RAVEN:
User’s and Developer’s Manual v2.9.1

the RAVEN development team

Contributions to RAVEN, its utilities, documentation, testing, and source code, have been made by nu-
merous students at the University of Waterloo, including Genevieve Brown, Rob Chlumsky, Sarah Grass,
Susan Huang, Ayman Khedr, Konhee Lee, Stuart Pearson, Silvie Spraakman, Graham Stonebridge, Connor
Werstuck, and Cloud Zhang. Andrew P. Snowdon contributed much to the library of hydrologic process
algorithms, and to the global numerical solver. Juliane Mai has provided Mac/Linux compilation sup-
port and NetCDF gridded data support. Martin Serrer from NRC contributed to the 1/O design, code
optimization, and interfacing tools. Wayne Jenkinson from NRC and Georg Jost from BC Hydro have
provided debugging, benchmarking, and planning support. The base software architecture and much of
the core program was developed by James R. Craig at the University of Waterloo, with support through
multiple conversations with Drs. Eric Soulis and Bryan Tolson.

RAVEN is open-source under the Artistic License 2.0. This software is freely distributed ’as is’ without war-
ranties or conditions of any kind, either express or implied, including, without limitation, any warranties
or conditions of title, non-infringement, merchantability, or fitness for a particular purpose.

Contents

Introduction

1.1 Model Abstraction L
1.2 Global Numerical Algorithm
1.3 Watershed Conceptual Model L
Running RAVEN

2.1 Installationo
22 InputFiles e
2.3 Runningthe Model
24 OutputFiles o o e
2,5 BuildingaModel
2.6 Calibration, Visualization, and Uncertainty Analysis
2.7 Common Run Approaches
2.8 Troubleshooting RAVEN
29 VersionNotes

RAVEN Code Organization*
31 Classes . . . o e
3.2 Contributing to the RAVEN Framework™

The Hydrologic Process Library

4.1 Precipitation Partitioning L oL
4.2 nfiltration L
43 Baseflow
4.4 Percolation L
45 Interflow e
4.6 Soil Evaporation
47 Capillary Rise
4.8 Canopy Evaporation
49 Canopy Drip o o
410 Abstraction L
4.11 Depression/Wetland Storage Overflow,
4.12 Seepage from Depressions/Wetlands Lo oo L
413 LakeRelease
414 Snow Balance
4.15 Snow Sublimation L
416 Snow Refreeze L
4.17 Snow Albedo Evolution
418 Glacier Melt e

S

10

11
11
11
12
14
15
16
17
18
21

24
24
27

4.19 Glacier Release e
420 Crop Heat Unit Evolution
4.21 Special Processes
5 Routing
5.1 In-Catchment Routing e
5.2 In-Channel Routing
5.3 Lake and Reservoir Routing L
6 Forcing Functions
6.1 Spatial Interpolation
6.2 Temperature L e e
6.3 Precipitation
6.4 Potential Evapotranspiration (PET)
6.5 Shortwave Radiation e
6.6 Longwave Radiation.
6.7 Cloud Cover e
6.8 Energy
6.9 Atmospheric Variables
6.10 Sub-daily Corrections
6.11 Monthly Interpolation

7 Tracer and Contaminant Transport

7.1
7.2
7.3
7.4

8.1
8.2

Al
A2

A3

A4

A5

Constituent Sources L
Catchment Routing
In-channel Routing e
In-reservoir Routing L

Model Diagnostics

Pointwise vs. Pulsewise comparison L o
Diagnostic Algorithms

Input Files

Primary Input file (.rvi)
Classed Parameter Input file (rvp) o .o
A2.1 Required Commands
A.2.2 Optional Classes and Objects
A.2.3 Parameter Specification L
HRU / Basin Definition file (rvh)
A3.1 Required Commands
A3.2 Optional Commands
Time Series Input file (.rvt) L
A.4.1 Meteorological Gauge Data Commands
A.42 Other Time Series Commands
A.4.3 Observation Time Series e
A.4.4 Routing and Reservoir Control Time Series
A45 NetCDF Gridded Input Data
Initial Conditions Input file (rve)o
A5.1 Optional Commands

B Output Files

63
63
66
69

72
73
74
77
80
86
89
90
91
94
96
96

98
99
99
99
99

101
101
101

104
104
124
124
126
129
140
140
141
144
144
149
149
150
155
158
158

160

B.1 Standard Output Formats 160
B.2 CustomOutputs. 161
B.3 NetCDF Output Format 161
C Reference Tables 163
D Template Files 167
D.1 UBCWMEmulation e 167
D.2 HBV-EC Emulation 169
D.3 GR4J Emulation e 171
D.4 Canadian Shield Configuration 172
D.5 MOHYSE Configuration e 173
D.6 HMETS Configuration 174

Chapter 1

Introduction

This document describes the design and operation of the RAVEN hydrologic modelling framework, a soft-
ware package for watershed modeling. The document is meant for both users of the software who wish to
run the program and understand the multitude of model options and by new developers of the RAVEN soft-
ware who wish to understand, customize, and/or upgrade the code (chapters and sections for developers
are marked with an asterisk™).

RAVEN is a mixed lumped/semi-distributed model that can be used to understand the hydrologic behavior
of a watershed and assess the potential impacts of land use, climate, and other environmental change upon
watershed properties such as flood potential, soil water availability, or groundwater recharge. The model
can be used to investigate individual storm events or develop long-term water, mass, and energy balances
for resource management and water quality assessment. RAVEN’s uniqueness primarily comes from its
numerical robustness and its flexibility; RAVEN is able to use a wide variety of algorithms to represent each
individual component of the water cycle and has a quite general treatment of every possible model option,
from output access to numerical simulation algorithm. Because of its modular design, users have access
to a number of different methods of interpolating meteorological forcing data, routing water downstream,
representing evaporation, and any number of other model options. With this flexibility, a modeler can
examine the wide range of possible outcomes that result from our uncertainty about a watershed model,
and test hypotheses about watershed function.

In addition, RAVEN’s flexibility and large library of user-customizable subroutines allow it to emulate (and
augment) a number of existing hydrologic models. RAVEN has achieved level 1 (near-perfect) emulation of
the UBC Watershed Model (Quick, 1995), Environment Canada’s version of the HBV model (Bergstrom,
1995), HMETS (Martel et al., 2017), MOHYSE (Fortin and Turcotte, 2006), and GR4J (Perrin et al., 2003).
Level 2 (conceptual) emulation is available for various algorithms used which are comparable to those
found in (e.g.,) Brook90, SWAT, VIC, PRMS, HYMOD, and/or described within various hydrology texts,
such as Dingman’s Physical Hydrology (Dingman, 2002).

1.1 Model Abstraction

While much of RAVEN’s operations are generic and flexible, they are all built up from critical assumptions
about the organization and operation of a watershed. These collectively form the core structure of any
RAvEN model, which is depicted in figure 1.1. A watershed is here assumed to be assembled from a num-
ber of subbasins, which in turn are assembled from a number of contiguous or non-contiguous hydrologic
response units (HRUs), defined as areas with hydrologically unique responses to precipitation events.
Each HRU is defined by a single combination of land use/land type (LU/LT), vegetation cover, and terrain

type and is underlain by a defined soil profile and stratified aquifer. Membership in these classification
schemes, or property classes, is used to determine all or part of the physically-based properties of the
response unit, such as soil conductivity or leaf area index. Each HRU is composed of a finite number of
storage compartments, such as the soil, canopy, and snowpack, in which water and energy are stored (see
table 1.1). Given some set of user-specified controlling hydrologic processes (see table 1.2), RAVEN builds
and solves the resultant zero- and 1-dimensional water and energy balance problem for each HRU, redis-
tributing water within the HRU in response to precipitation and other atmospheric forcings. Some of this
water is redistributed to surface water channels associated with the subbasin, where it is routed down-
stream from subbasin to subbasin. During this simulation process, diagnostics about water/mass/energy
storage distribution, cumulative flux, and instantaneous fluxes may be tracked.

(a) Catchment Discretization

Subbasin

‘Wegetation Type _,_:

Soil Profile

Aguifer Stack

channel Profile

(b} Grid Cell / LSM Discretization

Waterched

HRUfGRU

Subbasinfcell

[c)TIN Discretization

Figure 1.1: Land surface partitioning in RAVEN

Each HRU is wholly defined by its geometric properties (area, latitude, longitude, parent subbasin), topo-
graphic properties (slope, aspect), subterranean soil profile, and its property class membership (land use,
vegetation, terrain). Each soil horizon in the soil profile and the aquifer in turn belong to a soil property
class. All individual HRU properties are assigned based upon membership in these classes, i.e., most of the
properties belong to the class, not the HRU, enabling the solution of a finely discretized model (>10,000
HRUs) without generating an equally large number of unknown parameters.

surface(ponded water) surface(lakes and streams) atmospheric

shallow soil deep soil groundwater aquifer
frozen snow liquid snow canopy
glacial ice glacial melt wetlands

Table 1.1: Common storage compartments that correspond to state variables in hydrologic models - each
compartment can store both water and energy (a non-comprehensive list)

precipitation runoff evaporation transpiration
drip trunk drainage canopy drainage interflow
throughfall infiltration recharge capillary rise
snowmelt sublimation glacial melt

Table 1.2: Common hydrologic processes that may be included in a RAVEN model

As a generalization of standard methods used to represent shallow soils in hydrologic models, the shallow
subsurface may be represented by one or many discrete layers, which is generated from the specified soil
profile, as shown in figure 1.2. The soil profile, specified for each HRU, describes the thickness and soil
type of each constituent horizon. Soil parameters for the M-layer soil model (e.g., hydraulic conductivity)
are then determined based upon soil class membership of each soil horizon, aggregated or disaggregated
depending upon desired vertical model resolution. Alternatively, the soil layers may correspond to concep-
tual soil moisture stores not explicitly linked to physical soil horizon, as is done in many lumped watershed
models.

= [| |

SN

Single Layer Two Layer Multi-layer
(aggregate) (aggregate) (disaggregate)

Figure 1.2: Translation of soil profiles to soil models. Properties are aggregated or disaggregated depending
upon specified vertical resolution of soil model

Subbasins are similarly succinctly characterized by their channel characteristics, their topology with re-
spect to other subbasins (i.e., their outlet basin) and their cross-sectional profile. Again, properties are
linked to channel and profile types, so finely discretized distributed models may still be parsimonious in
terms of parameters.

With RAVEN, unlike other models, the modeler determines the degree of model complexity. At the simplest,
a watershed can be treated as a single giant HRU/subbasin where only daily precipitation and temperature
are needed to provide predictions of streamflow. In the other extreme, the model could be composed of
thousands of HRUs consisting of tens of individual storage compartments and forced using measured
hourly longwave radiation, wind velocity, and air pressure. The complexity of the model is limited by the

user or (even more sensibly) the availability of data.

While the various components of the HRU water balance are user-specified, an example schematic of the
flow of water in a single HRU can be seen in figure 1.3

LEGEND
nawfal rainfa Bsiates 3 process
§ e
W daritute * paramerees
Relates 3 process
-~ p— l 1 — to variabiss within
—= — . ¢ sublmation L]
& / — e » Indicate fow
& . . r drection
' eransgication . #{ Canopy Canagy 3now Cold content
wmpaction |
I met t . { Snow density | - 4
— ! [
| S refraeze oo | - Froces
drip . E—] e
\ N Fanded o anowmer [tempeeanure —
water L\ ; _ e tate
/ | - A wErRbE /
| W radiation
. mﬁt'l'bnn r _—
v _ ——Forong fomcio =
- S»r"i:a m:hwt T
—s inter n —
| w

y mporatem | Soill2] |~ peeniate R —
E gl
}_‘ redistribute —w rtoutng e Channel
| sens . morEgs - - sorsge
=TS
-
azefiow /
—
Channal
Rorage
- :
===\

Figure 1.3: Example flowchart of the water balance in a RAvEN model. Note that individual processes and
storage compartments may be added or subtracted from this schematic

1.2 Global Numerical Algorithm

The operation of RAVEN is fundamentally simple. Starting from some initial state of the watershed, the
model moves forward in time, updating the distribution of water, mass and energy both within and be-
tween HRUs in response to physical forcings such as precipitation, and laterally routing water and energy
downstream to the watershed outlet. The entire system is simulated one timestep at a time. During each
timestep, the following sequence of events occur:

1. The forcing functions are updated, i.e., the representative values of rain and snow precipitation,
temperature, and perhaps wind velocity, longwave radiation, etc. are generated or extracted from
user-specified time series at a (relatively small) number of gauge stations, then interpolated to every
HRU in the model. Alternatively, these functions may be specified as a gridded model input from a
regional climate or weather model.

2. All of the model parameters which change in response to the current state of the system are updated
in each HRU (for example, canopy leaf area index may be updated with the seasons)

3. Using these updated forcing functions and parameters, the state of the system at the end of the
timestep is determined from the state of the system at the start of the timestep by rigorously solv-
ing the coupled mass and energy balance equations in each HRU in the model. These mass and
energy balances are assembled from the relevant hydrologic processes occurring in the HRU, which
individually redistribute water and energy between different compartments (e.g., the evaporation
process may move ponded water to the atmosphere).

4. If needed, advective and dispersive mass transport of constituents (contaminants or tracers) is sim-
ulated using the water fluxes over the time step.

5. Runoff from the HRUs (and mass/energy associated with this runoff) is routed into the surface
water network in each subbasin, and concurrently routed downstream.

6. Mass/Energy balance checks are performed
7. Output is written to a number of continuous output files

The process is repeated until the model has been run for the specified duration.

1.2.1 The HRU Mass/Energy Balance

The problem being solved by RAVEN within each HRU is fundamentally that of a coupled system of or-
dinary and partial differential equations (ODEs and PDEs). These ODEs and PDEs individually describe
either (1) the accumulation of mass or energy within a given storage compartment or continuum (i.e, a

mass or energy balance) or (2) the temporal change in some auxiliary system property (e.g., snow density
or albedo).

Here, each state variable in an HRU is subject to the influence of a number of hydrologic processes.
Increases or decreases in a primary state variable are simply the additive combination of influx or outflux
terms (i.e., the ODE or PDE corresponding to a primary state variable is built up from mass or energy
balance considerations). Increases or decreases in auxiliary variables are likewise assumed to be written
as the additive combination of terms. We can therefore write an individual differential equation for the
change in the 5 state variable, ¢;, as:

6(]5 NP NS o o o

k=1:=1

where Ml-]; is the change in state variable j due to process k (of NP processes), which is linked to another
state variable ¢. This linkage typically communicates flow direction, e.g., a process Ml-];- moves mass or
energy from storage compartment ¢ to compartment j. A process Mﬁ (i.e., 2 = j) represents an indepen-
dent rate of change for an auxiliary variable, and does not connotate exchange of mass or energy between
compartments. The fluxes or rates-of-change returned by each process are a function of the current vector
of state variables (d_;), system parameters (]3), and forcing functions F. For example, the mass balance for
ponded water on the land surface (depression storage, DS) may be given as:

0ops
ot

=P-E—-IT—-R (1.2)

where P is the precipitation input, E is the evaporation rate, [is the infiltration rate into the soil be-
neath, and R is the overflow rate of the depression. Each of these processes (M*) may be a function of a
number of forcings (e.g., precipitation and temperature), current state variables (e.g., ponding depth and
soil saturation), and parameters (e.g., maximum depression storage and soil hydraulic conductivity).

The full system of equations describing the influence of all processes in an HRU can be written in matrix
form: .

0¢ - = o

o7 = M@ PP {1} (1.3)
where ¢ is the complete vector of state variables, M is a NSxNS global symmetric matrix of composite
rate-of-change functions, where NS is the number of state variables, and {1} is a column vector filled

with ones. The global process matrix is the sum of contributions from each individual symmetric process
matrix, i.e, M& = >~ MF,

The above mathematical formulation enables the complete separation of individual hydrologic process
algorithms, which may individually be very simple or quite complicated. It also enables the use of a
variety of methods for solving the global system of equations defined by 1.3. Because of the approach
used to solve this system, mass balance errors are typically on the order of machine precision.

1.2.2 Routing

RAVEN separately handles in-catchment routing (from the HRU to the major reach in the subbasin) and
in-channel routing (in and between subbasin stream reaches). The concept is depicted in figure 1.4.

In-catchment routing to the primary basin channel is generally handled using a convolution or unit
hydrograph (UH) approach, where the UH for each catchment is either user-specified or generated from
basin characteristics. The immediate history of quickflow, interflow, and baseflow output to surface water
is stored in memory as an array of time step-averaged outflow rates to off-channel tributaries, Q't; the
duration of this history is determined by the subbasins time of concentration, ¢.. To transfer this water to
either the channel segments within the subbasin or directly to the subbasin outflow, the pulse hydrograph
is convolved with the unit hydrograph, represented as a piecewise linear function. Water and energy is
transferred to the downstream ends of channel segments within the reach.

In-channel routing, for each time step, is assumed to be completely characterized by a finite history of
upstream inflow (stored as a vector of flow values at fixed time intervals of At, QZ”), and the outflow at
the start of the time step; the duration of this history is determined by the minimum flood celerity and the
length of the reach segment. During each time step, moving from upstream to downstream at both the
watershed level (basin to basin) and subbasin level (reach segment to reach segment), a routing algorithm
is used to generate the outflow from each reach based upon the time history of upstream inflows, i.e.,

QZI&l = Froute(gutv Qin’ Ps) (1.4)

Catchment Catchment
Loss History Unit Hydrograph

Inflow History

t—t, t—nAt t t+At

t —nAt t t+Ar

Channel Outflow
History

o

t t+At

Basin Outflow History
(written to file)

.

t t+At

Reservoir
(optional)

Qe
h

Q8 = £,
Figure 1.4: The general routing model of RAVEN

where Foyte is the routing algorithm, P, is a vector of channel parameters, typically a number of stored
channel rating curves, primary channel and bank roughness, and, if applicable, weir or reservoir relation-
ships. This formalization supports both common lumped and distributed flow routing methods depending
upon the form of Fj.,yze (), including Muskingum-Cunge, lag-and-route, transfer function/unit hydrograph
convolution, and, if desired, a more complex kinematic wave or diffusive wave approach (not currently
implemented). Notably, sub-time-stepping for routing is also enabled with this formulation.

Reservoir/Lake routing. At the outlet of each subbasin, the option exists to specify a managed reser-
voir or natural lake which mediates the outflow from the subbasin channel. This reservoir is characterized
using specified volume-stage and surface area-stage relationship, and level-pool outflow from the reser-
voir may be calculated using a variety of methods, including simple weir formulae to complex reservoir
management rules. The mass balance within the reservoir is calculated as

dv (h)
dt

= Qin(t) = Qour(t, h) — ET(A(h)) + P(A(h)) (15)

where V'(h) is the stage (h) dependent volume of the reservoir, Q;;, is the inflow to the reservoir, Qou:(t, k)
is the outflow from the reservoir (a function of stage), and ET and P are the evapotranspiration from
and precipitation to the reservoir surface, both functions of surface area.

Irrigation Demand and Plant discharges Man-made extractions and injections of water are incorpo-
rated directly into the mass balance formulations at reach inflows, reach outflows, or reservoirs in the
form of user-specified time series of discharge.

1.3 Watershed Conceptual Model

The critical feature of RAVEN is that it does not make any assumptions about the functioning of the wa-
tershed. That is the modelers job. There is no single system conceptualization that is forced upon the
modeler, other than those imposed by the Subbasin-HRU model framework. Rather, the modeler deter-
mines what processes to use, how to parameterize the watershed, how to discretize the watershed. All
the while, RAVEN makes this easy to do by providing reasonable defaults, an intuitive file interface, and
a large library of hydrologic and algorithmic options. In addition, it allows users to assess the utility and
appropriateness of their conceptual model and revise it as needed.

10

Chapter 2

Running RAVEN

Much energy has been expended to ensure that the operation and use of RAVEN is as simple, convenient,
intuitive, and user-friendly as possible. Model commands and file formats are in plain English, error
messages are reasonably concise and explanatory, unnecessary restrictions or requirements are not forced
on the user, and model input and output files can be read and understood with a minimal learning curve.
There may be, however, a learning curve in familiarizing oneself with the large variety of modelling options
and how they differ.

2.1 Installation

There is no formal installation package for RAVEN without NetCDF support, and no special programs
are libraries are required to operate RAVEN. Simply download the Windows, Mac, or linux executable
Raven.exe and unzip to alocal drive. Mac users should note that despite the .exe extension, the program
runs just like any other command line tool.

Only if you are using the RAVEN version with NetCDF support (i.e., for supporting gridded forcing
data such as that generated in regional climate forecasts):
« For Windows users, you will have to install the NetCDF 4 Library (without DAP) from
https://www.unidata.ucar.edu/software/netcdf/docs/winbin.html.
You then must ensure that the the directory path of the installed NetCDF.dII file is in
your PATH environment variable. Documentation for modifying the PATH environmental
variable is readily found online for your specific version of windows.
o For MacOS and linux users, look to https://www.unidata.ucar.edu/software/
netcdf/docs/getting_and_building netcdf.html to download and build the
NetCDF libraries, or run from CYGWIN.

2.2 Input Files

In order to perform a simulation using RAVEN, the following five input files are required:

« modelname.rvi - the primary model input file
This is where the primary functioning of the RAvEN model is specified. This includes all of the
numerical algorithm options (simulation duration, start time, time step, routing method, etc.) and
model structure (primarily, how the soil column is represented). Critically, the list of hydrologic

11

https://www.unidata.ucar.edu/software/netcdf/docs/winbin.html
https://www.unidata.ucar.edu/software/netcdf/docs/getting_and_building_netcdf.html
https://www.unidata.ucar.edu/software/netcdf/docs/getting_and_building_netcdf.html

processes that redistribute water and energy between storage compartments is specified here, which
define both the conceptual model of the system, the specific state variables simulated, and the
parameters needed. Lastly, various options for output generation are specified.

+ modelname. rvh - the HRU / basin definition file
The file that specifies the number and properties of subbasins and HRUs, as well as the connectiv-
ity between subbasins and HRUs. Importantly, land use/land type, vegetation class, aquifer class,
and soil classes are specified for each HRU in order to generate appropriate model parameters to
represent the properties of each HRU.

« modelname. rvt - the time series/forcing function file
This file specifies the temperature, precipitation, and possibly other environmental forcing functions
at a set of observation points (“gauges”) within the model domain. This information is interpolated
to each HRU within the watershed based upon spatial location. The .rvt file typically “points” to a
set of files storing information for each gauge or forcing type. If gridded forcing data is used, the
details about the corresponding NetCDF gridded data file and connections between the grid and
landscape are specified here.

« modelname.rvp - the class parameters file
This is where most of the model parameters are specified, grouped into classes. Each HRU belongs to
a single vegetation class, single land use, single aquifer class, and has a unique soil profile defined
by a collection of soil horizons each of a single soil class. All model parameters, on a class by
class basis, are specified here. The class formalism aids in the calibration process. Note that the
:CreateRVPTemplate command can be used to generate an empty .rvp file given the model
configuration specified in the .rvi file (see appendix for details).

+ modelname. rvc - the initial conditions file
This is where the initial conditions for all state variables in all HRUs and subbasins are specified.
This may be generated from the output of a previous model run. If a blank file is provided, all storage
initial conditions are assumed to be zero (i.e., no snow, dry soil, etc.) and a run-up period will be
warranted.

Each of these files are described in detail in appendix A. While the .rvi (setup), .rvh (watershed geometry),
.rvc (initial conditions) and .rvt(forcing data) files are typically unique to a particular model, the .rvp
(properties) file may ideally be ported from one model to another. Figure 2.1 depicts the base input used
by and output generated from Raven, where the default/mandatory files for all simulations are indicated
in light blue.

To prepare the input files, it is recommended to first familiarize yourself with the format and various
input options. A number of pre-processors have been or are being developed to generate the .rvt file(s)
from alternative formats. For instance, Environment Canada stream gauge data may be imported with
utilities in the RAVENR package. The .rvh file is likely best prepared with the assistance of a healthy GIS
database which can be used to determine unique class combination and the topology of the watershed
subbasins. Note that, if the size of .rvt or .rvh files becomes unwieldy, the : Redirect ToFile command
can be used to redirect the input from an ’extra’ input file, so a model could, for instance, have a single
master .rvt file that points to a number of meteorological forcing files (e.g., one or more .rvt file per gauge).
A similar approach also enables the testing of multiple climate scenarios without having to overwrite data
files.

2.3 Running the Model

12

model.rvi model.rvh
Model Model -
specification file discretization file aVEn.Exe
model.rvp model.rvt ;
Model parameters Model time series
e file Raven_Errors.txt
Runl_Hydrographs.csv
moddlel.rw:I ‘ gaugel.rvt ‘ —rydrograp
Model initia
Runl_WatershedStorage.csv
conditions file 4{ gauge2.rvt ‘ = E

—{ observations.rvt

‘ Channel_profiles.rvp ‘ Runl_CustomOutputl.csv

‘ Gauge_weights.txt ‘ Runl_CustomOutput2.csv

‘ Runl_ForcingFunctions.csv ‘

Figure 2.1: Standard input/output configuration of Raven. Light blue input files are required, light blue
output files are the default output (which may be suppressed if desirable). The light red input files are
files referred to by the primary input files, and are kept separate mostly for organization. The light red
output files are generated only if specifically requested by the user in the .rvi file.

Once all of the necessary components of the above files have been created, the model may be called from
the command line, e.g., in the windows command prompt,

> C:\Program Files\Raven\Raven.exe C:\Temp\model_dir\modelname

or, if the active directory is C: \Temp\model_dir\:

> C:\Program Files\Raven\Raven.exe modelname

where ’'modelname’ is the default predecessor to the .rvi, .rvh, .rvt, and .rvp extensions. There are no
special flags needed, just the name of the model. The command line also supports the following flagged
commands:

+ —o0 {output directory} : specifies the directory for generated model output
« —p {rvp_filename.rvp} : specifies the rvp file location
o« -t {rvt_filename.rvt} : specifies the rvt file location
« —c {rvc_filename.rvc} : specifies the rvc file location
o« —h {rvh_filename.rvh} : specifies the rvh file location
« —r {runname} : specifies the run name for the simulation

Alternatively, the :OutputDirectory command in the .rvi file may be used to specify file output
location and the :rv+_Filename command may be used to specify the corresponding files (see the
details in appendix A.1).

13

A useful application of the output directory flag is to specify an output directory in the folder directly
beneath the working directory, for instance:

> C:\Program Files\Raven\Raven.exe modelname —-o .\output\

RAVEN will create this specified output folder if it does not exist.

Note that while it is allowed that the input files from multiple models exist in a single folder, it is recom-
mended that each model get its own output directory to avoid overwriting of outputs.

For MacOS users, note that the Raven.exe, despite its .exe extension, runs like any other command
line tool. This can be run by opening the terminal application. The only difference then is the
use of forward slashes rather than backward slashes, e.g.,:

machine:~ username$ Raven.exe modelname -o ./output/

2.4 Output Files

RAVEN generates a number of customizable outputs which contain model diagnostics. By default, RAVEN
generates the following files:

« Hydrographs.csv - the hydrograph output file
Contains the flow rates, Q(t) [m?3/s], at the outlets of specified subbasins in the watersheds (usually
corresponding to those with stream gauges). Which subbasin outlets are recorded as hydrographs
is specified in the .rvh file.

« WatershedStorage.csv - the watershed storage file
Contains watershed-averaged water storage in all of the modeled compartments over the duration
of the simulation. Also reports watershed-wide water mass balance diagnostics.

« solution.rvc - the solution file
Stores the complete state of the system at the end of the simulation. This file can be used as initial
conditions for a later model run. This file may also be generated at user-specified intervals dur-
ing simulation as a defense against computer breakdown for massive computationally-demanding
models.

+ RavenErrors.txt - the errors file includes all of the warnings and errors for a particular model
run, including when the model may be making choices on behalf of the modeler (i.e., parameter
autogeneration) or when model input is somehow flawed.

The formats of these files are described in appendix B, and may be pre-appended with the runname if the
:RunName command is used, generating (for example), Alouette4l_Hydrographs.csv if the run
name is Alouette41. RavenErrors.txt is never given a prefix.

In addition to the above, the following output files may be created on request:

« WatershedMassEnergyBalance.csv - the watershed flux diagnostics file
Contains watershed-averaged water and energy fluxes from each hydrologic process over time.
(enabled using the :WriteMassBalanceFile command)

+ WatershedEnergyStorage.csv - the watershed energy diagnostics file
Contains watershed-averaged storage in all of the modeled compartments over the duration of the

14

simulation. (enabled using the :WriteEnergyStorage command)

« ForcingFunctions.csv - the forcing functions file
Stores the complete time series of all watershed-averaged forcing functions over the domain (i.e.,
rainfall, snowfall, incoming radiation, etc.) (enabled using the : WriteForcingFunctions com-
mand)

+ ExhaustiveMB. csv - exhaustive mass balance file
Stores all state variables in all HRUs over time. Given the potential size of this file, this option
should be used sparingly (enabled using the : ExhaustiveMassBalance command.)

+ ReservoirStages.csv - reservoir stage history file
Stores the time history of reservoir stages for all simulated reservoirs. Requires at least one reservoir
in the model.

« Diagnostics.csv - model quality diagnostics
reports metrics characterising of fit between the model results and any user-specified observations.
This output is enabled using the :EvaluationMetrics command, and requires at least one set
of observation data (: ObservationData in the .rvt file) to be generated.

« State (. rvc) files - model intermediate state files
similar to solution.rvc, except output at intermediate times specified using the : OutputDump or
:MajorOutputInterval commands. The files are named using the output timestamp, e.g.,
RunName_state_2001-10-01.rvc, and may be used as initial conditions for later simulation
runs.

Lastly, the (: CustomOutput command can be used to indicate that RAVEN should track and store in .csv
or .tb0 flat files any user-specified parameter, state variable, or mass/energy flux in the model over time.
This data may be aggregated either temporally or spatially, so that the user may generate files containing,
e.g., basin-averaged hydraulic conductivity of the top soil layer at the daily timescale, or monthly averaged
evaporation from the canopy in the 23rd HRU. The details of this custom output are in the discussion of
the : CustomOutput command in the .rvi file (appendix A.1.5).

Additional output files generated by the transport routines are discussed in chapter 7.

2.4.1 Alternative .tb0 (Ensim) Output Format

For compatibility with the GREEN KENUE™ software interface, the option is also available to generate
output in .tb0 (GREEN KENUE™ tabular) format. Custom output will be written to a .tb0 table output file if
the :WriteEnsimFormat command is present in the .rvi file.

2.4.2 Alternative .nc (NetCDF) Output Format

For compatibility with software based on NetCDF files it is also possible to write outputs in that format.
The :WriteNetcdfFormat command should be present in the .rvi file if the NetCDF output should
be written instead of .csv files.

2.5 Building a Model

Base model: rvi and rvp files

It is recommended that users initially start with an existing model template such as the UBCWM, HBV-
EC, or Canadian Shield model configurations reported in appendix app:TemplateFiles. Once you get more
experienced with RAVEN, you may have existing model configurations that you have found work well on

15

similar landscapes to those you have modelled previously. Template .rvp files can be generated by running
the .rvi template file with the : CreateRVPTemplate command, which builds a hollow .rvp file with
all of the parameters necessary for simulation using the particular model configuration specified in the
.rvi file. Reasonable initial parameter values are reported in the appendix, but manual calibration will be
required in pretty much all cases.

Landscape discretization: rvh files

The best approach for generating the subbasin delineation and HRU delineation (i.e., the .rvh file) is to
use a GIS program such as ArcMap, SAGA, TauDEM or GRASS. These tools enable the generation of basin
geometry from a hydrologically conditioned DEM and additionally enable the overlay of map layers to de-
termine HRU areas. Basin outlets should at the very least correspond to locations of known streamgauges,
but would also be added at the outlets of hydrologically important lakes and reservoirs, at major stream
junctions, or at locations which divide the network into hydrologically similar landscapes (e.g., separating
mountains from foothills). HRUs are commonly generated by reclassification of raster- or vector-based
land use maps overlain with subbasin boundaries, though these may be additionally overlain with soil
maps and/or elevation bands, where appropriate, using a union operation. Slope, aspect, elevation, lati-
tude, longitude, and subbasin membership for each unique vegetation/land use/soil profile parcel would
then be determined by spatial averaging and geometric operations within the GIS. Note that HRUs do not
have to be spatially contiguous. The mechanics on how this is done vary from application to application.
If the resultant HRU map is in vector format, its data table may be exported to a text file then rearranged
using any number of text editing, spreadsheet, or scripting tools to be converted to .rvh format. Likely the
hardest part to automate here is the specification of subbasin connectivity (i.e., the downstream subbasin
ID for each subbasin), which typically would be done by eye.

Initial conditions: rvc file

The simplest initial conditions file can be empty. This can be modified later, but most storage compart-
ments in the model when run in continuous (rather than event or forecasting) mode have a spin-up period
that can compensate for an initially dry watershed. Groundwater storage and initial reservoir stage are
two notable exceptions that may have to be modified.

Meteorological inputs and observations: rvt files

The populating of the time series (.rvt) file is generally a problem of finding appropriate and available
data and converting it to the .rvt format, which is relatively straightforward. Of course, there are many
complications arising in infilling missing forcing data, interpreting what data is useful, and determining
how to interpolate spatial data. Users can start with a single meteorological gauge initially and readily
add or remove meteorological gauges in a minimally invasive manner.

Iterative improvement

Once you get a base model created and running, then you can start swapping out individual processes,
moving towards a landscape-appropriate model with complexity justified by the amount of data available
at the site. A lot of meteorological data and hydrograph data can justify a quite complex model with finely
discretized landscape and more complicated model configuration. Modifying model configuration should
be assessed one step a time, confirming each process addition or swapout of forcing function representa-
tion lead to a more appropriate or otherwise more effective representation of watershed hydrology. Note
that modifying and iteratively evaluating model structure in this way can be a time consuming and ar-
duous process, so many users will choose to stick with a fairly standard model configuration with a few
minor tweaks.

2.6 Calibration, Visualization, and Uncertainty Analysis

16

Unlike many hydrologic modeling tools, the RAVEN software package intentionally does not include any
methods for calibration, uncertainty analysis, plotting, or complex statistical analysis. All of these tools
are best addressed using flexible and generic pre-and post-processing tools. Some recommendations:

« RAVENR
A set of R utilities available from the RAVEN website. Requires the R open-source software environ-
ment. Available at: http://www.raven.uwaterloo.ca/Downloads.

o OSTRICH
A model-independent multi-algorithm optimization and parameter estimation tool. OSTRICH can
be used to calibrate RAVEN models, generate Monte Carlo simulations, and much, much more...
http://www.eng.buffalo.edu/~lsmatott/Ostrich/OstrichMain.html

+ GREEN KENUE™
An advanced data preparation, analysis, and visualization tool for hydrologic modellers, which sup-
ports some RAVEN features and provides useful post-processing tools for RAVEN output as well as
direct access to Canadian hydrologic data repositories. Available at https://www.nrc-cnrc.
gc.ca/eng/solutions/advisory/green_kenue_index.html

« R
An open-source software environment for statistical computing and scientific graphics. Available
at https://cran.r-project.org/

« mc-stan.org
An open-source software environment for Bayesian inference and maximum likelihood estimation.
Available at mc-stan.org

« WHITEBox GAT
An open-source software (with user interface) for geographic analysis, visualization, terrain analysis,
and watershed delineation. Availableathttp://www.uoguelph.ca/~hydrogeo/Whitebox/

Note that the model quality diagnostics generated using the :EvaluationMetrics command may
be utilised to support the calibration process.

2.7 Common Run Approaches

The following section describes suggested methods for running RAVEN in a mode other than straightfor-
ward simulation of a single model with a single set of inputs.

Automated Calibration

Multiple tools are provided within RAVEN for supporting automatic calibration by other software pack-
ages. It is encouraged to use the algorithms within the OsTricH software package, and an example Os-
TRICH-RAVEN configuration is provided with the RAVEN documentation. To constrain the calibration, it is
recommended to allow RAVEN to generate the diagnostics used to build the objective function using one
or more of the diagnostics described in section 8.2, which supports the provision of observation weights to
(1) include a spinup period (2) represent a calibration period (3) represent a validation period (4) discount
seasonal (e.g., winter) data during diagnostic calculation.

Other useful commands for calibration support include the ability to suppress all output but the diag-
nostics file (: SuppressOutput) and suppress all console output (: SilentMode). This maximizes the
speed of repeated model application (output generation can be more than 90 percent of computational
cost). Users also have the ability to override historical stream and reservoir flows and replace modeled hy-
drographs with observed hydrographs at locations within the stream network (: OverrideReservoirFlow

17

http://www.raven.uwaterloo.ca/Downloads.
http://www.eng.buffalo.edu/~lsmatott/Ostrich/OstrichMain.html
https://www.nrc-cnrc.gc.ca/eng/solutions/advisory/green_kenue_index.html
https://www.nrc-cnrc.gc.ca/eng/solutions/advisory/green_kenue_index.html
https://cran.r-project.org/
mc-stan.org
http://www.uoguelph.ca/~hydrogeo/Whitebox/

for reservoirs and :OverrideStreamflow for stream gauges). Lastly, portions of the model may be
calibrated independently by disabling the remainder of the model using the :DisableHRUGroup com-
mand.

Large Models

For larger models with considerable data inputs and outputs, it is suggested to lean on the power of the
:RedirectToFile command to organize the data. For instance, in a large basin model, it is useful
to have folders to store the observation data, meteorological gauge data, reservoir and channel data and
keep it separate from the main body of RAVEN model files. A sample file structure might look like:

model folder/
./channels/
./observations/
. /output/
./runl/
./run2/
./run3/
./metdata/
./reservoirs/
modelname.rvi
modelname.rvt
modelname.rvh
modelname.rvp
modelname.rvc

Multiple Climate Scenarios

For running multiple climate scenarios using a single model, it is recommended to fix the .rvc, .rvp, and
.rvh files. Different .rvt files should be generated for the specific climate scenarios. Individual runs would
be generated by modifying the rvt filename (using the : rvtFilename command in the .rvi file) and the
run name (using the : RunName command in the .rvi file).

Multiple Parameter Sets

It is common to run a model using multiple parameter sets in order to assess the uncertainty or sensitivity
of its predictions to changes in input (as done in, e.g., Markov Chain Monte Carlo). For such an approach,
it is recommended (if not using software such as OsTRICH), to generate multiple .rvp files, keeping the
remainder of the data files fixed. Individual runs would be generated by modifying the rvp filename
(using the : rvpFilename command in the .rvi file) and the run name (using the : RunName command
in the .rvi file).

Forecasting

For forecasting, standard practice would be to hindcast / spin-up the model for a period of time, often
prior to winter to properly account for snow depths. The state of the model would be saved at the current
date and used as a 'warm start’ .rvc file for short-term forecasts fueled by weather forecasts, rather than
meteorological gauge data, thus only the .rvt files and .rvc files are changed when moving from spinup to
forecast, plus the start date and end date in the .rvi file. The initial state of the model (for instance snow
depth, soil moisture, or upstream flows) could be corrected if real-time data are available to compensate
for model errors by revising the .rvc state file. Operational choices can be evaluated, for instance, using
the :OverrideReservoirFlow time series to control reservoir flows.

2.8 Troubleshooting RAVEN

18

While RAVEN will generally try to tell you when a mistake in the input files will cause problems, there are
times when the interface will “hang” or input will be noticeably erroneous without providing a warning or
error in RavenErrors.txt (note that RAVEN is designed to produce significant errors when something
goes wrong rather than subtle undetectable errors). These unchecked errors are most commonly due to
missing or erroneous input forcing or parameter data, though it may occasionally be due to a genuine bug
in the RAVEN code.

Always Check the RavenErrors.txt file in the output directory first. Often, the error messages
and warnings will contain sufficient information to diagnose and repair the problem. This is always
the best first step.

The following steps may be taken to diagnose and repair issues with Raven.

1. If the model ’hangs’ prior to the beginning of simulation.

Add the command :NoisyMode to the .rvi file. This must be after any call to : SilentMode
(these commands toggle the same internal switch), but ideally at the top of the input file. Running
the code in noisymode generates detailed narrative output to the command prompt window, and is
best for diagnosing errors in input parsing. By looking at where the code “hangs”, the problematic
input command can often be found. See if the model runs with this command commented out. If
it does, there may be (a) a missing input parameter for the chosen method/algorithm (b) erroneous
input data linked to this method/algorithm that RAVEN is not currently able to detect.

2. If the model runs to completion but generates clearly erroneous output (i.e., NaN or -#inf in
the output)
This type of error is likely due to (a) an error in input which RAVEN did not detect (e.g, a parameter
outside reasonable bounds like a porosity of 3.8); (b) a missing model parameter which Raven did
not detect; or (c) an error in the RAVEN modelling library.

(a) Step 1: Open the ForcingFiles. csv output file and look for non-sensible numerical val-
ues (e.g., negative PET or NaN radiation). These errors in Forcing Functions will propagate
through the model and generate hydrograph errors. Comment out or modify the correspond-
ing forcing function commands (catalogued in section A.1.2 of the appendix) until the faulty
forcing output not generated. For instance, if the PET is consistently negative, replace the
PET estimation or PET orographic correction algorithm with another method. If the errors are
fixed, then this may be due to poor parameters which drive this method. If the errors remain,
then data which is used to drive PET estimation may be faulty OR one of the other forcing
functions which drives PET (such as shortwave radiation, temperature, etc.) is faulty. The
latter would also be obvious from a cursory inspection of the ForcingFiles.csv output.

(b) Step 2: If the forcing functions are not the culprit, then examine the WatershedStorage.csv file
and check for clearly erroneous estimates of watershed-averaged water storage. If, for exam-
ple, glacial storage looks faulty but everything else is OK, comment out the algorithms which
operate on glacial storage in the : HydrologicProcesses block in the .rvi file and re-run
until the glacial storage results are feasible (perhaps monotonically growing or shrinking, but
not NaN or hugely negative). This narrows us down to the problematic process algorithm.
Check the documentation to make sure that the proper parameters are provided for this al-
gorithm in the .rvp file for all glacier HRUs. If you still cannot diagnose the problem, send the
problematic input files with a short description to jrcraig@uwaterloo.ca.

3. If the model is providing odd/unexpected output.
Sometimes generated hydrographs are not completely broken, but are at odds with our expecta-
tions. For example, outflows are 10 times larger or smaller than they should be when compared

19

to the observed hydrographs. These issues are much thornier, as they can arise from individu-
ally reasonable (but collectively unreasonable) combinations of parameter inputs. They are also
quite possible if you are building a model from scratch with Raven, and have done so improperly
(e.g., RAVEN technically allows you the flexibility to have two evapotranspiration processes, but it is
physical nonsense to implement this). There are some general approaches you may take towards
debugging this kind of model issue.

(a) Look at the WatershedStorage. csv file for clues. Most watersheds should have a quasi-
steady state behaviour from year to year; there may be wet years and dry years, but storage in
general oscillates and repeats a relatively consistent water balance from month to month. If
your model is a continuous model of three or more years, you should expect this type of oscil-
latory behavior. If you find that one storage compartment is steadily increasing or decreasing
in storage, it may be worthwhile to investigate the cause. In many cases, the inflow/outflow
processes are not properly matched, e.g., a middle soil storage unit may be filled due to perco-
lation at a much faster rate than it depletes due to baseflow losses, even at the annual scale.
Another possible symptom that may be seen in the WatershedStorage. csv file is a stor-
age compartment which always fills but never drains (or the opposite). Some storage units are
intended to have this behavior, such as ATMOS_PRECIP (which is always a water source, and
is a proxy for cumulative precipitation) and ATMOSPHERE (which is always a water sink, and
is a proxy for cumulative evapotranspiration losses). Others, such as deep GROUNDWATER,
may be used to represent external losses from the system. However, any other storage unit
should have means of decreasing and increasing in storage, as determined by the hydrologic
process list (each storage unit should act as a “To” and “From” storage unit), and the parameter
lists.

(b) Look at the ForcingFunctions.csv file for clues. Again, poor parameter choices can lead to
significant underestimates or overestimates of system forcings, which propagate through to
hydrographs and other model outputs. Look for reasonable values for radiative, precipitation,
and temperature forcings to the watershed. What constitutes “reasonable” is specific to the
climate and landscape, and is up to you to define.

(c) Check your stream network topology. The surface water network is fully defined by the list
of DOWNSTREAM_IDs in the :SubBasins command. If this is improperly constructed, or if
the entirety of an upstream watershed is not included in the model, you may need to either
correct the stream network or add user-specified inflows to account for upstream parts of the
watershed not explicitly included in the model.

(d) Check your cumulative watershed area. The area of each subbasin, and therefore also the total
drainage area of each subbasin, is dependent upon the areas of its constituent HRUs. If these
areas are incorrect, or if certain HRUs are not included in the model, this can lead to mass
balance errors.

(e) Check the units of your forcing functions. A common mistake for subdaily flow information
is to supply precipitation in mm rather than as a precipitation intensity in mm/d, leading you
to be off by a factor of 24.

4. Turn on :NoisyMode
if the issue is prior to simulation, or if the RavenErrors.txt warnings and errors are difficult to com-
prehend, adding the : NoisyMode and : EndPause command to the top of the .rvi file writes an
extensive stream of information to the command prompt/console. Occasionally, this can direct you
to a bad input command.

20

2.9

Version Notes

2.9.1

Major Changes from v2.9 to v2.9.1

The following features have been added:

1.

2.

3.

4.

support of user-specified NetCDF attributes
support for non-standard calendars
support for non-midnight start time with NetCDF forcing

minor bug fixes; improved QA/QC of inputs

2.9.2 Major Changes from v2.8.1 to v2.9

The following features have been added:

1.

7.

Support for level 1 (exact) emulation of the MOHYSE model (Fortin and Turcotte, 2006); multiple
processes added.

. Support for level 1 emulation of the HMETS model (Martel et al., 2017); multiple processes added.

Support for the PAVICs platform

Added PET_OUDIN PET estimation method and :DirectEvaporation support.

. Added :AnnualCycle method for inputting cyclical time series.

. Integrated multiple algorithms from the Cold Regions Hydrological Model (CRHM) (Pomeroy et al.,

2007), including the PET approach of Granger and Gray (1989), the rain snow partitioning approach
of Harder and Pomeroy (2013), two snow albedo evolution algorithms, a energy balance potential
melt routine and a simple snow balance approach.

Support for model simulation start times other than midnight

The following backwards compatibility issues were introduced:

1.

Due to a bug in the calculation of UTM zone from HRU latitudes and longitudes, the interpolation
schemes for large models with multiple meteorologic gauges had an anisotropic bias (e.g., long,
thin nearest-neighbor zones). This has been fixed, leading to a discrepancy between old and new
model precipitation and temperature interpolation. This will not impact RAvEN models using single
gauges, NetCDF gridded inputs, or user-specified gauge weights, only those using inverse distance
or nearest neighbor interpolation.

2.9.3 Major Changes from v2.8 to v2.8.1

The following features have been added:

1.

2.

3.

4.

FEWS-compliant NetCDF custom and standard output (Hydrographs.nc and WatershedStorage.nc)
support of deaccumulation of NetCDF input data
RAINSNOW_HARDER Rain/snow discrimination

fixes to relative file path handling, :VegetationChange/:LandUseChange/lake crest height/target
stage bugs introduced in v2.8,

The following backwards compatibility issues were introduced:

21

1. relative file paths are now (correctly and consistently) with reference to the file specified rather than
the model working directory

2.9.4 Major Changes from v2.7 to v2.8

The following features have been added:
1. Documentation improvements/Bug fixes/Improved QA/QC on model inputs
2. Significant speed improvements, particularly with NetCDF processing

3. Wetlands - new wetland HRU type; support for lateral flow to and from geographically-isolated and
riparian wetlands; new depression flow and seepage routines for wetland depression storage

4. Lakes and Reservoirs - lake-type reservoirs for natural (unmanaged) run-of-river lakes; time-dependent
weir control and rule curves (maximum, minimum, and target stages); spillway and underflow stage-
discharge curve specification; advective transport of constituents and tracers through reservoirs;
reservoir inflow and net inflow diagnostics; reservoir outflow override; reservoir mass balance re-
porting;

5. Inter-HRU Flow and Transport - generalized lateral flow support of water between HRUs and lateral
advective transport of constituents;

6. Shortwave radiation on sloping surfaces - the default method now uses the robust analytical calcu-
lation approach of Allen et al. (2006) for estimating clear sky solar radiation

7. Improved Input/Output - custom flux reporting between/to/from any state variable, mixed gauge
interpolation support (i.e., when temperature and precipitation reported at different gauges)

8. Other - HRU/subbasin disabling (only model a subset of the model); subbasin-specific Manning’s n
and slope; automated HRU group population; optimization and speed improvements (particularly
for NetCDF input); running average NSE diagnostics; basin inflow hydrographs at downstream end
of subbasin; vegetation-based PET correction; support of date-based net shortwave radiation input
forcings;

The following backwards compatibility issues were introduced:

1. None

2.9.5 Major Changes from v2.6 to v2.7
The following features have been added:
1. Documentation improvements/Bug fixes/Improved QA/QC on model inputs

2. Significantly improved support for flexible reservoir simulation and calibration - time-varying reser-
voir curves, unevenly spaced reservoir curves,

3. Support for gridded data in NetCDF format (see appendix A.4.5)

4. Improved place- and time-specific control over application of processes using the : —>Conditional
command, : LandUseChange command, and : VegetationChange command.

5. :CreateRVPTemplate command can be used to generate a template .rvp file from specified .rvi
model configuration

6. Added a number of new diagnostics (LOG_NASH, NASH_DERIV, KLING_GUPTA)

7. Addition of the GAWSER-style snow balance and consolidation routine

22

8. Addition of US Army Corps snowmelt model
9. RunName can be specified from the command line
The following backwards compatibility issues were introduced:

1. None

2.9.6 Major Changes from v2.5 to v2.6
The following features have been added:
1. Significant improvements to the RAVEN Documentation
2. Support for additional model quality diagnostic (R2)
3. Improved support for sub-daily emulation of the UBC watershed model
4. New elevation-based gauge interpolation algorithm (INTERP_INVERSE_DISTANCE_ELEVATION)
5. New two-layer snow melt model (SNOBAL_TWO_LAYER)

6. Improved support for blank observation values and non-zero observation weights in model diag-
nostics

The following backwards compatibility issues were introduced:

1. The hydrograph observations file is now written in period-starting (rather than period-ending) for-
mat, meaning that the single time step correction to the start date of a continuous observation
hydrograph time series is no longer needed. ACTION: Existing observation .rvt files will have to be
amended with a simple date shift.

2. For models with more than one subbasin where the reference or initial stream discharges were
not user-specified, the algorithm used to estimate basin initial and reference flows has been sig-
nificantly modified. Automatic estimation of network flows now requires the specification of the
:AnnualAvgRunoff command in the .rvp file. ACTION: Recalibration of existing models will likely
be required if 0_ REFERENCE was not user-specified for all basins and a celerity-dependent routing
algorithm was used (e.g., a Muskingum variant, plug flow, or diffusive wave).

3. For models with more than one gauge and gauge-specific : SnowCorrections and :RainCor-
rections, the interpolation algorithm has been modified to more appropriately handle the spatial
handling of these corrections. ACTION: Recalibration of existing models may be required.

23

Chapter 3

RAVEN Code Organization™

The RAVEN code is fully object-oriented code designed to, as much as possible, separate the numerical
solution of the coupled mass-balance and energy-balance ODEs and PDEs from the evaluation of flux-
storage relationships, enabling the testing of various numerical schemes without having to dig into each

subroutine for each hydrologic process.

3.1

Classes

The Class diagram for the RAVEN code is depicted in figure 3.1. The code operates by generating a single
instance of the CModel class, which may be considered a container class for all of the model data, i.e.
the arrays of basins, HRUs, land/vegetation classes, and meteorological gauges/gridded forcing data that

define the entirety of the model.

Raven Class Strucutre

Processes

(‘cmvPrecpitation ¥
Gl

CmvOWEvaporation
Gl

pubic publ public public
publc public public
CmvSnowBalance (¥ CmvPercolation CmyBaseflow
Gl e Gz
[2 [2
Gl Gl Gz
=
ek
pubic public public = ”
publc public public N
CmvInterflow CmyCanopyDrip.

ApplyConstraints
@ GetRatesOfChange
@ Intisce,

yiy

CCustomOutput
Clazz

Model
Ciodel

peiee
 Hoddapc

poauges |1

Gauges

Subbasins
Cohamnelsect 2
G
Cubbasin 3
G
3 = Fets
o e
5 wpeim
@ aQ
9 ase
¥ aTopwidth
. = Methods
ule
[Crametosses
© Rodetiaer ST
 Updstecurfons > S 8
1
i
In
®) aquifer_struct
r
root_struct
> S e
canopy_struct
| S
Tirfacestruct
| <~
= (T
s st dens s
@ sirgres ot L |
@ doy length
@ s
@ owrer
” per
 preco
@ relhund
b
5
’
“
o
o
o
HRUs

Property
Classes

CRiverClass
| dlus

CAquiferlass.
1 class

CvegetationClass ¥
1 Gl

ClanduseClass.
s
ClerrainClass.

b Gl

CSoilClass.
oz

CSailProfile
s

Figure 3.1: RAVEN class diagram

24

3.1.1 CModel class

The CModel class is a container class for all of the hydrologic response units (HRUs), subbasins, hydro-
logic processes (“HydroProcesses”) and measurement gauges/gridded data. It also has global information
about all of the state variables. It has a few key functions called by the solver routines:

« Initialize () Called before the simulation begins to initialize all variables. This also calls all
Subbasin, Gauge, HRU and other initialize functions.

e« IncrementBalance ()
e IncrementLatBalance ()
e IncrementCumulInput ()

« IncrementCumOutflow () increment the individual cumulative HRU water and energy bal-
ances, stored within the CModel class

« WriteMinorOutput () Called at the end of each timestep, writes water and energy balance and
watershed-scale storage information (i.e., total storage in snowpack, etc.), in addition to all custom
output.

« WriteMajorOutput () Called at user-specified intervals, basically dumps a snapshot of all sys-
tem state variables and derived parameters to an output file.

« UpdateHRUForcingFunctions () Called every time step - sifts through all of the HRUs and
updates precip, temperature, radiation, and other (external) atmospheric forcing functions, inter-
polated from gauge/measurement data or gridded forcings. These values are then stored locally
within each HRU. Called at the start of each time step.

« RecalculateHRUDerivedParams (), UpdateTransientParams () called every time step
- updates derived and specified model parameters which change over time.

« ApplyProcess (), ApplylateralProcess () Based upon some assumed current water
storage/state variable distribution, returns a prediction of the rate of water (or energy) movement
from one storage unit (e.g., canopy) to another (e.g., atmosphere) during the time step. This func-
tion DOES NOT actually move the water/energy - this is done within the solver. Basically returns

MP¥({¢}, {P}) in the above discussion for specified values of {¢}

« UpdateDiagnostics Compares current modelled and observed output for the time step and
updates diagnostic measures.

The CModel class has an abstracted parent class, CModelABC, that ensures the model can only pro-
vide information to, but cannot be modified by, other classes aware of its existence (e.g., any hydrologic
processes (CHydroProcess), or subbasin (CSubBasin), etc.)

3.1.2 CGauge class

The CGauge class stores a set of time series (of class CTimeSeries) corresponding to observations of atmo-
spheric forcing functions (precipitation, air temperature, radiation, etc.) at a single point in the watershed.
The model interpolates these forcing functions from gauge information in order to determine forcing func-
tions for individual HRUs at any given time step.

Interpolation is performed using the most appropriate local UTM coordinate system automatically calcu-
lated from the specified lat-long centroid of the watershed.

25

3.1.3 CSubBasin class

A container class for HRUs - only used for routing of water, as it stores information about the connected-
ness of itself to other subbasins in the modeled watershed(s). Conceptualized as a subbasin.

3.1.4 CHydroUnit class

An abstraction of an HRU - a homogeneous area of land to which the zero- or one-dimensional water
and energy balances are applied. It is unaware of the CModel class. It stores the state of all local HRU-
specific parameters that are valid for the current timestep, the values of the HRU forcing functions (e.g.,
precipitation, PET, radiation) averaged over the entirety of the current timestep, and the values of the
state variables (water storage, energy storage, and snow parameters) that are valid at the start of the
current timestep. It also stores its membership to the landuse and vegetation cover classes via pointers to
those instances, so that it may be used to access properties shared by all measures of that class.

Key routines:

« SetStateVarvValue () updates the values of a specific state variable. Called at the end of each
time step by the main RAVEN solver

+ UpdateForcingFunctions () updates the values of the forcing functions (rainfall, tempera-
ture, saturated water vapor, etc.) uniformly applied to the HRU at the beginning of each time step.
The HydroUnit is unaware of the source of these values, but they are interpolated from measured
data.

« RecalculateDerivedParams () Given some set of state variables and the current time of
year, updates all derived parameters (e.g., Leaf area index) stored locally within the HRU. These are
used within GetRatesOfChange functions

3.1.5 CHydroProcessABC class

An abstraction of any hydrologic process that moves water or energy from one or more storage units
to another set of storage units (i.e., an abstraction of M;; for one-to-one transfer of water/energy, or a
summation of more than one M;; that moves water through multiple compartments, as is required for
PDE solution). Each CHydroProcess child class has five key subroutines:

« Initialize () initializes all necessary structures, etc. prior to solution

« GetParticipatingStateVars () returnsthe list of participating state variables for the model.
This is used to dynamically generate the state variables used in the model. For example, snow will
not be tracked in the model until a process (e.g., snowmelt) is introduced that moves snow between
storage compartments.

« GetParticipatingParameters () returns the list of algorithm-specific parameters needed
to simulate this process with the specified algorithm. This is used to dynamically ensure that all
parameters needed by the model are specified by the user within each HRU.

« GetRatesOfChange () calculates and returns rate of loss of one set of storage units to another
set, in units of mm/d (for water), mg/m?/d (for constituent mass) or MJ/m?/d (for energy).

« ApplyConstraints () Corrects the rates calculated by rates of change to ensure that model
constraints (e.g., state variable positivity) are met.

The CHydroProcessABC class is purely virtual - inherited classes each correspond to a single (or coupled
set of) hydrologic process(es) as described in section 3.1.6

26

3.1.6 Hydrologic Processes

All hydrologic process algorithms are specified as individual child classes of CHydroProcessABC. Note
that each HydroProcess may include multiple algorithms; distinction between classes is mostly based
upon physical interpretation, i.e., baseflow and snowmelt are fundamentally different. While independent
snow melt/snow balance algorithms may be very different, they are still grouped into one class.

3.2 Contributing to the RAVEN Framework™

Source code for RAVEN is available online, with file support for Microsoft Visual Studio, both 2013 and 2017
versions. Users are encouraged to develop custom-made algorithms for representing hydrologic processes,
estimating forcing functions from gauge data, or interpolating gauge data. If a new algorithm is tested and
found useful, feel free to submit your code to the RAVEN development team to be considered for inclusion
into the main RAVEN code.

3.2.1 How to Add a New Process Algorithm

1. Make sure the process algorithm is not already included in the framework with a slightly different
“flavour”

2. Determine whether the algorithm requires new state variable types to be added to the master list.
The complete list of state variables currently supported may be found in the enum sv_type def-
inition in RavenInclude.h. If a new state variable is required, follow the directions in section
3.2.2

3. Determine whether the algorithm requires new parameters, and whether these parameters will be
fixed for the model duration or depend upon transient factors. The lists of existing parameters
(all linked to soils, vegetation, land use, or terrain types) are found in Properties.h. If a new
parameter is needed, follow the directions in section 3.2.3

4. Determine whether the algorithm fits within an existing CHydroProcess class, i.e., is it a different
means of representing one of the many processes already simulated within RAVEN? If so, you will
be editing the code in 6 or 7 places, all within either the CHydroProcess header/source files or
the main input parsing routine:

(a) Add a new algorithm type to the enumerated list of algorithms for that process. For example,
if it is a new baseflow algorithm, you would add BASE_ MYALGORITHM to the enum base-
flow_type in SoilWaterMovers.h. Follow the apparent naming convention.

(b) Edit the CHydroProcess constructor. Constructors should be dynamic for all routines that
have fixed input and output variables. Others, such as baseflow, can have user-specified in-
put/output pairs declared. The CmvBaseFlow and CmvSnowBalance codes are excellent
templates for class construction. Edit the if-then-else statement in the constructor, specifying
the iFrom and iTo state variables manipulated by the algorithm connections. For exam-
ple, most infiltration algorithms move water from ponded storage to both topsoil and surface
water, requiring the following specification:

CHydroProcessABC: :DynamicSpecifyConnections (2);

iFrom[0]=pModel->GetStateVarIndex (PONDED_WATER) ;

iTo [0]=pModel->GetStateVarIndex (SOIL,0) ;

iFrom[l]=pModel->GetStateVarIndex (PONDED_WATER) ;
[1] (

iTo =pModel->GetStateVarIndex (SURFACE_WATER) ;

27

(©)

(e)

(f)

This creates two connections, one from ponded water to the topmost soil (SOIL[0]) and
one from ponded water to surface water. The corresponding rates of exchange will later be
calculated in GetRatesOfChange () and stored in rates[0] and rates[1]. Note you
shouldn’t have to check for existence of state variables in the constructor - if they are later
specified in GetParticipatingStateVarList, they will be generated in the master
state variable list prior to instantiation of the class.

Edit the if-then-else statement in the corresponding GetParticipatingParamList rou-
tine with the list of parameters needed by your new algorithm. This information is used for
quality control on input data (ensuring that users specify all parameters needed to operate
the model).

Edit (if necessary) in GetParticipatingStateVarList the list of state variables re-
quired for your algorithm, within a conditional for your specific algorithm. See CmvSnow-
Balance for a good example.

Add the actual flux calculation algorithm to the corresponding GetRatesOfChange ()
function for this CHydroProcesss class. Some key things to keep in mind:

(a) parameters may be obtained from the corresponding soil, vegetation, or land use structure
via the HRU pointer, e.g.,

double lambda, K;
K =pHRU->GetSoilProps (m) —>max_baseflow_rate;
lambda=pHRU->GetTerrainProps () —>1lambda;

(b) the final result of the algorithm (rates of change of modeled state variables) are assigned
tothe rates|[] array. The rates[1i] array value corresponds to the flux rate of mass/wa-
ter/energy from state variable iFrom([i] to iTo[1], which you have defined in the con-
structor (step b).

(c) Try to follow the following code habits:

« unless required for emulation of an existing code, constraints should ideally not be used
except later in the ApplyConstraints routine. A good rule of thumb is that the time
step should not appear anywhere in this code. This may not be strictly possible with some
more complicated algorithms.

« each process algorithm longer than about 20-30 lines of code should be relegated to its
own private function of the class

« all unit conversions should be explicitly spelled out using the provided global constants,
defined in RavenInclude.h

« constants that might be used in more than one process subroutine should not be hard-
coded, where at all possible.

« references should be provided for all equations, where possible. The full reference should
appear in the back of this manual

« all variables should be declared before, not within, algorithm code

« All returned rates should be in mm/d or MJ/m?/d for water storage and energy storage,
respectively

If needed, add special state variable constraints in the ApplyConstraints () function,
conditional on the algorithm type.

28

(g) Lastly, add the process algorithm option to the corresponding command in the ParseMain—
InputFile () routine within ParseInput.cpp.

3.2.2 How to Add a New State Variable

1. Make sure the state variable is not already included in the framework with a slightly different name.
Note that proxy variables should be used cautiously. For example, right now snow (as SWE) and
snow depth are included in the variable list, while snow density is not (as it may be calculated from
the other two).

2. Add the state variable type to the sv_type enumerated type in RavenInclude.h

3. Edit the following routines in the CStateVariables class (within StateVariables.cpp)
(revisions should be self-evident from code):

¢ GetStateVarName ()
e StringToSVType ()
« IsWaterStorage ()
« IsEnergyStorage ()

4. Edit the CHydroUnit: :GetStateVarMax () routine in HydroUnits. cpp if there is a max-
imum constraint upon the variable

3.2.3 How to Add a New Parameter

1. Make sure that the parameter is not included in the framework by examining the available param-
etersinthe soil_struct, canopy_struct, terrain_struct defined in Properties.h
and the global parameters currently defined within the global_struct (RavenInclude.h).
If it is not, determine whether the parameter is (and should always be) global (i.e., not spatially or
temporally varying). If it is not global, determine whether the property is best tied to land use/land
cover class, soil class, vegetation class, or terrain class.

2. Add the new global parameter to the global_struct structure, non-global parameters to the
corresponding soil_,veg_,terrain_,or surface_struct (corresponding to land use). The
units of the parameter should generally be consistent with those used throughout RAVEN, i.e., SI
units, with fractions represented from 0 to 1 (not 1-100%), time units preferably in days, and energy
in MJ.

3. Depending upon the type of parameter, different classes will have to be revised. As an example, if
it is a soil parameter, the following code must be revised:

« CSoilClass::AutoCalculateSoilProps () In most cases, the new parameter will be
conceptual and therefore not autocalculable from the base parameters of soil composition. In
this case, code may be replicated from other parameters (see, e.g., VIC_zmin code for an
example).

e CSoilClass::InitializeSoilProperties () (revisions evident from code)
« CSoilClass::SetSoilProperty () (revisions evident from code)
« CSoilClass: :GetSoilProperty () (revisions evident from code)

Similar functions exist in the alternate classes (e.g., CVvegetationClass, CGlobalParams).
With these revisions, the parameter is now accessible via (for soils)

29

PHRU->GetSoilProps (0) —>new_param_name

where pHRU is a pointer to a specific instantiated HRU. New global parameters (which are not
specific to an HRU) may be accessed via

CGlobalParams: :GetParams () —>new_param_name

To do (1)

30

Chapter 4

The Hydrologic Process Library

The following chapter outlines the many process algorithms available for modelling the water cycle in
RAVEN.

4.1 Precipitation Partitioning

The precipitation partitioning process moves water, in the form of snow and rain, to the appropriate
storage compartment. The order of application is depicted in figure 4.1. The specific distribution of rainfall
and snowfall to the canopy, and ground surface (in the form of ponded water) depends upon the existence
of particular storage compartments and a number of model parameters.

| Rain I | Snow I

r Y

\ ___._.-@ cansno_icept
‘ cenopy | Cenopy Show Snow (Sol)
& Snow (Lig)
| Ponded | = -
Water Depression _x"'lcascade
-

cascade

Figure 4.1: Partitioning of rainfall/snowfall to the appropriate surface storage compartments

The partitioning of precipitation proceeds as follows (for non-lake HRUs):

1. The amount of rain and snow captured by the vegetation canopy is controlled by the precipitation
interception rate (calculated as described below) and the storage capacity of the canopy. If the
canopy exists as a storage state variable (i.e., CANOPY or CANOPY_ SNOW) are present in the model,
these storage compartments are filled at the calculated interception rate until filled. The remain-
der (if any) is allowed to proceed onward, with a correction included for the percent forest cover,
(land use parameter FOREST_COVER). If canopy water/snow storage is not explicitly modeled, the

31

amount of available canopy storage is not considered and the amount of snow and rain that would
be captured by the canopy is “evaporated” to the atmosphere.

2. If there is a snow state variable in the model (determined usually by the presence of some kind of
snow balance or snow melt algorithm), the snow as SWE is increased by an amount corresponding
to snowfall. If rain hits the snowpack, it fills the unripe pores in the snowpack and is allowed to
proceed onward. If required by the model, cold content, and snow density may also be updated.
Some of the snow balance algorithms override the details of this process, instead moving all snowfall
to NEW_SNOW and all rainfall to PONDED_WATER where it waits to be handled by the snow balance
algorithm.

The water in the PONDED_WATER storage compartment, which typically also includes meltwater from
snow melt, waits to be distributed to the shallow subsurface or surface water storage through subsequent
application of an infiltration or abstraction algorithm.

Special HRU types for open water, exposed rock, glaciers, and wetlands (determined by WATER,
ROCK, GLACIER and WETLAND prefixes on HRU soil profiles) are treated a bit differently than the
default land HRU. In these HRUs, top soil is not active; therefore precipitation partitioning works
a bit differently and (e.g.,) infiltration and soil evaporation routines are inactive.

For lake HRUs, all snow and rain is converted to liquid water and added directly to the SURFACE_WATER
store ready to be routed downstream via in-catchment routing. Alternately, water can be sent to the
LAKE_STORAGE store (if specified using the : LakeSt orage command), where water release is delayed
to the surface water network as controlled using (e.g.,) the : LakeRelease process (section 4.13). This
latter approach is likely preferred for systems dominated by small lake features. Lake HRUs are defined
as those with a zero-layer soil profile whose name begins with LAKE.

For wetland HRUs, all rain is converted to liquid water and added directly to the DEPRESSION store.
Wetland HRUs are defined as those with a soil profile whose name begins with WETLAND. Snow which
falls on a wetland is allowed to accumulate, assuming that the wetland is frozen. When it melts, it turns
to ponded water and must be flushed to depression storage via proper commands in the : Hydrolog-
icProcesses block within the .rvi file.

For exposed rock HRUs, all throughfall and snowmelt is stored as PONDED_WATER. Since infiltration
schemes don’t function with rock-type HRUs, the user must provide an alternate mechanism to reach
SURFACE_WATER (usually via a conditional : F1lush process).

Example usage in the .rvi file:

:Precipitation RAVEN_DEFAULT ATMOS_PRECIP MULTIPLE

4.1.1 Canopy Interception Algorithms

The canopy interception algorithms, specified by the model command :PrecipIceptFract are used
to determine the percent rain or snow captured by a full forest/crop canopy. In all cases, the maximum
interception rates are given as

Rint = Hrain ‘R

Sint = esnow -8

where R and S are snowfall rates, in [mm/d], R, and S;,; are interception rates, in mm/d, and 6,4in/0snow
are the interception percentages (values between 0 and 1). These maximum interception rates may be lim-

32

ited (as mentioned above) by the current amount of water stored in the canopy. Many of these rates are
controlled by leaf area index, LAl, and stem area index, SAI, calculated as follows:

LAI = (1-s)-LALyax - frar(m) @1
SAT = (1—35) 8" hyeg

where s is the land use parameter FOREST_SPARSENESS, LAl is the maximum LAI (vegetation
parameter MAX_LAT, fra7(m) is the relative LAl correction by month m, specified by the : Seasonal-
RelativeLAI command for each vegetation type, and 3 is the vegetation parameter SAT_HT_RATIO.
Note that FOREST_COVERAGE should be interpreted as the percentage of land covered in representative
vegetation, and FOREST_SPARSENESS should be interpreted as a land use-based correction factor for
vegetation density. The height of vegetation, h., is calculated as

hveg = hmaa: : fveg(m)

where D4, is the maximum vegetation height (vegetation parameter MAX_HT) and fyeq(m) is the relative
vegetation height correction by month m, specified using the : SeasonalRelativeHeight command
in the .rvp file.

The following algorithms are used to determine the percentages of rain and snow that will be intercepted
by the vegetative canopy:

User-specified throughfall fraction (PRECIP_ICEPT_USER)

The interception percentages are directly specified by the user 6,4, is the vegetation parameter
RAIN_ICEPT_PCT and 8,4, is the vegetation parameter SNOW_ICEPT_PCT.

Linear LAl-based method (PRECIP_ICEPT_LAT)

From Dingman (2002), the interception percentages are given as a linear function of the LAI:

erain = Qprqin * (LAI + SAI)
Osnow = Qsnow - (LAT 4+ SAT)

where aipgin and Qgpew are the vegetation parameters RAIN_ICEPT_FACT and SNOW_ICEPT_FACT,
respectively. The leaf area index LAl and stem area index SAl are calculated as indicated above.

Exponential LAl-based method (PRECIP_ICEPT_EXPLAT)
The interception percentages are given as:
Orain = 1 —exp(—0.5(LAI + SAI))
Osnow = 1— exp(—0.5(LAI+ SAI))

Hedstrom-Pomeroy method for snow (PRECIP_ICEPT_HEDSTROM)

If this method is chosen, the rain interception is the same as for PRECIP_ICEPT_EXPLAT, but
the snow interception is handled as documented in Hedstrom and Pomeroy (1998).

33

4.2 Infiltration

Infiltration refers to the partitioning of ponded water (the residual rainfall and/or snowmelt) between the
shallow surface soil (infiltrated water) and surface water (runoff). Infiltration is typically controlled by
the saturation of the soil and its hydraulic properties (e.g., hydraulic conductivity, infiltration capacity).

Infiltration always moves water from PONDED_WATER to SOIL[0] (the top soil layer), and depending
upon the soil structure model specified by the : Soi1Model command, may additionally push water to
lower soil moisture stores. The remaining ininfiltrated water is typically treated as runoff and moved to
SURFACE_WATER.

Infiltration is limited by the availability of soil/aquifer storage. Many of the following algorithms use
the quantities of maximum soil storage (¢q: [MmM]), maximum tension storage (¢iens [mm]), and field
capacity storage (¢ . [mm]) in a layer, always calculated as:

Gmaz = Hn(l—SF) (4.2)
(btens - ¢ma:c<5fc - Swilt)
(bfc = ¢maa¢Sfc
where H is the soil layer thickness [mm], n is the porosity (soil property POROSITY), SF' is the stone frac-

tion (soil property STONE_FRAC), Sy, is the saturation at field capacity (soil parameter FIELD_CAPACITY),
and Sy, is the saturation at the wilting point (soil parameter SAT_WILT).

Example usage in the .rvi file:

:Infiltration INF_GREEN_AMPT PONDED_WATER MULTIPLE

Infiltration Algorithms
Partition coefficient method (INF_PARTITION)

A simple linear relationship between precipitation and runoff (e.g., Chow et al. (1988)), characterized
by:

My =R-(1-F.)
where M, ¢ is the infiltration rate [mm/d], R is the rainfall/snowmelt rate [mm/d] (alternately, the
current amount of ponded water divided by the model timestep), and P, is the partition coefficient,
specified as the land use parameter PARTITION_COEFF. The remainder of rainfall is routed to
surface water.

SCS method (INF_SCS)

The standard Soil Conservation Society (SCS) method (Soil Conservation Service, 1986), where in-
filtration is a function of the local curve number:

(R —0.25)?
Mo r=R-|1 22— =22/
inf = R (R+ 0.8S

where M;, is the infiltration rate [mm/d], R is the rainfall/snowmelt rate [mm/d] (alternately,
the current amount of ponded water divided by the model timestep), and S [mm] is the retention
parameter

S = 25400/CN — 254

34

where C'N is the SCS curve number (land use parameter SCS_CN. The curve number for moderate
antecedent moisture content (condition 1) is user-specified with land use parameter SCS_CN and
corrected for dry or wet conditions based upon 5-day precipitation history and whether or not it is
growing season. The SCS method should only be used for daily simulations.

Explicit Green Ampt method (INF_GREEN_AMPT)

The explicit calculation of Green-Ampt cumulative (Green and Ampt, 1911) infiltration

My = min (R, Eoat <1 + (97 |(Pmaz — </>soz‘z))>

F

where R is the rainfall/snowmelt rate [mm/d], I uses the n'" recursive approximation of the Lam-
bert W_1 function (Barry et al., 2005). The variables 1y [-mm], ¢4, [Mm], and ¢4 [mMm], are the
Green-Ampt wetting front suction (soil parameter WETTING_FRONT_PSTI), maximum soil mois-
ture content (defined in equation 4.2), and soil moisture at the start of the time step, a state variable.
ksqt is the saturated conductivity of the soil [mm/d], soil parameter HYDRAUL_COND. All param-
eters used are those associated with the top soil.

Simple Green Ampt method (INF_GA_SIMPLE)

The quick-and-dirty version of the Green-Ampt (Green and Ampt, 1911) analytical solution for dis-
crete time-stepping schemes:

Minf = min (R’ ksat (1 4 ¢f‘(¢ma}g; - qbsoz-l)))

where R is the rainfall/snowmelt rate [mm/d]. F' [mm)], the cumulative infiltration, is accumu-
lated as a state variable during simulation, and reverts to zero after prolonged periods without
precipitation. The variables ¢y [-mm], ¢4, [mm], and ¢4,;; [mm], are the Green-Ampt wetting
front suction (soil parameter WETTING_FRONT_PST), maximum soil moisture content (defined in
equation 4.2), and soil moisture at the start of the time step. ksq; is the saturated conductivity of
the soil [mm/d], soil parameter HYDRAUL_COND. All parameters used are those associated with
the top soil.

VIC method (INF_VIC)

From the variable infiltration capacity model (Wood et al., 1992):

N
7
Minf =R K, <7azmaw + Zmin — Psoi >
Omaz

where R is the rainfall/snowmelt rate [mm/d], ¢.;; [mm] is the soil moisture content, ¢4, is the
maximum soil storage capacity as defined using equation 4.2, « is the soil parameter VIC_ALPHA,
Zmin and Zpmee are the soil parameters VIC_ZMIN and VIC_ZMAX, and K is given by:

Ky = ((Zma:c - Zmin)O[’}/)ify

VIC/ARNO method (INF_VIC_ARNO)
The VIC/ARNO model as interpreted by (Clark et al., 2008).

b
¢soil
My;=R-|1-[1-
! < ¢maw

35

where R is the rainfall/snowmelt rate [mm/d], b is the soil parameter B_EXP, ¢, is the top soil
layer water content [mm], and ¢y,4, is the maximum topsoil storage [mm] calculated using equa-
tion 4.2.

HBV method (INF_HBV)

The standard HBV model approach (Bergstrom, 1995).

B
(bsoil
Mys=R-[1-
/ <¢max

where 3 is the soil parameter HBV_BETA, ¢, is the soil layer water content [mm], and @44 is
the maximum soil storage [mm] calculated using equation 4.2.

PRMS method (INF_PRMS)

The PRMS model Leavesley and Stannard (1995) as interpreted by (Clark et al., 2008):

Miny =R - (l — F " min <¢50ﬂ , 1))
¢tens

where ¢4, is the soil layer water content [mm], ¢rens is the maximum tension storage [mm] cal-
culated using equation 4.2, and F;{*
MAX_SAT_AREA_FRAC).

is the maximum saturated area fraction (land use parameter

UBC Watershed Model method (INF_UBC)

As documented in Quick (2003), the UBCWM infiltration algorithm partitions ponded water to
surface water, interflow, and two groundwater stores. The infiltration rate into the shallow soil is
calculated as

My =R- (1 —bo)

where M;, ¢ is limited by the soil storage deficit and by, the effective impermeable area percentage,
is calculated using a deficit-based estimate corrected with a special term for flash floods (corre-
sponding to higher rainfall/melt rates):

b2:b1+(1—b1)-FF

here b1, the unmodified effective impermeable area percentage, calculated as

(_ (i’maz*d’sm;l)
bl — Fimp . 10 POAGEN

where @405 and ¢dpqy are as defined in equation 4.2 and F'F, the flash factor (which is constrained
to vary between 0 and 1) is calculated as:

B Ppond VOFLAX
FE= <1 +log <VOFLAX /e | 300
here, Fy,p [-] is the land use parameter IMPERMEABLE_FRAC, VOFLAX [mm] is the global ponding

parameter UBC_FLASH_PONDING, and POAGEN [mm)] is the soil property UBC_INFIL_SOIL_DEF,
the reference soil deficit used at which 10 percent of the soil surface generates runoff.

36

GR4J

The remaining rainfall/snowmelt is distributed to groundwater (at rate M), interflow (at rate
Mins, and runoff M., using the following expressions
Mpere = min (MPGE, R — Miyy) - (1 —b2)
Miny = (R - Minf - MpeTC) : (1 - b2)
Mrun — b2 ‘R

To summarize, a percentage by of the rainfall/snowmelt runs off directly. The remainder first infil-
trates into the shallow soil, until the deficit is filled. Any remaining water then percolates into the
groundwater at a maximum rate MPEos [mm/d], specified using the MAX_PERC_RATE parameter
of the groundwater soil layers. This component will be partitioned such that a certain percentage,
UBC_GW_SPLIT, a global parameter specified using the : UBCGroundwaterSplit command,
goes to the lower groundwater storage, whereas the remainder goes to upper groundwater storage
The final remaining water (if any) goes to interflow storage, where it will be routed to the surface
water network.

infiltration method (INF_GR4J)

From the GR4J model (Perrin et al., 2003):

2
- (1 _ ((Zssoil)
M< _ . max
inf ¢mam 1+ a¢soil

¢mam

where o = tanh(@pond/Pmaz)> Ppond [Mm] is the ponded water storage after rainfall/snowmelt,
®s0il is the top soil layer water content [mm], and ¢mqy is the maximum topsoil storage [mm)]
calculated using equation 4.2.

HMETS infiltration method (INF_HMETS)

From the HMETS model (Martel et al., 2017):

Miny = R (1—04' qb;o;i)

soil

where R is the rainfall/snowmelt rate [mm/d], v is the land use parameter HMETS_RUNOFF_COEFF,
®s0il is the topsoil layer water content, and ¢y,q5 is the maximum soil storage [mm] calculated using
equation 4.2.

37

4.3 Baseflow

Baseflow refers to the flow of water from an aquifer or deeper soil horizon to surface water, typically
due to a head gradient between fully saturated soil and stream. It may be considered the sum of the
contribution of deep groundwater exchange with a river and delayed storage in the streambank.

Baseflow moves water from either SOIL [m] or AQUIFER state variables, depending upon the soil struc-
ture model specified by the : Soi1Model command. The water is always moved to SURFACE_WATER.
Baseflow is rate-limited by the availability of soil/aquifer storage. Example usage in the .rvi file:

:Baseflow BASE_LINEAR SOIL[4] SURFACE_WATER

Available Algorithms
Constant baseflow (BASE_CONSTANT)

A constant, specified rate of baseflow:
Mypase = Minaz

where M4, [mm/d] is the maximum baseflow rate, soil parameter MAX_BASEFLOW_RATE.

Linear storage (BASE_LINEAR_STORAGE or BASE_LINEAR ANALYTIC)

A very common approach used in a variety of conceptual models. The baseflow rate is linearly
proportional to storage:

Mbase = k¢soil

Where k [1/d] is the baseflow coefficient (soil parameter BASEFLOW_COEFF), and ¢, is the
water storage [mm)] in the soil or aquifer layer. An alternate version, BASE_LINEAR_ANALYTIC
may be used to simulate the same condition, except using a closed-form expression for integrated
flux over the time step (At):

Mpase = Gsoit - (1 - exp(—szt))/At
The two methods are effectively equivalent for sufficiently small time steps, but the second is pre-
ferred for large values of k.

Non-linear storage (BASE_POWER_LAW)

A very common approach used in a variety of conceptual models, including HBV Bergstrom (1995).
The baseflow rate is non-linearly proportional to storage:

Mbase = k(b

n
soil
Where k [1/d] is the baseflow coefficient (soil parameter BASEFLOW_COEFF'), and ¢, is the water
storage [mm] in the soil or aquifer layer, and n is the user-specified soil parameter BASEFLOW_N.
VIC baseflow method (BASE_VIC)
From the VIC model Wood et al. (1992) as interpreted by (Clark et al., 2008):

n
Mbase = Mmax < Qbsozl)
¢max

38

where M4, [mm/d] is the maximum baseflow rate at saturation (soil parameter MAX_BASEFLOW_RATE),
®s0il is the water storage [mm] in the soil or aquifer layer, ¢y, is the maximum soil storage ca-
pacity , and n is the user-specified soil parameter BASEFLOW_N.

GR4) baseflow method (BASE_GR4J)

From the GR4) model Perrin et al. (2003):

1
)) 4\ 2
Mbase = QSgOZl 1= <1 + (:Zsoz;>)

where ¢,y [mm] is the reference soil storage, the user-specified soil parameter GR4J_X3, which
can be interpreted as a baseflow reference storage, ¢s,i; is the water storage [mm] in the soil or
aquifer layer.

Threshold-based baseflow method (BASE_THRESH_POWER)

Here, baseflow doesn’t commence until a threshold saturation of the soil layer is met. Above the
threshold, the outflow rate is controlled by saturation up to a maximum rate.

St —Su)"
Mbase = Mmax N [

1— S
where Sy, [-] is the threshold saturation at which baseflow begins (soil parameter BASEFLOW_THRESH,

M a2 is the soil parameter MAX_BASEFLOW_RATE [mm/d], and the power law coefficient n is
the soil parameter BASEFLOW_N.

39

4.4 Percolation

Percolation refers to the net downward flow of water from one soil/aquifer unit to another. This process
is physically driven by a moisture gradient, but this is often simplified in conceptual percolation models.

Percolation moves water between SOIL [m] or AQUIFER units, depending upon the soil structure model
specified by the : Soi1Model command. The user typically has to specify both the 'from’ and ’to’ storage
compartments. Percolation is rate-limited by the availability of soil/aquifer storage and by the capacity
of the receptor ’to’ compartment. Example usage in the .rvi file:

:Percolation PERC_LINEAR SOIL[0] SOIL[1]
:Percolation PERC_LINEAR SOIL[1] SOIL[2]

Available Algorithms
Constant percolation (PERC_CONSTANT)
A constant, specified rate of percolation from one soil layer to the next:
Mpere = Mimax

where M4 is the soil parameter MAX_PERC_RATE of the *from’ soil compartment.

Linear percolation (PERC_GAWSER)
As used in the GAWSER hydrologic model, (Schroeter, 1989).
Mpere = Mgz Psoil — Pre
¢ma1’ - ¢fc
where M4z is the soil parameter MAX_PERC_RATE, ¢go;; [mm] is the moisture content of the
soil layer, and the other moisture contents are defined in equation 4.2. All parameters refer to that
of the ’from’ soil compartment.

Power law percolation (PERC_POWER_LAW)

Percolation is proportional to soil saturation to a power:

n
M. _ ¢soil
perc — Vimax
Pmaz

where My,q. is the soil parameter MAX_PERC_RATE, n is the soil parameter PERC_N and ¢,
and ¢mqz are defined in equation 4.2. All parameters refer to that of the *from’ soil compartment.

PRMS percolation method (PERC_PRMS)

Percolation is proportional to drainable soil saturation to a power, as done in the PRMS model
(Leavesley and Stannard, 1995):

Mperc _ Mmaa: <¢soil - ¢tens)

¢max - (btens

where M4z is the soil parameter MAX_PERC_RATE, n is the soil parameter PERC_N and ¢4,
Otenss and Gmqq are defined in equation 4.2. All parameters refer to that of the *from’ soil compart-
ment.

40

Sacramento percolation method (PERC_SACRAMENTO)

Percolation is given by the following expression:

tol ¥ (z) '[—¢t
Mpere = M [1+ o [1 — —s0iL Psoil — Prens.

max ¢ma$ - thens

where MPb35¢ is the saturated baseflow rate (soil parameter MAX_BASEFLOW_RATE), « is soil pa-

max

rameter SAC_PERC_ALPHA, + is the soil parameter SAC_PERC_EXPON, and ¢ and ¢pqe are
defined in equation 4.2. All parameters refer to that of the *from’ soil compartment, unless they
have the ° superscript.

GR4]J percolation method (PERC_GR4JEXCH and PERC_GR4JEXCH?2)

Percolation (really here exchange between a conceptual soil store and a groundwater store) is cal-
culated as consistent with the original GR4) model (Perrin et al., 2003):

Mperc = —X2 % (min(¢soil/x3a 1~0))3.5

where x4 is the soil parameter GR4J_X2 and x5 is the soil parameter GR4J_X3 (both properties
of the soil from which the water is percolating). In the case of PERC_GR4JEXCH2, the soil water
content ¢, refers to the topsoil storage (in SOIL[0]) rather than the soil from which percolation
is being taken.

To do (2)

41

4.5 Interflow

Interflow refers to subsurface flow moving laterally through a shallow unsaturated soil horizon until it
enters a stream channel.

Interflow moves water between SOIL and SURFACE_WATER units, and is typically used in conjunction
with a (slower) baseflow algorithm. The user typically has to specify the ’from’ storage compartment (i.e.
a specific soil layer); the ’to’ storage compartment is always SURFACE_WATER. Interflow is rate-limited
by the availability of soil/aquifer storage. Example usage in the .rvi file:

:Interflow INTERFLOW_PRMS SOIL[1] SURFACE_WATER

Available Algorithms
PRMS interflow method (INTERFLOW_PRMS)

Interflow is proportional to drainable soil saturation, as done in the PRMS model (Leavesley and
Stannard, 1995):

Minter _ Mma;r . <¢soil - ¢tens)

¢max - ¢tens

where M4, is the maximum interflow rate (soil parameter MAX_INTERFLOW_RATE), sy is the
moisture content (in mm) of the draining