrology 377, 80–91.

Hamon, W., 1961. Estimating potential evapotranspiration. Journal of Hydraulics Division, Pro-
ceedings of the ASCE 871, 107–120.

Hargreaves, G., Samani, Z., September 1982. Estimating potential evapotranspiration. Journal of
the Irrigation and Drainage Division, ASCE 108 (3), 225–230.

Hargreaves, G., Samani, Z., 1985. Reference crop evapotranspiration from temperature. Applied
Engineering in Agriculture 1 (2), 96–99.

Hedstrom, N. R., Pomeroy, J. W., 1998. Measurements and modelling of snow interception in the
boreal forest. Hydrological Processes 12, 1611–1625.

Kuzmin, P., 1957. Hydrophysical investigations of land waters. Vol. 3.

Leavesley, G., Stannard, L., 1995. Computer models of watershed hydrology. Water Resources
Publications, Highlands Ranch, Colorado, Ch. The precipitationrunoff modeling system PRMS,
p. 281310.

144

Liu, J., Sun, G., McNulty, S. G., Amatya, D., 2005. A comparison of sic potential evapotranspiration
methods for regional use in the southeastern United States. Journal of the American Water
Resources Association 41 (3), 621–633.

Makkink, G. F., 1957. Testing the Penman formula by means of lysimeters. J. Inst. of Water Eng.
11, 277–288.

Monteith, J., 1965. The State and Movement of Water in Living Organisms. Vol. 17. Academic
Press Inc., New York, Ch. Evaporation and environment, pp. 205–234.

Penman, H., 1948. Natural evaporation from open water, bare soil and grass. Royal Society of
London Proceedings, Series A 193, 120–145.

Perrin, C., Michel, C., Andrassian, V., 2003. Improvement of a parsimonious model for streamflow
simulation. Journal of Hydrology 279 (1-4), 275–289.

Priestley, C., Taylor, R., 1972. On the assessment of surface heat flux and evaporation using large-
scale parameters. Monthly Weather Review (100), 81–92.

Quick, M., 1995. Computer models of watershed hydrology. Water Resources Publications, High-
lands Ranch, Colorado, Ch. The UBC Watershed Model, pp. 233–280.

Quick, M., 2003. Ubc watershed model documentation. Tech. rep., University of British Columbia.

Rutter, A., Kershaw, K., Robins, P., Morton, A., January 1971. A predictive model of rainfall
interception in forests, 1. derivation of the model from observations in a plantation of corsican
pine. Agricultural Meteorology 9, 367–384.

Schroeter, H., 1989. GAWSER Training Guide and Reference Manual. Grand River Conservation
Authority (GRCA), Waterloo, ON.

Soil Conservation Service, 1986. Urban hydrology for small watersheds, 2nd ed. Tech. Rep. Tech.
Release No. 55 (NTIS PB87-101580), U.S. Department of Agriculture, Washington, D.C.

Turc, L., 1961. Evaluation de besoins en eau d’irrigation, et potentielle. Ann. Agron. 12, 13–49.

U.S. Dept. of Commerce, O. o. T. S., 1956. Snow Hydrology. Washington, D.C.

Williams, J., 1969. Flood routing with variable travel time or variable storage coefficients. Trans.
ASAE 12 (1), 100–103.

Wood, E., Lettenmaier, D., Zartarian, V., 1992. A land-surface hydrology parameterization with
subgrid variability for general circulation models. Journal of Geophysical Research 97 (D3), 2717–
2728.

Yin, X., 1997. Optical air mass: Daily integration and its applications. Meteorology and Atmo-
spheric Physics 63 (3), 227–233, doi:10.1007/BF01027387.

145

To do. . .

� 1 (p. 25): Forcing estimator code development section

� 2 (p. 56): Add Abstraction Section

� 3 (p. 68): Sub-daily temperature orographic and lapsing temp ranges not yet described

� 4 (p. 76): PET Orographic Effects - PRMS Method

� 5 (p. 87): SUBDAILY UBC description

� 6 (p. 90): In-channel Transport Routing section

� 7 (p. 102): Update the Required Parameters for Model Operation Options Table - do
in Excel (import as image)

� 8 (p. 107): Move this table to Excel, import as figure

� 9 (p. 108): Create a table for Required Parameters for Hydrological Processes Options

� 10 (p. 139): Report default Raven ”vanilla” configuration

146

	Introduction
	Model Abstraction
	Global Numerical Algorithm
	Conceptual Model

	Running Raven
	Installation
	Input Files
	Running the Model
	Output Files
	Calibration, Visualization, and Uncertainty Analysis
	Common Run Approaches
	Troubleshooting Raven
	Version Notes

	Raven Code Organization*
	Classes
	Contributing to the Raven Framework*

	The Hydrological Process Library
	Precipitation Partitioning
	Infiltration
	Baseflow
	Percolation
	Interflow
	Soil Evaporation
	Capillary Rise
	Canopy Evaporation
	Canopy Drip
	Abstraction
	Depression Storage Overflow
	Snow Balance
	Snow Sublimation
	Snow Melt
	Snow Refreeze
	Snow Albedo Evolution
	Glacial Melt
	Glacier Release
	Crop Heat Unit Evolution
	Special Processes

	Routing
	In-Catchment Routing
	In-Channel Routing
	Reservoir Routing

	Forcing Functions
	Spatial Interpolation
	Temperature
	Precipitation
	Potential Evapotranspiration (PET)
	Shortwave Radiation
	Longwave Radiation
	Cloud Cover
	Energy
	Atmospheric Variables
	Sub-daily Corrections
	Monthly Interpolation

	Tracer and Contaminant Transport
	Constituent Sources
	Catchment Routing
	In-channel Routing

	Model Diagnostics
	Pointwise vs. Pulsewise comparison
	Diagnostic Algorithms

	Input Files
	Primary Input file (.rvi)
	Classed Parameter Input file (.rvp)
	HRU / Basin Definition file (.rvh)
	Time Series Input file (.rvt)
	Initial Conditions Input file (.rvc)

	Output Files
	Reference Tables
	Template Files
	UBCWM Emulation
	HBV-EC Emulation
	GR4J Emulation

