
Raven:
User’s and Developer’s Manual v3.0.4

the Raven development team

Contributions to Raven, its utilities, documentation, testing, and source code, have been made by nu-
merous students and faculty at the University of Waterloo and elsewhere, including Erfan Amiri, Richard
Arsenault, Nandita Basu, Genevieve Brown, Rob Chlumsky, Sarah Grass, David Huard, Susan Huang,
Ayman Khedr, Konhee Lee, Stuart Pearson, Silvie Spraakman, Graham Stonebridge, Connor Werstuck,
and Cloud Zhang. Andrew P. Snowdon contributed much to the early library of hydrologic process al-
gorithms, and to the global numerical solver. Juliane Mai has provided Mac/Linux compilation support
and extensive NetCDF gridded data support. Martin Serrer from NRC contributed to the I/O design, code
optimization, and interfacing tools. Wayne Jenkinson from NRC and Georg Jost from BC Hydro have pro-
vided debugging, benchmarking, and planning support, particularly for the UBCWM emulation. The base
so�ware architecture and much of the core program was developed by James R. Craig at the University
of Waterloo, with support through multiple conversations with Drs. Eric Soulis and Bryan Tolson.

Raven is open-source under the Artistic License 2.0. This so�ware is freely distributed ’as is’ without war-
ranties or conditions of any kind, either express or implied, including, without limitation, any warranties
or conditions of title, non-infringement, merchantability, or fitness for a particular purpose.

Contents

1 Introduction 4

1.1 Model Abstraction . 4
1.2 Global Numerical Algorithm . 8
1.3 Watershed Conceptual Model . 10
1.4 Citing Raven . 11

2 Running Raven 12

2.1 Installation . 12
2.2 Input Files . 12
2.3 Running the Model . 13
2.4 Output Files . 15
2.5 Building a Model . 17
2.6 Calibration, Visualization, and Uncertainty Analysis . 18
2.7 Common Run Approaches . 18
2.8 Troubleshooting Raven . 20
2.9 Version Notes . 22

3 The Hydrologic Process Library 27

3.1 Precipitation Partitioning . 27
3.2 Infiltration . 30
3.3 Baseflow . 34
3.4 Percolation . 36
3.5 Interflow . 38
3.6 Soil Evaporation . 39
3.7 Capillary Rise . 42
3.8 Canopy Evaporation . 43
3.9 Canopy Drip . 44
3.10 Abstraction . 45
3.11 Depression/Wetland Storage Overflow . 47
3.12 Seepage from Depressions/Wetlands . 48
3.13 Lake Release . 49
3.14 Snow Balance . 50
3.15 Snow Sublimation . 52
3.16 Snow Refreeze . 53
3.17 Snow Albedo Evolution . 54
3.18 Glacier Melt . 56
3.19 Glacier Release . 57
3.20 Crop Heat Unit Evolution . 58

1

3.21 Special Processes . 59

4 Routing 61

4.1 In-Catchment Routing . 61
4.2 In-Channel Routing . 64
4.3 Lake and Reservoir Routing . 67
4.4 Water Demand and Flow Diversions . 70

5 Forcing Functions 73

5.1 Spatial Interpolation . 74
5.2 Temperature . 76
5.3 Precipitation . 79
5.4 Potential Evapotranspiration (PET) . 82
5.5 Shortwave Radiation . 88
5.6 Longwave Radiation . 91
5.7 Cloud Cover . 93
5.8 Energy . 93
5.9 Atmospheric Variables . 96
5.10 Sub-daily Corrections . 98
5.11 Monthly Interpolation . 98

6 Forecasting and Assimilation 100

6.1 Streamflow Assimilation . 100
6.2 Deltares FEWS support . 101

7 Tracer and Contaminant Transport 102

7.1 Constituent Sources . 103
7.2 Catchment Routing . 103
7.3 In-channel Routing . 103
7.4 In-reservoir Routing . 103

8 Model Diagnostics 105

8.1 Pointwise vs. Pulsewise comparison . 105
8.2 Diagnostic Algorithms . 105

9 Raven Code Organization
∗

108

9.1 Classes . 108
9.2 Contributing to the Raven Framework* . 111

A Input Files 115

A.1 Primary Input file (.rvi) . 115
A.2 Classed Parameter Input file (.rvp) . 138

A.2.1 Required Commands . 138
A.2.2 Optional Classes and Objects . 140
A.2.3 Parameter Specification . 143

A.3 HRU / Basin Definition file (.rvh) . 155
A.3.1 Required Commands . 155
A.3.2 Optional Commands . 157
A.3.3 Reservoirs and Lakes . 159

A.4 Time Series Input file (.rvt) . 163
A.4.1 Meteorological Gauge Data Commands . 163

2

A.4.2 Observation Time Series . 168
A.4.3 Reservoir Control Time Series . 169
A.4.4 Irrigation, demand, and diversions . 173
A.4.5 Special Commands . 175
A.4.6 NetCDF Gridded Input Data . 176

A.5 Initial Conditions Input file (.rvc) . 179
A.5.1 Optional Commands . 179

A.6 Live file (.rvl) . 181
A.6.1 Commands . 181

B Output Files 182

B.1 Standard Output Files . 182
B.2 Custom Outputs . 183
B.3 NetCDF Output Format . 183

C Reference Tables 185

D Template Files 189

D.1 UBCWM Emulation . 189
D.2 HBV-EC Emulation . 191
D.3 GR4J Emulation . 193
D.4 Canadian Shield Configuration . 194
D.5 MOHYSE Configuration . 195
D.6 HMETS Configuration . 196
D.7 HYPR Configuration . 197

3

Chapter 1

Introduction

This document describes the design and operation of the Raven hydrologic modelling framework, a so�-
ware package for watershed modeling. The document is meant for both users of the so�ware who wish to
run the program and understand the multitude of model options and by new developers of the Raven so�-
ware who wish to understand, customize, and/or upgrade the code (chapters and sections for developers
are marked with an asterisk∗).

Raven is a mixed lumped/semi-distributed model that can be used to understand the hydrologic behavior
of a watershed and assess the potential impacts of land use, climate, and other environmental change upon
watershed properties such as flood potential, soil water availability, or groundwater recharge. The model
can be used to investigate individual storm events or develop long-term water, mass, and energy balances
for resource management and water quality assessment. Raven’s uniqueness primarily comes from its
numerical robustness and its flexibility; Raven is able to use a wide variety of algorithms to represent each
individual component of the water cycle and has a quite general treatment of every possible model option,
from output access to numerical simulation algorithm. Because of its modular design, users have access
to a number of di�erent methods of interpolating meteorological forcing data, routing water downstream,
representing evaporation, and any number of other model options. With this flexibility, a modeler can
examine the wide range of possible outcomes that result from our uncertainty about a watershed model,
and test hypotheses about watershed function.

In addition, Raven’s flexibility and large library of user-customizable subroutines allow it to emulate (and
augment) a number of existing hydrologic models. Raven has achieved level 1 (near-perfect) emulation of
the UBC Watershed Model (�ick, 1995), Environment Canada’s version of the HBV model (Bergstrom,
1995), HMETS (Martel et al., 2017), MOHYSE (Fortin and Turco�e, 2006), and GR4J (Perrin et al., 2003).
Level 2 (conceptual) emulation is available for various algorithms used which are comparable to those
found in (e.g.,) Brook90, SWAT, VIC, PRMS, HYMOD, and/or described within various hydrology texts,
such as Dingman’s Physical Hydrology (Dingman, 2002).

1.1 Model Abstraction

While much of Raven’s operations are generic and flexible, they are all built up from critical assumptions
about the organization and operation of a watershed. These collectively form the core structure of any
Raven model, which is depicted in figure 1.1. A watershed is here assumed to be assembled from a num-
ber of subbasins, which in turn are assembled from a number of contiguous or non-contiguous hydrologic
response units (HRUs), defined as areas with hydrologically unique responses to precipitation events.
Each HRU is defined by a single combination of land use/land type (LU/LT), vegetation cover, and terrain

4

type and is underlain by a defined soil profile and stratified aquifer. Membership in these classification
schemes, or property classes, is used to determine all or part of the physically-based properties of the
response unit, such as soil conductivity or leaf area index. Each HRU is composed of a finite number of
storage compartments, such as the soil, canopy, and snowpack, in which water and energy are stored (see
table 1.1). Given some set of user-specified controlling hydrologic processes (see table 1.2), Raven builds
and solves the resultant zero- and 1-dimensional water and energy balance problem for each HRU, redis-
tributing water within the HRU in response to precipitation and other atmospheric forcings. Some of this
water is redistributed to surface water channels associated with the subbasin, where it is routed down-
stream from subbasin to subbasin. During this simulation process, diagnostics about water/mass/energy
storage distribution, cumulative flux, and instantaneous fluxes may be tracked.

Figure 1.1: Land surface partitioning in Raven

Each HRU is wholly defined by its geometric properties (area, latitude, longitude, parent subbasin), topo-
graphic properties (slope, aspect), subterranean soil profile, and its property class membership (land use,
vegetation, terrain). Each soil horizon in the soil profile and the aquifer in turn belong to a soil property
class. All individual HRU properties are assigned based upon membership in these classes, i.e., most of the
properties belong to the class, not the HRU, enabling the solution of a finely discretized model (>10,000
HRUs) without generating an equally large number of unknown parameters.

5

surface(ponded water) surface(lakes and streams) atmospheric
shallow soil deep soil groundwater aquifer
frozen snow liquid snow canopy
glacial ice glacial melt wetlands

Table 1.1: Common storage compartments that correspond to state variables in hydrologic models - each
compartment can store both water and energy (a non-comprehensive list)

precipitation runo� evaporation transpiration
drip trunk drainage canopy drainage interflow
throughfall infiltration recharge capillary rise
snowmelt sublimation glacial melt

Table 1.2: Common hydrologic processes that may be included in a Raven model

As a generalization of standard methods used to represent shallow soils in hydrologic models, the shallow
subsurface may be represented by one or many discrete layers, which is generated from the specified soil
profile, as shown in figure 1.2. The soil profile, specified for each HRU, describes the thickness and soil
type of each constituent horizon. Soil parameters for theM -layer soil model (e.g., hydraulic conductivity)
are then determined based upon soil class membership of each soil horizon, aggregated or disaggregated
depending upon desired vertical model resolution. Alternatively, the soil layers may correspond to concep-
tual soil moisture stores not explicitly linked to physical soil horizon, as is done in many lumped watershed
models.

Figure 1.2: Translation of soil profiles to soil models. Properties are aggregated or disaggregated depending
upon specified vertical resolution of soil model

Subbasins are similarly succinctly characterized by their channel characteristics, their topology with re-
spect to other subbasins (i.e., their outlet basin) and their cross-sectional profile. Again, properties are
linked to channel and profile types, so finely discretized distributed models may still be parsimonious in
terms of parameters.

With Raven, unlike other models, the modeler determines the degree of model complexity. At the simplest,
a watershed can be treated as a single giant HRU/subbasin where only daily precipitation and temperature
are needed to provide predictions of streamflow. In the other extreme, the model could be composed of
thousands of HRUs consisting of tens of individual storage compartments and forced using measured
hourly longwave radiation, wind velocity, and air pressure. The complexity of the model is limited by the

6

user or (even more sensibly) the availability of data.

While the various components of the HRU water balance are user-specified, an example schematic of the
flow of water in a single HRU can be seen in figure 1.3.

Figure 1.3: Example flowchart of the water balance in a Raven model. Note that individual processes and
storage compartments may be added or subtracted from this schematic.

7

1.2 Global Numerical Algorithm

The operation of Raven is fundamentally simple. Starting from some initial state of the watershed, the
model moves forward in time, updating the distribution of water, mass and energy both within and be-
tween HRUs in response to physical forcings such as precipitation, and laterally routing water and energy
downstream to the watershed outlet. The entire system is simulated one timestep at a time. During each
timestep, the following sequence of events occur:

1. The forcing functions are updated, i.e., the representative values of rain and snow precipitation,
temperature, and perhaps wind velocity, longwave radiation, etc. are generated or extracted from
user-specified time series at a (relatively small) number of gauge stations, then interpolated to every
HRU in the model. Alternatively, these functions may be specified as a gridded model input from a
regional climate or weather model.

2. All of the model parameters which change in response to the current state of the system are updated
in each HRU (for example, canopy leaf area index may be updated with the seasons)

3. Using these updated forcing functions and parameters, the state of the system at the end of the
timestep is determined from the state of the system at the start of the timestep by rigorously solv-
ing the coupled mass and energy balance equations in each HRU in the model. These mass and
energy balances are assembled from the relevant hydrologic processes occurring in the HRU, which
individually redistribute water and energy between di�erent compartments (e.g., the evaporation
process may move ponded water to the atmosphere).

4. If needed, advective and dispersive mass transport of constituents (contaminants or tracers) is sim-
ulated using the water fluxes over the time step.

5. Runo� from the HRUs (and mass/energy associated with this runo�) is routed into the surface
water network in each subbasin, and concurrently routed downstream.

6. Mass/Energy balance checks are performed

7. Output is wri�en to a number of continuous output files

The process is repeated until the model has been run for the specified duration.

1.2.1 The HRU Mass/Energy Balance

The problem being solved by Raven within each HRU is fundamentally that of a coupled system of or-
dinary and partial di�erential equations (ODEs and PDEs). These ODEs and PDEs individually describe
either (1) the accumulation of mass or energy within a given storage compartment or continuum (i.e., a
mass or energy balance) or (2) the temporal change in some auxiliary system property (e.g., snow density
or albedo).

Here, each state variable in an HRU is subject to the influence of a number of hydrologic processes.
Increases or decreases in a primary state variable are simply the additive combination of influx or outflux
terms (i.e., the ODE or PDE corresponding to a primary state variable is built up from mass or energy
balance considerations). Increases or decreases in auxiliary variables are likewise assumed to be wri�en
as the additive combination of terms. We can therefore write an individual di�erential equation for the
change in the jth state variable, φj , as:

∂φj
∂t

=
NP∑
k=1

NS∑
i=1

Mk
ij(
~φ, ~P , ~F) (1.1)

8

whereMk
ij is the change in state variable j due to process k (ofNP processes), which is linked to another

state variable i. This linkage typically communicates flow direction, e.g., a process Mk
ij moves mass or

energy from storage compartment i to compartment j. A process Mk
ii (i.e., i = j) represents an indepen-

dent rate of change for an auxiliary variable, and does not connotate exchange of mass or energy between
compartments. The fluxes or rates-of-change returned by each process are a function of the current vector
of state variables (~φ), system parameters (~P), and forcing functions ~F . For example, the mass balance for
ponded water on the land surface (depression storage, DS) may be given as:

∂φDS
∂t

= P − E − I −R (1.2)

where P is the precipitation input, E is the evaporation rate, I is the infiltration rate into the soil be-
neath, and R is the overflow rate of the depression. Each of these processes (Mk) may be a function of a
number of forcings (e.g., precipitation and temperature), current state variables (e.g., ponding depth and
soil saturation), and parameters (e.g., maximum depression storage and soil hydraulic conductivity).

The full system of equations describing the influence of all processes in an HRU can be wri�en in matrix
form:

∂~φ

∂t
= MG(~φ, ~P , ~F){1} (1.3)

where ~φ is the complete vector of state variables, MG is a NSxNS global symmetric matrix of composite
rate-of-change functions, where NS is the number of state variables, and {1} is a column vector filled
with ones. The global process matrix is the sum of contributions from each individual symmetric process
matrix, i.e., MG =

∑
Mk.

The above mathematical formulation enables the complete separation of individual hydrologic process
algorithms, which may individually be very simple or quite complicated. It also enables the use of a
variety of methods for solving the global system of equations defined by 1.3. Because of the approach
used to solve this system, mass balance errors are typically on the order of machine precision.

1.2.2 Routing

Raven separately handles in-catchment routing (from the HRU to the major reach in the subbasin) and
in-channel routing (in and between subbasin stream reaches). The concept is depicted in figure 1.4.

In-catchment routing to the primary basin channel is generally handled using a convolution or unit
hydrograph (UH) approach, where the UH for each catchment is either user-specified or generated from
basin characteristics. The immediate history of quickflow, interflow, and baseflow output to surface water
is stored in memory as an array of time step-averaged outflow rates to o�-channel tributaries, ~Qlat; the
duration of this history is determined by the subbasins time of concentration, tc. To transfer this water to
either the channel segments within the subbasin or directly to the subbasin outflow, the pulse hydrograph
is convolved with the unit hydrograph, represented as a piecewise linear function. Water and energy is
transferred to the downstream ends of channel segments within the reach.

In-channel routing, for each time step, is assumed to be completely characterized by a finite history of
upstream inflow (stored as a vector of flow values at fixed time intervals of ∆t, ~Qin), and the outflow at
the start of the time step; the duration of this history is determined by the minimum flood celerity and the
length of the reach segment. During each time step, moving from upstream to downstream at both the
watershed level (basin to basin) and subbasin level (reach segment to reach segment), a routing algorithm
is used to generate the outflow from each reach based upon the time history of upstream inflows, i.e.,

Qn+1
out = Froute(Q

n
out, ~Q

in, ~Ps) (1.4)

9

Figure 1.4: The general routing model of Raven

where Froute is the routing algorithm, ~Ps is a vector of channel parameters, typically a number of stored
channel rating curves, primary channel and bank roughness, and, if applicable, weir or reservoir relation-
ships. This formalization supports both common lumped and distributed flow routing methods depending
upon the form ofFroute(), including Muskingum-Cunge, lag-and-route, transfer function/unit hydrograph
convolution, and, if desired, a more complex kinematic wave or di�usive wave approach (not currently
implemented). Notably, sub-time-stepping for routing is also enabled with this formulation.

Reservoir/lake routing. At the outlet of each subbasin, the option exists to specify a managed reservoir
or natural lake which mediates the outflow from the subbasin channel. This reservoir is characterized
using specified volume-stage and surface area-stage relationship, and level-pool outflow from the reser-
voir may be calculated using a variety of methods, including simple weir formulae to complex reservoir
management rules. The mass balance within the reservoir is calculated as

dV (h)

dt
= Qin(t)−Qout(t, h)− ET (A(h)) + P (A(h)) (1.5)

where V (h) is the stage (h) dependent volume of the reservoir,Qin is the inflow to the reservoir,Qout(t, h)
is the outflow from the reservoir (a function of stage), and ET and P are the evapotranspiration from
and precipitation to the reservoir surface, both functions of surface area.

Irrigation demand, diversions, and plant discharges Man-made extractions and injections of water
are incorporated directly into the mass balance formulations at reach inflows, reach outflows, or reservoirs
in the form of user-specified time series of discharge and/or rule curves. These can be constrained by
environmental minimum flows.

1.3 Watershed Conceptual Model

The critical feature of Raven is that it does not make any assumptions about the functioning of the wa-
tershed. That is the modelers job. There is no single system conceptualization that is forced upon the
modeler, other than those imposed by the Subbasin-HRU model framework. Rather, the modeler deter-
mines what processes to use, how to parameterize the watershed, how to discretize the watershed. All
the while, Raven makes this easy to do by providing reasonable defaults, an intuitive file interface, and

10

a large library of hydrologic and algorithmic options. In addition, it allows users to assess the utility and
appropriateness of their conceptual model and revise it as needed.

1.4 Citing Raven

The preferred citation for the Raven hydrological modelling framework in a research manuscript or tech-
nical report is the following paper in Environmental Modelling and So�ware:

Craig, J.R., G. Brown, R. Chlumsky, W. Jenkinson, G. Jost, K. Lee, J. Mai, M.Serrer, M. Shafii, N. Sgro,
A. Snowdon, and B.A. Tolson, Flexible watershed simulation with the Raven hydrological modelling
framework, Environmental Modelling and So�ware, 129, 104728, doi:10.1016/j.envso�.2020.104728,
July 2020

To cite Raven technical details for technical reports, this manual may be cited as:

Craig, J.R., and the Raven Development Team, Raven user’s and developer’s manual (Version 3.0),
URL: h�p://raven.uwaterloo.ca/ (Accessed xxx, 2020).

If you are using a model emulation housed within Raven, then that model configuration should be ex-
plicitly cited to give credit where credit is due. For instance, if you use the unmodified UBC watershed
model configuration from appendix D, the preferred citation format would be (e.g.,) "we used the UBC
Watershed Model (�ick, 1995) as implemented in the Raven hydrologic modelling framework v3.0 (Craig
et al., 2020)". If the base conceptual model was significantly revised and/or merged with other tools, then
it may be acceptable to refer to the model as (e.g.,) UBCWM∗ or UBCWM-Raven. In all cases, it is rec-
ommended to provide the model version number and input files in supplementary material so the details
and a�ribution of the model components may be identified.

11

https://doi.org/10.1016/j.envsoft.2020.104728

Chapter 2

Running Raven

Much energy has been expended to ensure that the operation and use of Raven is as simple, convenient,
intuitive, and user-friendly as possible. Model commands and file formats are in plain English, error
messages are reasonably concise and explanatory, unnecessary restrictions or requirements are not forced
on the user, and model input and output files can be read and understood with a minimal learning curve.
There may be, however, a learning curve in familiarizing oneself with the large variety of modelling options
and how they di�er.

2.1 Installation

There is no formal installation package for Raven without NetCDF support, and no special programs
are libraries are required to operate Raven. Simply download the Windows, Mac, or linux executable
Raven.exe and unzip to a local drive. Mac users should note that despite the .exe extension, the program
runs just like any other command line tool.

Only if you are using the Raven version with NetCDF support (i.e., for supporting gridded forcing
data such as that generated in regional climate forecasts):

• For Windows users, you will have to install the NetCDF 4 Library (without DAP) from
https://www.unidata.ucar.edu/software/netcdf/docs/winbin.html.
You then must ensure that the the directory path of the installed NetCDF.dll file is in your
PATH environment variable. Documentation for modifying the PATH environmental variable
is readily found online for your specific version of windows.

• For MacOS and linux users, look to
https://www.unidata.ucar.edu/software/netcdf/docs/getting_and_
building_netcdf.html
to download and build the NetCDF libraries, or run from CYGWIN.

2.2 Input Files

In order to perform a simulation using Raven, the following five input files are required:

• modelname.rvi - the primary model input file
This is where the primary functioning of the Raven model is specified. This includes all of the
numerical algorithm options (simulation duration, start time, time step, routing method, etc.) and

12

https://www.unidata.ucar.edu/software/netcdf/docs/winbin.html
https://www.unidata.ucar.edu/software/netcdf/docs/getting_and_building_netcdf.html
https://www.unidata.ucar.edu/software/netcdf/docs/getting_and_building_netcdf.html

model structure (primarily, how the soil column is represented). Critically, the list of hydrologic
processes that redistribute water and energy between storage compartments is specified here, which
define both the conceptual model of the system, the specific state variables simulated, and the
parameters needed. Lastly, various options for output generation are specified.

• modelname.rvh - the HRU / basin definition file
The file that specifies the number and properties of subbasins and HRUs, as well as the connectiv-
ity between subbasins and HRUs. Importantly, land use/land type, vegetation class, aquifer class,
and soil classes are specified for each HRU in order to generate appropriate model parameters to
represent the properties of each HRU.

• modelname.rvt - the time series/forcing function file
This file specifies the temperature, precipitation, and possibly other environmental forcing functions
at a set of observation points (“gauges”) within the model domain. This information is interpolated
to each HRU within the watershed based upon spatial location. The .rvt file typically “points” to a
set of files storing information for each gauge or forcing type. If gridded forcing data is used, the
details about the corresponding NetCDF gridded data file and connections between the grid and
landscape are specified here.

• modelname.rvp - the class parameters file
This is where most of the model parameters are specified, grouped into classes. Each HRU belongs to
a single vegetation class, single land use, single aquifer class, and has a unique soil profile defined
by a collection of soil horizons each of a single soil class. All model parameters, on a class by
class basis, are specified here. The class formalism aids in the calibration process. Note that the
:CreateRVPTemplate command can be used to generate an empty .rvp file given the model
configuration specified in the .rvi file (see appendix for details).

• modelname.rvc - the initial conditions file
This is where the initial conditions for all state variables in all HRUs and subbasins are specified.
This may be generated from the output of a previous model run. If a blank file is provided, all storage
initial conditions are assumed to be zero (i.e., no snow, dry soil, etc.) and a run-up period will be
warranted.

Each of these files are described in detail in appendix A. While the .rvi (setup), .rvh (watershed geometry),
.rvc (initial conditions) and .rvt(forcing data) files are typically unique to a particular model, the .rvp
(properties) file may ideally be ported from one model to another. Figure 2.1 depicts the base input used
by and output generated from Raven, where the default/mandatory files for all simulations are indicated
in light blue.

To prepare the input files, it is recommended to first familiarize yourself with the format and various
input options. A number of pre-processors have been or are being developed to generate the .rvt file(s)
from alternative formats. For instance, Environment Canada stream gauge data may be imported with
utilities in the RavenR package. The .rvh file is likely best prepared with the assistance of a healthy GIS
database which can be used to determine unique class combination and the topology of the watershed
subbasins. Note that, if the size of .rvt or .rvh files becomes unwieldy, the :RedirectToFile command
can be used to redirect the input from an ’extra’ input file, so a model could, for instance, have a single
master .rvt file that points to a number of meteorological forcing files (e.g., one or more .rvt file per gauge).
A similar approach also enables the testing of multiple climate scenarios without having to overwrite data
files.

2.3 Running the Model

13

Figure 2.1: Standard input/output configuration of Raven. Light blue input files are required, light blue
output files are the default output (which may be suppressed if desirable). The light red input files are
files referred to by the primary input files, and are kept separate mostly for organization. The light red
output files are generated only if specifically requested by the user in the .rvi file.

Once all of the necessary components of the above files have been created, the model may be called from
the command line, e.g., in the windows command prompt,

> C:\Program Files\Raven\Raven.exe C:\Temp\model_dir\modelname

or, if the active directory is C:\Temp\model_dir\:

> C:\Program Files\Raven\Raven.exe modelname

where ’modelname’ is the default predecessor to the .rvi, .rvh, .rvt, and .rvp extensions. There are no
special flags needed, just the name of the model. The command line also supports the following flagged
commands:

• -o {output directory} : specifies the directory for generated model output

• -p {rvp_filename.rvp} : specifies the rvp file location

• -t {rvt_filename.rvt} : specifies the rvt file location

• -c {rvc_filename.rvc} : specifies the rvc file location

• -h {rvh_filename.rvh} : specifies the rvh file location

• -r {runname} : specifies the run name for the simulation

Alternatively, the :OutputDirectory command in the .rvi file may be used to specify file output
location and the :rv*_Filename command may be used to specify the corresponding files (see the
details in appendix A.1).

14

A useful application of the output directory flag is to specify an output directory in the folder directly
beneath the working directory, for instance:

> C:\Program Files\Raven\Raven.exe modelname -o .\output\

Raven will create this specified output folder if it does not exist.

Note that while it is allowed that the input files from multiple models exist in a single folder, it is recom-
mended that each model get its own output directory to avoid overwriting of outputs.

For MacOS users, note that the Raven.exe, despite its .exe extension, runs like any other command
line tool. This can be run by opening the terminal application. The only di�erence then is the
use of forward slashes rather than backward slashes, e.g.,:

machine:~ username$ Raven.exe modelname -o ./output/

2.4 Output Files

Raven generates a number of customizable outputs which contain model diagnostics. By default, Raven
generates the following files:

• Hydrographs.csv - the hydrograph output file
Contains the flow rates,Q(t) [m3/s], at the outlets of specified subbasins in the watersheds (usually
corresponding to those with stream gauges). Which subbasin hydrographs are reported is specified
in the .rvh file.

• WatershedStorage.csv - the watershed storage file
Contains watershed-averaged water storage in all of the modeled compartments over the duration
of the simulation. Also reports watershed-wide water mass balance diagnostics.

• solution.rvc - the solution file
Stores the complete state of the system at the end of the simulation. This file can be used as initial
conditions for a later model run. This file may also be generated at user-specified intervals dur-
ing simulation as a defense against computer breakdown for massive computationally-demanding
models.

• RavenErrors.txt - the errors file
Includes all of the warnings and errors for a particular model run, including when the model may
be making choices on behalf of the modeler (i.e., parameter autogeneration) or when model input
is flawed.

The formats of these files are described in appendix B, and may be pre-appended with the runname if the
:RunName command is used, generating (for example), Alouette41_Hydrographs.csv if the run
name is Aloue�e41. RavenErrors.txt is never given a prefix.

In addition to the above, the following output files may be created on request:

• WatershedMassEnergyBalance.csv - the watershed flux diagnostics file
Contains watershed-averaged water and energy fluxes from each hydrologic process over time.
(enabled using the :WriteMassBalanceFile command)

15

• ForcingFunctions.csv - the forcing functions file
Stores the complete time series of all watershed-averaged forcing functions over the domain (i.e.,
rainfall, snowfall, incoming radiation, etc.) (enabled using the:WriteForcingFunctions com-
mand)

• Diagnostics.csv - model quality diagnostics
Reports metrics characterising of fit between the model results and any user-specified observations.
This output is enabled using the :EvaluationMetrics command, and requires at least one set
of observation data (:ObservationData in the .rvt file) to be generated.

• ReservoirStages.csv - reservoir stage history file
Stores the time history of reservoir stages for all simulated reservoirs. Requires at least one reservoir
in the model and is automatically generated if reservoirs are present.

• ReservoirMassBalance.csv - reservoir mass balance history file
Stores the time history of reservoir inflows and outflows for all simulated reservoirs. Requires at
least one reservoir in the model.

• Demands.csv - irrigation demands file
Stores the time history of irrigation, environmental flow constraints, and unmet demand

• ExhaustiveMB.csv - exhaustive mass balance file
Stores all state variables in all HRUs over time. Given the potential size of this file, this option
should be used sparingly (enabled using the :ExhaustiveMassBalance command.)

• State (.rvc) files - model intermediate state files
Similar to solution.rvc, except output at intermediate times specified using the :OutputDump or
:MajorOutputInterval commands. The files are named using the output timestamp, e.g.,
RunName_state_2001-10-01.rvc, and may be used as initial conditions for later simulation
runs.

Lastly, the extremely flexible:CustomOutput command can be used to indicate that Raven should track
and store in .csv, NetCDF, or .tb0 flat files any user-specified parameter, state variable, or mass/energy
flux in the model over time. This data may be aggregated either temporally or spatially, so that the user
may generate files containing, e.g., basin-averaged hydraulic conductivity of the top soil layer at the daily
timescale, or monthly averaged evaporation from the canopy in the 23rd HRU. The details of this custom
output are in the discussion of the :CustomOutput command in the .rvi file (appendix A.1.5).

Additional output files generated by the transport routines are discussed in chapter 7.

2.4.1 Alternative .tb0 (Ensim) Output Format

For compatibility with the Green Kenue™ so�ware interface, the option is also available to generate
output in .tb0 (Green Kenue™ tabular) format. Custom output will be wri�en to a .tb0 table output file if
the :WriteEnsimFormat command is present in the .rvi file.

2.4.2 Alternative .nc (NetCDF) Output Format

For compatibility with so�ware based on NetCDF files (e.g., the Deltares FEWS forecasting system) it is
also possible to write outputs in that format. The :WriteNetCDFFormat command should be present
in the .rvi file if the NetCDF output should be wri�en instead of .csv files. Details are documented in
appendix B.3.

16

2.5 Building a Model

Base model: rvi and rvp files

It is recommended that users initially start with an existing model template such as the UBCWM, HBV-
EC, HMETS, MOHYSE, or Canadian Shield model configurations reported in appendix app:TemplateFiles.
Once you get more experienced with Raven, you may have existing model configurations that you have
found work well on similar landscapes to those you have modelled previously.

Template .rvp files can be generated by running the .rvi template file with the :CreateRVPTemplate
command, which builds a hollow .rvp file with all of the parameters necessary for simulation using the
particular model configuration specified in the .rvi file. Reasonable initial parameter values are reported
in the appendix, but manual calibration will be required in pre�y much all cases.

Landscape discretization: rvh files

The best approach for generating the subbasin delineation and HRU delineation (i.e., the .rvh file) is to
use a GIS program such as ArcMap, SAGA, TauDEM or GRASS. These tools enable the generation of basin
geometry from a hydrologically conditioned DEM and additionally enable the overlay of map layers to de-
termine HRU areas. Basin outlets should at the very least correspond to locations of known streamgauges,
but would also be added at the outlets of hydrologically important lakes and reservoirs, at major stream
junctions, or at locations which divide the network into hydrologically similar landscapes (e.g., separating
mountains from foothills). HRUs are commonly generated by reclassification of raster- or vector-based
land use maps overlain with subbasin boundaries, though these may be additionally overlain with soil
maps and/or elevation bands, where appropriate, using a union operation. Slope, aspect, elevation, lati-
tude, longitude, and subbasin membership for each unique vegetation/land use/soil profile parcel would
then be determined by spatial averaging and geometric operations within the GIS. Note that HRUs do not
have to be spatially contiguous. The mechanics on how this is done vary from application to application.
If the resultant HRU map is in vector format, its data table may be exported to a text file then rearranged
using any number of text editing, spreadsheet, or scripting tools to be converted to .rvh format. Likely the
hardest part to automate here is the specification of subbasin connectivity (i.e., the downstream subbasin
ID for each subbasin), which typically would be done by eye.

Initial conditions: rvc file

The simplest initial conditions file can be empty. This can be modified later, but most storage compart-
ments in the model when run in continuous (rather than event or forecasting) mode have a spin-up period
that can compensate for an initially dry watershed. Groundwater storage and initial reservoir stage are
two notable exceptions that may have to be modified.

Meteorological inputs and observations: rvt files

The populating of the time series (.rvt) file is generally a problem of finding appropriate and available
data and converting it to the .rvt format, which is relatively straightforward. Of course, there are many
complications arising in infilling missing forcing data, interpreting what data is useful, and determining
how to interpolate spatial data. Users can start with a single meteorological gauge initially and readily add
or remove meteorological gauges in a minimally invasive manner. The RavenR R library provides a number
of utilities for directly downloading Canadian meteorological and stream gauge data and converting them
to .rvt format.

Iterative improvement

Once you get a base model created and running, then you can start swapping out individual processes,
moving towards a landscape-appropriate model with complexity justified by the amount of data available
at the site. A lot of meteorological data and hydrograph data can justify a quite complex model with finely
discretized landscape and more complicated model configuration. Modifying model configuration should
be assessed one step a time, confirming each process addition or swapout of forcing function representa-

17

tion lead to a more appropriate or otherwise more e�ective representation of watershed hydrology. Note
that modifying and iteratively evaluating model structure in this way can be a time consuming and ar-
duous process, so many users will choose to stick with a fairly standard model configuration with a few
minor tweaks.

2.6 Calibration, Visualization, and Uncertainty Analysis

Unlike many hydrologic modeling tools, the Raven so�ware package intentionally does not include any
methods for calibration, uncertainty analysis, plo�ing, or complex statistical analysis. All of these tools
are best addressed using flexible and generic pre-and post-processing tools. Some recommendations:

• RavenR
A set of R utilities available from the Raven website. Requires the R open-source so�ware environ-
ment. Available at: http://www.raven.uwaterloo.ca/RavenR.html

• Ostrich
A model-independent multi-algorithm optimization and parameter estimation tool. Ostrich can
be used to calibrate Raven models, generate Monte Carlo simulations, and much, much more...
http://www.civil.uwaterloo.ca/envmodelling/Ostrich.html

• Green Kenue™
An advanced data preparation, analysis, and visualization tool for hydrologic modellers, which sup-
ports some Raven features and provides useful post-processing tools for Raven output as well as
direct access to Canadian hydrologic data repositories. Available at https://www.nrc-cnrc.
gc.ca/eng/solutions/advisory/green_kenue_index.html

• R
An open-source so�ware environment for statistical computing and scientific graphics. Available
at https://cran.r-project.org/

• mc-stan.org
An open-source so�ware environment for Bayesian inference and maximum likelihood estimation.
Available at mc-stan.org

Note that the model quality diagnostics generated using the :EvaluationMetrics command may
be utilised to support the calibration process.

2.7 Common Run Approaches

The following section describes suggested methods for running Raven in a mode other than straightfor-
ward simulation of a single model with a single set of inputs.

Automated Calibration

Multiple tools are provided within Raven for supporting automatic calibration by other so�ware pack-
ages. It is encouraged to use the algorithms within the Ostrich so�ware package, and an example Os-
trich-Raven configuration is provided with the Raven documentation. To constrain the calibration, it is
recommended to allow Raven to generate the diagnostics used to build the objective function using one
or more of the diagnostics described in section 8.2, which supports the provision of observation weights to
(1) include a spinup period (2) represent a calibration period (3) represent a validation period (4) discount
seasonal (e.g., winter) data during diagnostic calculation.

18

http://www.raven.uwaterloo.ca/RavenR.html
http://www.civil.uwaterloo.ca/envmodelling/Ostrich.html
https://www.nrc-cnrc.gc.ca/eng/solutions/advisory/green_kenue_index.html
https://www.nrc-cnrc.gc.ca/eng/solutions/advisory/green_kenue_index.html
https://cran.r-project.org/
mc-stan.org

Other useful commands for calibration support include the ability to suppress all output but the diag-
nostics file (:SuppressOutput) and suppress all console output (:SilentMode). This maximizes the
speed of repeated model application (output generation can be more than 90 percent of computational
cost). Users also have the ability to override historical stream and reservoir flows and replace modeled hy-
drographs with observed hydrographs at locations within the stream network (:OverrideReservoirFlow
for reservoirs and :OverrideStreamflow for stream gauges). Lastly, portions of the model may be
calibrated independently by disabling the remainder of the model using the :DisableHRUGroup com-
mand.

Large Models

For larger models with considerable data inputs and outputs, it is suggested to lean on the power of the
:RedirectToFile command to organize the data. For instance, in a large basin model, it is useful
to have folders to store the observation data, meteorological gauge data, reservoir, and channel data and
keep it separate from the main body of Raven model files. A sample file structure might look like:

model folder/
./channels/
./observations/
./output/

./run1/

./run2/

./run3/
./metdata/
./reservoirs/
modelname.rvi
modelname.rvt
modelname.rvh
modelname.rvp
modelname.rvc

Multiple Climate Scenarios

For running multiple climate scenarios using a single model, it is recommended to fix the .rvc, .rvp, and
.rvh files. Di�erent .rvt files should be generated for the specific climate scenarios. Individual runs would
be generated by modifying the rvt filename (using the :rvtFilename command in the .rvi file) and the
run name (using the :RunName command in the .rvi file).

Multiple Parameter Sets

It is common to run a model using multiple parameter sets in order to assess the uncertainty or sensitivity
of its predictions to changes in input (as done in, e.g., Markov Chain Monte Carlo). For such an approach,
it is recommended (if not using so�ware such as Ostrich), to generate multiple .rvp files, keeping the
remainder of the data files fixed. Individual runs would be generated by modifying the rvp filename
(using the :rvpFilename command in the .rvi file) and the run name (using the :RunName command
in the .rvi file).

Forecasting

For forecasting, standard practice would be to hindcast / spin-up the model for a period of time, o�en
prior to winter to properly account for snow depths. The state of the model would be saved at the current
date and used as a ’warm start’ .rvc file for short-term forecasts fueled by weather forecasts, rather than
meteorological gauge data, thus only the .rvt files and .rvc files are changed when moving from spinup to
forecast, plus the start date and end date in the .rvi file. The initial state of the model (for instance snow
depth, soil moisture, or upstream flows) could be corrected if real-time data are available to compensate

19

for model errors by revising the .rvc state file. Operational choices can be evaluated, for instance, using
the :OverrideReservoirFlow time series to control reservoir flows.

Subdomain simulation

Sometimes for computational expediency it is worthwhile to only simulate a subset of the watershed.
Raven supports the ability to simulate part of a larger watershed model by disabling subbasins (and their
constituent HRUs) using the :DisableSubBasinGroup command. This readily handles simulation
of only headwater basins (a�ached to the rest of the model only downstream) or parallel basins (not
a�ached). For basins in the middle of the model, the watershed subset may be appropriately simulated if
all inflows to the basin are user-specified via the :BasinInflowHydrograph command.

2.8 Troubleshooting Raven

While Raven will generally try to tell you when a mistake in the input files will cause problems, there are
times when the interface will “hang” or input will be noticeably erroneous without providing a warning or
error in RavenErrors.txt (note that Raven is designed to produce significant errors when something
goes wrong rather than subtle undetectable errors). These unchecked errors are most commonly due to
missing or erroneous input forcing or parameter data, though it may occasionally be due to a genuine bug
in the Raven code.

Always Check the RavenErrors.txt file in the output directory first. O�en, the error messages
and warnings will contain su�icient information to diagnose and repair the problem. This is always
the best first step.

Use the Forum Posting questions and answers to the online Raven forum at
(https://http://www.civil.uwaterloo.ca/raven_forum//)
ensures the whole community can learn.

The following steps may be taken to diagnose and repair issues with Raven.

1. If the model ’hangs’ prior to the beginning of simulation.

Add the command :NoisyMode to the .rvi file. This must be a�er any call to :SilentMode
(these commands toggle the same internal switch), but ideally at the top of the input .rvi file. Run-
ning the code in noisy mode generates detailed narrative output to the command prompt window,
and is best for diagnosing errors in input parsing. By looking at where the code “hangs”, the prob-
lematic input command can o�en be found. See if the model runs with the problematic command
commented out. If it does, there may be (a) improper command syntax or (b) a missing input param-
eter for the chosen method/algorithm or (c) erroneous input data linked to this method/algorithm
that Raven is not currently able to detect.

2. If the model runs to completion but generates clearly erroneous output (i.e., NaN or -#inf in
the output)
This type of error is likely due to (a) an error in input which Raven did not detect (e.g, a parameter
outside reasonable bounds like a porosity of 3.8); (b) a missing model parameter which Raven did
not detect; or (c) an error in the Raven modelling library.

(a) Step 1: Open the ForcingFiles.csv output file and look for non-sensible numerical val-
ues (e.g., negative PET or NaN radiation). These errors in Forcing Functions will propagate
through the model and generate hydrograph errors. Comment out or modify the correspond-
ing forcing function commands (catalogued in section A.1.2 of the appendix) until the faulty

20

https://http://www.civil.uwaterloo.ca/raven_forum//

forcing output not generated. For instance, if the PET is consistently negative, replace the
PET estimation or PET orographic correction algorithm with another method. If the errors are
fixed, then this may be due to poor parameters which drive this method. If the errors remain,
then data which is used to drive PET estimation may be faulty OR one of the other forcing
functions which drives PET (such as shortwave radiation, temperature, etc.) is faulty. The
la�er would also be obvious from a cursory inspection of the ForcingFiles.csv output.

(b) Step 2: If the forcing functions are not the culprit, then examine the WatershedStorage.csv
file and check for clearly erroneous estimates of watershed-averaged water storage. If, for
example, glacial storage looks faulty but everything else is OK, comment out the algorithms
which operate on glacial storage in the :HydrologicProcesses block in the .rvi file and
re-run until the glacial storage results are feasible (perhaps monotonically growing or shrink-
ing, but not NaN or hugely negative). This narrows us down to the problematic process algo-
rithm. Check the documentation to make sure that the proper parameters are provided for
this algorithm in the .rvp file for all glacier HRUs. If you still cannot diagnose the problem,
first ask questions on the Raven forum (https://http://www.civil.uwaterloo.
ca/raven_forum//), then (if needed) send the problematic input files with a short de-
scription to jrcraig@uwaterloo.ca.

3. If the model is providing odd/unexpected output.

Sometimes generated hydrographs are not completely broken, but are at odds with our expecta-
tions. For example, outflows are 10 times larger or smaller than they should be when compared
to the observed hydrographs. These issues are much thornier, as they can arise from individu-
ally reasonable (but collectively unreasonable) combinations of parameter inputs. They are also
quite possible if you are building a model from scratch with Raven, and have done so improperly
(e.g., Raven technically allows you the flexibility to have two evapotranspiration processes, but it is
physical nonsense to implement this). There are some general approaches you may take towards
debugging this kind of model issue.

(a) Look at the WatershedStorage.csv file for clues. Most watersheds should have a quasi-
steady state behaviour from year to year; there may be wet years and dry years, but storage in
general oscillates and repeats a relatively consistent water balance from month to month. If
your model is a continuous model of three or more years, you should expect this type of oscil-
latory behavior. If you find that one storage compartment is steadily increasing or decreasing
in storage, it may be worthwhile to investigate the cause. In many cases, the inflow/outflow
processes are not properly matched, e.g., a middle soil storage unit may be filled due to perco-
lation at a much faster rate than it depletes due to baseflow losses, even at the annual scale.
Another possible symptom that may be seen in the WatershedStorage.csv file is a stor-
age compartment which always fills but never drains (or the opposite). Some storage units are
intended to have this behavior, such as ATMOS_PRECIP (which is always a water source, and
is a proxy for cumulative precipitation) and ATMOSPHERE (which is always a water sink, and
is a proxy for cumulative evapotranspiration losses). Others, such as deep GROUNDWATER,
may be used to represent external losses from the system. However, any other storage unit
should have means of decreasing and increasing in storage, as determined by the hydrologic
process list (each storage unit should act as a “To” and “From” storage unit), and the parameter
lists.

(b) Look at the ForcingFunctions.csv file for clues. Again, poor parameter choices can lead to
significant underestimates or overestimates of system forcings, which propagate through to
hydrographs and other model outputs. Look for reasonable values for radiative, precipitation,
and temperature forcings to the watershed. What constitutes “reasonable” is specific to the
climate and landscape, and is up to you to define.

21

https://http://www.civil.uwaterloo.ca/raven_forum//
https://http://www.civil.uwaterloo.ca/raven_forum//

(c) Check your stream network topology. The surface water network is fully defined by the list
of DOWNSTREAM_IDs in the :SubBasins command. If this is improperly constructed, or if
the entirety of an upstream watershed is not included in the model, you may need to either
correct the stream network or add user-specified inflows to account for upstream parts of the
watershed not explicitly included in the model.

(d) Check your cumulative watershed area. The area of each subbasin, and therefore also the total
drainage area of each subbasin, is dependent upon the areas of its constituent HRUs. If these
areas are incorrect, or if certain HRUs are not included in the model, this can lead to mass
balance errors.

(e) Check the units of your forcing functions. A common mistake for subdaily flow information
is to supply precipitation in mm rather than as a precipitation intensity in mm/d, leading you
to be o� by a factor of 24.

4. Turn on :NoisyMode

If the issue is prior to simulation, or if the RavenErrors.txt warnings and errors are di�icult to com-
prehend, adding the :NoisyMode and :EndPause command to the top of the .rvi file writes an
extensive stream of information to the command prompt/console. Occasionally, this can direct you
to a bad input command.

2.9 Version Notes

2.9.1 Major Changes from v3.0.1 to v3.0.4 (Feb 2021)

The following features have been added:

1. optimization for reading small windows of very large NetCDF files; support for incomplete NetCDF
coverage over disabled HRUs

2. fixed :SBGroupPropertyMultiplier for MANNINGS_N

3. support for in-stream specified concentration sources

4. competitive ET supported by :OpenWaterEvaporation routines

5. improved sublimation routines, added vertical wind profile options

6. minor bug fixes and QA/QC improvement

2.9.2 Major Changes from v3.0 to v3.0.1 (Oct 2020)

The following features have been added:

1. addition of subbasin groups and subbasin group property specification

2. improved support for gridded PET and open water PET

3. minor bug fixes and QA/QC improvement

2.9.3 Major Changes from v2.9.1 to v3.0 (May 2020)

The following features have been added:

1. addition of SW_CLOUD_CORR_ANNANDALE algorithm for shortwave cloud cover correction

22

2. competitive ET now supported by all ET algorithms (can suppress for backward compatibility with
:SuppressCompetitiveET command. AET magnitudes are now directly accessible as state
variable in custom outputs. Additional option :SnowSuppressesPET can be used to suppress
ET when snow is on the ground. New PET_LINACRE algorithm for PET estimation.

3. support for simple insertion data assimilation of streamflow with :AssimilateStreamflow
command

4. new reservoir regulatory support:

• :ReservoirMinFlow

• :ReservoirMaxFlow

• :ReservoirDownstreamFlow

• :ReservoirMaxQDecrease

• :ReservoirOverflowMode

5. support for irrigation demand and flow diversions:

• :IrrigationDemand

• :ReservoirDownstreamDemand

• :FlowDiversion

• :FlowDiversionLookupTable

• :DemandMultiplier

• :UnusableFlowPercentage

6. support for stage-volume and stage-area curves for lake-type reservoirs and groundwater seepage
from reservoirs

7. the :LatFlush command now supports inter-basin lateral water transfer

8. support for period-ending NetCDF inputs using :PeriodEndingNC command and proper han-
dling of NetCDF time zones, o�set, and scale a�ributes

9. support for reference elevations for gridded forcings

10. improved and optimized support for massive stream/lake networks

11. writing of interpolation weights to external file using :WriteInterpolationWeights com-
mand

12. major bug fixes: correct handling of di�usive wave hydrograph for basins with very small travel
times; using open water ET for reservoir mass balance; glitch in the determination of day-switching
which impacts some sub-daily models using daily min/max temperature for estimation of melt en-
ergy/PET

13. minor bug fixes; improved QA/QC of inputs

The following backwards compatibility issues were introduced:

1. None

23

2.9.4 Major Changes from v2.9 to v2.9.1 (May 2019)

The following features have been added:

1. support of user-specified NetCDF a�ributes

2. support for non-standard calendars

3. support for non-midnight start time with NetCDF forcing

4. minor bug fixes; improved QA/QC of inputs

2.9.5 Major Changes from v2.8.1 to v2.9 (Feb 2019)

The following features have been added:

1. Support for level 1 (exact) emulation of the MOHYSE model (Fortin and Turco�e, 2006); multiple
processes added.

2. Support for level 1 emulation of the HMETS model (Martel et al., 2017); multiple processes added.

3. Support for the PAVICs platform

4. Added PET_OUDIN PET estimation method and :DirectEvaporation support.

5. Added :AnnualCycle method for inpu�ing cyclical time series.

6. Integrated multiple algorithms from the Cold Regions Hydrological Model (CRHM) (Pomeroy et al.,
2007), including the PET approach of Granger and Gray (1989), the rain snow partitioning approach
of Harder and Pomeroy (2013), two snow albedo evolution algorithms, a energy balance potential
melt routine and a simple snow balance approach.

7. Support for model simulation start times other than midnight

The following backwards compatibility issues were introduced:

1. Due to a bug in the calculation of UTM zone from HRU latitudes and longitudes, the interpolation
schemes for large models with multiple meteorologic gauges had an anisotropic bias (e.g., long,
thin nearest-neighbor zones). This has been fixed, leading to a discrepancy between old and new
model precipitation and temperature interpolation. This will not impact Raven models using single
gauges, NetCDF gridded inputs, or user-specified gauge weights, only those using inverse distance
or nearest neighbor interpolation.

2.9.6 Major Changes from v2.8 to v2.8.1 (Jul 2018)

The following features have been added:

1. FEWS-compliant NetCDF custom and standard output (Hydrographs.nc and WatershedStorage.nc)

2. support of deaccumulation of NetCDF input data

3. RAINSNOW_HARDER Rain/snow discrimination

4. fixes to relative file path handling, :VegetationChange/:LandUseChange/lake crest height/target
stage bugs introduced in v2.8,

The following backwards compatibility issues were introduced:

1. relative file paths are now (correctly and consistently) with reference to the file specified rather than
the model working directory

24

2.9.7 Major Changes from v2.7 to v2.8

The following features have been added:

1. Documentation improvements/Bug fixes/Improved QA/QC on model inputs

2. Significant speed improvements, particularly with NetCDF processing

3. Wetlands - new wetland HRU type; support for lateral flow to and from geographically-isolated and
riparian wetlands; new depression flow and seepage routines for wetland depression storage

4. Lakes and Reservoirs - lake-type reservoirs for natural (unmanaged) run-of-river lakes; time-dependent
weir control and rule curves (maximum, minimum, and target stages); spillway and underflow stage-
discharge curve specification; advective transport of constituents and tracers through reservoirs;
reservoir inflow and net inflow diagnostics; reservoir outflow override; reservoir mass balance re-
porting;

5. Inter-HRU Flow and Transport - generalized lateral flow support of water between HRUs and lateral
advective transport of constituents;

6. Shortwave radiation on sloping surfaces - the default method now uses the robust analytical calcu-
lation approach of Allen et al. (2006) for estimating clear sky solar radiation

7. Improved Input/Output - custom flux reporting between/to/from any state variable, mixed gauge
interpolation support (i.e., when temperature and precipitation reported at di�erent gauges)

8. Other - HRU/subbasin disabling (only model a subset of the model); subbasin-specific Manning’s n
and slope; automated HRU group population; optimization and speed improvements (particularly
for NetCDF input); running average NSE diagnostics; basin inflow hydrographs at downstream end
of subbasin; vegetation-based PET correction; support of date-based net shortwave radiation input
forcings;

The following backwards compatibility issues were introduced:

1. None

2.9.8 Major Changes from v2.6 to v2.7 (May 2017)

The following features have been added:

1. Documentation improvements/Bug fixes/Improved QA/QC on model inputs

2. Significantly improved support for flexible reservoir simulation and calibration - time-varying reser-
voir curves, unevenly spaced reservoir curves,

3. Support for gridded data in NetCDF format (see appendix A.4.6)

4. Improved place- and time-specific control over application of processes using the:->Conditional
command, :LandUseChange command, and :VegetationChange command.

5. :CreateRVPTemplate command can be used to generate a template .rvp file from specified .rvi
model configuration

6. Added a number of new diagnostics (LOG_NASH, NASH_DERIV, KLING_GUPTA)

7. Addition of the GAWSER-style snow balance and consolidation routine

8. Addition of US Army Corps snowmelt model

9. RunName can be specified from the command line

25

The following backwards compatibility issues were introduced:

1. None

2.9.9 Major Changes from v2.5 to v2.6 (May 2016)

The following features have been added:

1. Significant improvements to the Raven Documentation

2. Support for additional model quality diagnostic (R2)

3. Improved support for sub-daily emulation of the UBC watershed model

4. New elevation-based gauge interpolation algorithm (INTERP_INVERSE_DISTANCE_ELEVATION)

5. New two-layer snow melt model (SNOBAL_TWO_LAYER)

6. Improved support for blank observation values and non-zero observation weights in model diag-
nostics

The following backwards compatibility issues were introduced:

1. The hydrograph observations file is now wri�en in period-starting (rather than period-ending) for-
mat, meaning that the single time step correction to the start date of a continuous observation
hydrograph time series is no longer needed. ACTION: Existing observation .rvt files will have to be
amended with a simple date shi�.

2. For models with more than one subbasin where the reference or initial stream discharges were
not user-specified, the algorithm used to estimate basin initial and reference flows has been sig-
nificantly modified. Automatic estimation of network flows now requires the specification of the
:AnnualAvgRuno� command in the .rvp file. ACTION: Recalibration of existing models will likely
be required if Q_REFERENCEwas not user-specified for all basins and a celerity-dependent routing
algorithm was used (e.g., a Muskingum variant, plug flow, or di�usive wave).

3. For models with more than one gauge and gauge-specific :SnowCorrections and :RainCor-
rections, the interpolation algorithm has been modified to more appropriately handle the spatial
handling of these corrections. ACTION: Recalibration of existing models may be required.

26

Chapter 3

The Hydrologic Process Library

The following chapter outlines the many process algorithms available for modelling the water cycle in
Raven.

3.1 Precipitation Partitioning

The precipitation partitioning process moves water, in the form of snow and rain, to the appropriate
storage compartment. The order of application is depicted in figure 3.1. The specific distribution of rainfall
and snowfall to the canopy, and ground surface (in the form of ponded water) depends upon the existence
of particular storage compartments and a number of model parameters.

Figure 3.1: Partitioning of rainfall/snowfall to the appropriate surface storage compartments

The partitioning of precipitation proceeds as follows (for non-lake HRUs):

1. The amount of rain and snow captured by the vegetation canopy is controlled by the precipitation
interception rate (calculated as described below) and the storage capacity of the canopy. If the
canopy exists as a storage state variable (i.e., CANOPY or CANOPY_SNOW) are present in the model,
these storage compartments are filled at the calculated interception rate until filled. The remain-
der (if any) is allowed to proceed onward, with a correction included for the percent forest cover,
(land use parameter FOREST_COVER). If canopy water/snow storage is not explicitly modeled, the

27

amount of available canopy storage is not considered and the amount of snow and rain that would
be captured by the canopy is “evaporated” to the atmosphere.

2. If there is a snow state variable in the model (determined usually by the presence of some kind of
snow balance or snow melt algorithm), the snow as SWE is increased by an amount corresponding
to snowfall. If rain hits the snowpack, it fills the unripe pores in the snowpack and is allowed to
proceed onward. If required by the model, cold content, and snow density may also be updated.
Some of the snow balance algorithms override the details of this process, instead moving all snowfall
to NEW_SNOW and all rainfall to PONDED_WATERwhere it waits to be handled by the snow balance
algorithm.

The water in the PONDED_WATER storage compartment, which typically also includes meltwater from
snow melt, waits to be distributed to the shallow subsurface or surface water storage through subsequent
application of an infiltration or abstraction algorithm.

Special HRU types for open water, exposed rock, glaciers, and wetlands (determined by WATER,
ROCK, GLACIER and WETLAND prefixes on HRU soil profiles) are treated a bit di�erently than the
default land HRU. In these HRUs, top soil is not active; therefore precipitation partitioning works
a bit di�erently and (e.g.,) infiltration and soil evaporation routines are inactive.

For lake HRUs, all snow and rain is converted to liquid water and added directly to the SURFACE_WATER
store ready to be routed downstream via in-catchment routing. Alternately, water can be sent to the
LAKE_STORAGE store (if specified using the :LakeStorage command), where water release is delayed
to the surface water network as controlled using (e.g.,) the :LakeRelease process (section 3.13). This
la�er approach is likely preferred for systems dominated by small lake features. Lake HRUs are defined
as those with a zero-layer soil profile whose name begins with LAKE.

For wetland HRUs, all rain is converted to liquid water and added directly to the DEPRESSION store.
Wetland HRUs are defined as those with a soil profile whose name begins with WETLAND. Snow which
falls on a wetland is allowed to accumulate, assuming that the wetland is frozen. When it melts, it turns
to ponded water and must be flushed to depression storage via proper commands in the :Hydrolog-
icProcesses block within the .rvi file.

For exposed rock HRUs, all throughfall and snowmelt is stored as PONDED_WATER. Since infiltration
schemes don’t function with rock-type HRUs, the user must provide an alternate mechanism to reach
SURFACE_WATER (usually via a conditional :Flush process).

Example usage in the .rvi file:

:Precipitation RAVEN_DEFAULT ATMOS_PRECIP MULTIPLE

3.1.1 Canopy Interception Algorithms

The canopy interception algorithms, specified by the model command :PrecipIceptFract are used
to determine the percent rain or snow captured by a full forest/crop canopy. In all cases, the maximum
interception rates are given as

Rint = θrain ·R
Sint = θsnow · S

whereR andS are snowfall rates, in [mm/d],Rint andSint are interception rates, in mm/d, and θrain/θsnow
are the interception percentages (values between 0 and 1). These maximum interception rates may be lim-
ited (as mentioned above) by the current amount of water stored in the canopy. Many of these rates are

28

controlled by leaf area index, LAI, and stem area index, SAI, calculated as follows:

LAI = (1− s) · LAImax · fLAI(m) (3.1)

SAI = (1− s) · β · hveg

where s is the land use parameter FOREST_SPARSENESS, LAImax is the maximum LAI (vegetation
parameter MAX_LAI, fLAI(m) is the relative LAI correction by monthm, specified by the :Seasonal-
RelativeLAI command for each vegetation type, and β is the vegetation parameter SAI_HT_RATIO.
Note that FOREST_COVERAGE should be interpreted as the percentage of land covered in representative
vegetation, and FOREST_SPARSENESS should be interpreted as a land use-based correction factor for
vegetation density. The height of vegetation, hveg is calculated as

hveg = hmax · fveg(m)

wherehmax is the maximum vegetation height (vegetation parameterMAX_HT) and fveg(m) is the relative
vegetation height correction by monthm, specified using the :SeasonalRelativeHeight command
in the .rvp file.

The following algorithms are used to determine the percentages of rain and snow that will be intercepted
by the vegetative canopy:

User-specified throughfall fraction (PRECIP_ICEPT_USER)

The interception percentages are directly specified by the user θrain is the vegetation parameter
RAIN_ICEPT_PCT and θrain is the vegetation parameter SNOW_ICEPT_PCT.

Linear LAI-based method (PRECIP_ICEPT_LAI)

From Dingman (2002), the interception percentages are given as a linear function of the LAI:

θrain = αrain · (LAI + SAI)

θsnow = αsnow · (LAI + SAI)

whereαrain andαsnow are the vegetation parametersRAIN_ICEPT_FACT andSNOW_ICEPT_FACT,
respectively. The leaf area index LAI and stem area index SAI are calculated as indicated above.

Exponential LAI-based method (PRECIP_ICEPT_EXPLAI)

The interception percentages are given as:

θrain = 1− exp(−0.5(LAI + SAI))

θsnow = 1− exp(−0.5(LAI + SAI))

Hedstrom-Pomeroy method for snow (PRECIP_ICEPT_HEDSTROM)

If this method is chosen, the rain interception is the same as for PRECIP_ICEPT_EXPLAI, but
the snow interception is handled as documented in Hedstrom and Pomeroy (1998).

No interception (PRECIP_ICEPT_NONE)

Interception does not occur.

29

3.2 Infiltration

Infiltration refers to the partitioning of ponded water (the residual rainfall and/or snowmelt) between the
shallow surface soil (infiltrated water) and surface water (runo�). Infiltration is typically controlled by
the saturation of the soil and its hydraulic properties (e.g., hydraulic conductivity, infiltration capacity).

Infiltration always moves water from PONDED_WATER to SOIL[0] (the top soil layer), and depending
upon the soil structure model specified by the :SoilModel command, may additionally push water to
lower soil moisture stores. The remaining ininfiltrated water is typically treated as runo� and moved to
SURFACE_WATER.

Infiltration is limited by the availability of soil/aquifer storage. Many of the following algorithms use
the quantities of maximum soil storage (φmax [mm]), maximum tension storage (φtens [mm]), and field
capacity storage (φfc [mm]) in a layer, always calculated as:

φmax = Hn(1− SF) (3.2)

φtens = φmax(Sfc − Swilt)
φfc = φmaxSfc

whereH is the soil layer thickness [mm], n is the porosity (soil property POROSITY),SF is the stone frac-
tion (soil propertySTONE_FRAC),Sfc is the saturation at field capacity (soil parameterFIELD_CAPACITY),
and Swilt is the saturation at the wilting point (soil parameter SAT_WILT).

Example usage in the .rvi file:

:Infiltration INF_GREEN_AMPT PONDED_WATER MULTIPLE

Infiltration Algorithms

Partition coe�icient method (INF_PARTITION)

A simple linear relationship between precipitation and runo� (e.g., Chow et al. (1988)), characterized
by:

Minf = R · (1− Pc)

whereMinf is the infiltration rate [mm/d],R is the rainfall/snowmelt rate [mm/d] (alternately, the
current amount of ponded water divided by the model timestep), and Pc is the partition coe�icient,
specified as the land use parameter PARTITION_COEFF. The remainder of rainfall is routed to
surface water.

SCS method (INF_SCS)

The standard Soil Conservation Society (SCS) method (Soil Conservation Service, 1986), where in-
filtration is a function of the local curve number:

Minf = R ·

(
1− (R− 0.2S)2

R+ 0.8S

)

where Minf is the infiltration rate [mm/d], R is the rainfall/snowmelt rate [mm/d] (alternately,
the current amount of ponded water divided by the model timestep), and S [mm] is the retention
parameter

S = 25400/CN − 254

30

where CN is the SCS curve number (land use parameter SCS_CN. The curve number for moderate
antecedent moisture content (condition II) is user-specified with land use parameter SCS_CN and
corrected for dry or wet conditions based upon 5-day precipitation history and whether or not it is
growing season. The SCS method should only be used for daily simulations.

Explicit Green Ampt method (INF_GREEN_AMPT)

The explicit calculation of Green-Ampt cumulative (Green and Ampt, 1911) infiltration

Minf = min

(
R, ksat

(
1 +
|ψf |(φmax − φsoil)

F

))
where R is the rainfall/snowmelt rate [mm/d], F uses the nth recursive approximation of the Lam-
bertW−1 function (Barry et al., 2005). The variables ψf [-mm], φmax [mm], and φsoil [mm], are the
Green-Ampt we�ing front suction (soil parameter WETTING_FRONT_PSI), maximum soil mois-
ture content (defined in equation 3.2), and soil moisture at the start of the time step, a state variable.
ksat is the saturated conductivity of the soil [mm/d], soil parameter HYDRAUL_COND. All param-
eters used are those associated with the top soil.

Simple Green Ampt method (INF_GA_SIMPLE)

The quick-and-dirty version of the Green-Ampt (Green and Ampt, 1911) analytical solution for dis-
crete time-stepping schemes:

Minf = min

(
R, ksat

(
1 +
|ψf |(φmax − φsoil)

F

))
where R is the rainfall/snowmelt rate [mm/d]. F [mm], the cumulative infiltration, is accumu-
lated as a state variable during simulation, and reverts to zero a�er prolonged periods without
precipitation. The variables ψf [-mm], φmax [mm], and φsoil [mm], are the Green-Ampt we�ing
front suction (soil parameter WETTING_FRONT_PSI), maximum soil moisture content (defined in
equation 3.2), and soil moisture at the start of the time step. ksat is the saturated conductivity of
the soil [mm/d], soil parameter HYDRAUL_COND. All parameters used are those associated with
the top soil.

VIC method (INF_VIC)

From the variable infiltration capacity model (Wood et al., 1992):

Minf = R ·K1

(
γαzmax + zmin −

φsoil
φmax

)γ
where R is the rainfall/snowmelt rate [mm/d], φsoil [mm] is the soil moisture content, φmax is the
maximum soil storage capacity as defined using equation 3.2, α is the soil parameter VIC_ALPHA,
zmin and zmax are the soil parameters VIC_ZMIN and VIC_ZMAX, and K1 is given by:

K1 = ((zmax − zmin)αγ)−γ

VIC/ARNO method (INF_VIC_ARNO)

The VIC/ARNO model as interpreted by (Clark et al., 2008).

Minf = R ·

1−

(
1− φsoil

φmax

)b
31

where R is the rainfall/snowmelt rate [mm/d], b is the soil parameter B_EXP, φsoil is the top soil
layer water content [mm], and φmax is the maximum topsoil storage [mm] calculated using equa-
tion 3.2.

HBV method (INF_HBV)

The standard HBV model approach (Bergstrom, 1995).

Minf = R ·

1−

(
φsoil
φmax

)β
where β is the soil parameter HBV_BETA, φsoil is the soil layer water content [mm], and φmax is
the maximum soil storage [mm] calculated using equation 3.2.

PRMS method (INF_PRMS)

The PRMS model (Leavesley and Stannard, 1995) as interpreted by Clark et al. (2008):

Minf = R ·
(

1− Fmaxsat min

(
φsoil
φtens

, 1

))
where φsoil is the soil layer water content [mm], φtens is the maximum tension storage [mm] cal-
culated using equation 3.2, and Fmaxsat is the maximum saturated area fraction (land use parameter
MAX_SAT_AREA_FRAC).

UBC Watershed Model method (INF_UBC)

As documented in �ick (2003), the UBCWM infiltration algorithm partitions ponded water to
surface water, interflow, and two groundwater stores. The infiltration rate into the shallow soil is
calculated as

Minf = R · (1− b2)

whereMinf is limited by the soil storage deficit and b2, the e�ective impermeable area percentage,
is calculated using a deficit-based estimate corrected with a special term for flash floods (corre-
sponding to higher rainfall/melt rates):

b2 = b1 + (1− b1) · FF

here b1, the unmodified e�ective impermeable area percentage, calculated as

b1 = Fimp · 10

(
−φmax−φsoilP0AGEN

)

where φsoil and φmax are as defined in equation 3.2 and FF , the flash factor (which is constrained
to vary between 0 and 1) is calculated as:

FF = ·
(

1 + log

(
φpond

V0FLAX

)
/ log

(
V0FLAX

1800

))
here,Fimp [-] is the land use parameterIMPERMEABLE_FRAC, V0FLAX [mm] is the global ponding
parameterUBC_FLASH_PONDING, and P0AGEN [mm] is the soil propertyUBC_INFIL_SOIL_DEF,
the reference soil deficit used at which 10 percent of the soil surface generates runo�.

32

The remaining rainfall/snowmelt is distributed to groundwater (at rate Mperc), interflow (at rate
Mint, and runo� Mrun using the following expressions

Mperc = min (Mperc
max, R−Minf) · (1− b2)

Mint = (R−Minf −Mperc) · (1− b2)

Mrun = b2 ·R

To summarize, a percentage b2 of the rainfall/snowmelt runs o� directly. The remainder first infil-
trates into the shallow soil, until the deficit is filled. Any remaining water then percolates into the
groundwater at a maximum rate Mperc

max [mm/d], specified using the MAX_PERC_RATE parameter
of the groundwater soil layers. This component will be partitioned such that a certain percentage,
UBC_GW_SPLIT, a global parameter specified using the :UBCGroundwaterSplit command,
goes to the lower groundwater storage, whereas the remainder goes to upper groundwater storage
The final remaining water (if any) goes to interflow storage, where it will be routed to the surface
water network.

GR4J infiltration method (INF_GR4J)

From the GR4J model (Perrin et al., 2003):

Minf = φmax ·

α · (1−
(
φsoil
φmax

)2

1 + αφsoil
φmax


where α = tanh(φpond/φmax), φpond [mm] is the ponded water storage a�er rainfall/snowmelt,
φsoil is the top soil layer water content [mm], and φmax is the maximum topsoil storage [mm]
calculated using equation 3.2.

HMETS infiltration method (INF_HMETS)

From the HMETS model (Martel et al., 2017):

Minf = R ·
(

1− α · φsoil
φmaxsoil

)
whereR is the rainfall/snowmelt rate [mm/d],α is the unitless land use parameterHMETS_RUNOFF_COEFF,
φsoil is the topsoil layer water content, andφmax is the maximum soil storage [mm] calculated using
equation 3.2.

33

3.3 Baseflow

Baseflow refers to the flow of water from an aquifer or deeper soil horizon to surface water, typically
due to a head gradient between fully saturated soil and stream. It may be considered the sum of the
contribution of deep groundwater exchange with a river and delayed storage in the streambank.

Baseflow moves water from either SOIL[m] or AQUIFER state variables, depending upon the soil struc-
ture model specified by the :SoilModel command. The water is always moved to SURFACE_WATER.
Baseflow is rate-limited by the availability of soil/aquifer storage. Example usage in the .rvi file:

:Baseflow BASE_LINEAR SOIL[4] SURFACE_WATER

Available Algorithms

Constant baseflow (BASE_CONSTANT)

A constant, specified rate of baseflow:

Mbase = Mmax

where Mmax [mm/d] is the maximum baseflow rate, soil parameter MAX_BASEFLOW_RATE.

Linear storage (BASE_LINEAR_STORAGE or BASE_LINEAR_ANALYTIC)

A very common approach used in a variety of conceptual models. The baseflow rate is linearly
proportional to storage:

Mbase = kφsoil

Where k [1/d] is the baseflow coe�icient (soil parameter BASEFLOW_COEFF), and φsoil is the
water storage [mm] in the soil or aquifer layer. An alternate version, BASE_LINEAR_ANALYTIC
may be used to simulate the same condition, except using a closed-form expression for integrated
flux over the time step (∆t):

Mbase = φsoil · (1− exp(−k∆t))/∆t

The two methods are e�ectively equivalent for su�iciently small time steps, but the second is pre-
ferred for large values of k.

Non-linear storage (BASE_POWER_LAW)

A very common approach used in a variety of conceptual models, including HBV Bergstrom (1995).
The baseflow rate is non-linearly proportional to storage:

Mbase = kφnsoil

Where k [1/d] is the baseflow coe�icient (soil parameterBASEFLOW_COEFF), andφsoil is the water
storage [mm] in the soil or aquifer layer, and n is the user-specified soil parameter BASEFLOW_N.

VIC baseflow method (BASE_VIC)

From the VIC model Wood et al. (1992) as interpreted by (Clark et al., 2008):

Mbase = Mmax

(
φsoil
φmax

)n
34

whereMmax [mm/d] is the maximum baseflow rate at saturation (soil parameterMAX_BASEFLOW_RATE),
φsoil is the water storage [mm] in the soil or aquifer layer, φmax is the maximum soil storage ca-
pacity , and n is the user-specified soil parameter BASEFLOW_N.

GR4J baseflow method (BASE_GR4J)

From the GR4J model Perrin et al. (2003):

Mbase =
φsoil
∆t
·

1−

(
1 +

(
φsoil
φref

)4
) 1

4


where φref [mm] is the reference soil storage, the user-specified soil parameter GR4J_X3, which
can be interpreted as a baseflow reference storage, φsoil is the water storage [mm] in the soil or
aquifer layer.

Topmodel baseflow method (BASE_TOPMODEL)

From TOPMODEL (Beven and Kirkby, 1979)as interpreted by (Clark et al., 2008):

Mbase = Mmax ·
φmax
n
· 1

λn
·
(
φsoil
φmax

)n
whereMmax [mm/d] is the maximum baseflow rate at saturation (soil parameterMAX_BASEFLOW_RATE),
φsoil is the water storage [mm] in the soil layer, φmax is the maximum soil storage capacity, λ is
the mean of the power-transformed topographic index [m] (terrain parameter LAMBDA), and n is
the user-specified soil parameter BASEFLOW_N.

Threshold-based baseflow method (BASE_THRESH_POWER)

Here, baseflow doesn’t commence until a threshold saturation of the soil layer is met. Above the
threshold, the outflow rate is controlled by saturation up to a maximum rate.

Mbase = Mmax ·

(
φsoil
φmax

− Sth
1− Sth

)n
whereSth [-] is the threshold saturation at which baseflow begins (soil parameterBASEFLOW_THRESH),
Mmax is the soil parameter MAX_BASEFLOW_RATE [mm/d], and the power law coe�icient n is
the soil parameter BASEFLOW_N.

Threshold-based baseflow method (storage) (BASE_THRESH_STOR)

Here, baseflow doesn’t commence until a threshold storage amount of the soil layer is met. Above
the threshold, the outflow rate is linearly related to storage excess above the threshold.

Mbase = K2 ·max (φsoil − φthresh, 0)

where φth [mm] is the threshold soil storage at which baseflow begins (soil parameter STOR-
AGE_THRESHOLD), K2 is the soil parameter BASEFLOW_COEFF2 [1/d].

35

3.4 Percolation

Percolation refers to the net downward flow of water from one soil/aquifer unit to another. This process
is physically driven by a moisture gradient, but this is o�en simplified in conceptual percolation models.

Percolation moves water between SOIL[m] or AQUIFER units, depending upon the soil structure model
specified by the:SoilModel command. The user typically has to specify both the ’from’ and ’to’ storage
compartments. Percolation is rate-limited by the availability of soil/aquifer storage and by the capacity
of the receptor ’to’ compartment. Example usage in the .rvi file:

:Percolation PERC_LINEAR SOIL[0] SOIL[1]
:Percolation PERC_LINEAR SOIL[1] SOIL[2]

Available Algorithms

Constant percolation (PERC_CONSTANT)

A constant, specified rate of percolation from one soil layer to the next:

Mperc = Mmax

where Mmax is the soil parameter MAX_PERC_RATE of the ’from’ soil compartment.

Linear percolation (PERC_GAWSER)

As used in the GAWSER hydrologic model, (Schroeter, 1989).

Mperc = Mmax

(
φsoil − φfc
φmax − φfc

)

where Mmax is the soil parameter MAX_PERC_RATE, φsoil [mm] is the moisture content of the
soil layer, and the other moisture contents are defined in equation 3.2. All parameters refer to that
of the ’from’ soil compartment.

Linear percolation (PERC_LINEAR)

Percolation is proportional to soil water content:

Mperc = kφ̇soil

where k [1/d] is the soil parameter PERC_COEFF and φsoil [mm] is defined in equation 3.2. All
parameters refer to that of the ’from’ soil compartment.

Power law percolation (PERC_POWER_LAW)

Percolation is proportional to soil saturation to a power:

Mperc = Mmax

(
φsoil
φmax

)n
whereMmax [mm/d] is the soil parameter MAX_PERC_RATE, n is the soil parameter PERC_N and
φsoil [mm] and φmax [mm] are defined in equation 3.2. All parameters refer to that of the ’from’
soil compartment.

36

PRMS percolation method (PERC_PRMS)

Percolation is proportional to drainable soil saturation to a power, as done in the PRMS model
(Leavesley and Stannard, 1995):

Mperc = Mmax

(
φsoil − φtens
φmax − φtens

)n
whereMmax [mm/d] is the soil parameter MAX_PERC_RATE, n is the soil parameter PERC_N and
φsoil, φtens, and φmax [mm] are defined in equation 3.2. All parameters refer to that of the ’from’
soil compartment.

Sacramento percolation method (PERC_SACRAMENTO)

Percolation is given by the following expression:

Mperc = M base
max

1 + α

(
1−

φtosoil
φtomax

)ψ(φsoil − φtens
φmax − φtens

)

where M base
max is the saturated baseflow rate (soil parameter MAX_BASEFLOW_RATE), α is soil pa-

rameter SAC_PERC_ALPHA, γ is the soil parameter SAC_PERC_EXPON, and φsoil and φmax are
defined in equation 3.2. All parameters refer to that of the ’from’ soil compartment, unless they
have the to superscript.

GR4J percolation method (PERC_GR4JEXCH and PERC_GR4JEXCH2)

Percolation (really here exchange between a conceptual soil store and a groundwater store) is cal-
culated as consistent with the original GR4J model (Perrin et al., 2003):

Mperc = −x2 ∗ (min(φsoil/x3, 1.0))3.5

where x2 is the soil parameter GR4J_X2 and x3 is the soil parameter GR4J_X3 (both properties
of the soil from which the water is percolating). In the case of PERC_GR4JEXCH2, the soil water
content φsoil refers to the topsoil storage (in SOIL[0]) rather than the soil from which percolation
is being taken.

To do (1)

37

3.5 Interflow

Interflow refers to subsurface flow moving laterally through a shallow unsaturated soil horizon until it
enters a stream channel.

Interflow moves water between SOIL and SURFACE_WATER units, and is typically used in conjunction
with a (slower) baseflow algorithm. The user typically has to specify the ’from’ storage compartment (i.e.
a specific soil layer); the ’to’ storage compartment is always SURFACE_WATER. Interflow is rate-limited
by the availability of soil/aquifer storage. Example usage in the .rvi file:

:Interflow INTERFLOW_PRMS SOIL[1] SURFACE_WATER

Available Algorithms

PRMS interflow method (INTERFLOW_PRMS)

Interflow is proportional to drainable soil saturation, as done in the PRMS model (Leavesley and
Stannard, 1995):

Minter = Mmax ·

(
φsoil − φtens
φmax − φtens

)
whereMmax is the maximum interflow rate (soil parameter MAX_INTERFLOW_RATE), φsoil is the
moisture content (in mm) of the draining soil, and φtens, and φmax are defined in equation 3.2. All
parameters refer to that of the ’from’ soil compartment.

38

3.6 Soil Evaporation

Soil evaporation (really evapotranspiration) involves converting water from the soil layers to water vapour
in the atmosphere via both evaporation and transpiration. The rate of evapotranspiration depends on soil
moisture, plant type, stage of plant development and weather conditions such as solar radiation, wind
speed, humidity and temperature.

Soil evaporation always moves water between SOIL[m] and ATMOSPHERE units. Which soil layers are
subjected to evaporation depend on the soil structure model specified by the :SoilModel command
and the particular evaporation algorithm. Soil evaporation is rate-limited by the availability of soil/aquifer
storage and by the capacity of the atmosphere to absorb water vapour. Example usage in the .rvi file:

:SoilEvaporation SOILEVAP_VIC SOIL[0] ATMOSPHERE

In all notation below, PET refers to the potential evapotranspiration determined by one of the forc-
ing function estimators of section 5.4. In all cases, this PET may be modified by the soil parameter
PET_CORRECTION, which only modifies PET in these algorithms.

Available Algorithms

Uncorrected evaporation algorithm (SOILEVAP_ALL)

Water is removed from soil at the maximum rate until there is no water remaining:

Mevap = PET

VIC soil evaporation algorithm (SOILEVAP_VIC)

Soil ET is proportional to the topsoil saturation to a power, as done in the VIC model (Wood et al.,
1992):

Mevap = PET ·
(

1−
(

1− φsoil
φmax

)γ)
where PET is the potential evapotranspiration rate, γ is the soil parameter VIC_EVAP_GAMMA,
and φsoil, and φmax are defined in equation 3.2.

Linear evaporation-storage (SOILEVAP_LINEAR)

Actual evapotranspiration is linearly proportional to topsoil storage, up to a maximum of PET:

Mevap = min (α · φsoil, PET)

where PET is the potential evapotranspiration rate [mm/d], and φsoil [mm] is defined in equation
3.2, and α is the land use parameter AET_COEFF. This is used in the MOHYSE model Fortin and
Turco�e (2006).

Linear evaporation-saturation (SOILEVAP_HBV or SOILEVAP_TOPMODEL)

Soil ET is at PET if storage exceeds the tension storage, then is linearly proportional to the soil
saturation:

Mevap = PET ·min

(
φsoil
φtens

, 1

)
where PET is the potential evapotranspiration rate [mm/d], and φsoil [mm] and φtens [mm] are
defined in equation 3.2. The HBV model uses an additional snow correction, such that ET is zero in
non-forested areas if snow depth is non-zero.

39

Root-distributed 2-layer evaporation (SOILEVAP_ROOT)

Soil ET [mm/d] is linearly proportional to the soil saturation, but distributed by root fraction, ξm.
Soil ET is at ξm· PET if storage exceeds the tension storage.

MU
evap = PET · ξU ·min

(
φUsoil
φUtens

, 1
)

(3.3)

ML
evap = PET · ξL ·min

(
φLsoil
φLtens

, 1
)

(3.4)

where U and L refer to the upper and lower layers, respectively, and φsoil [mm] and φtens [mm]
are defined in equation 3.2. Currently, ξL and ξU are hardcoded as 0.3 and 0.7, respectively.

Sequential 2-layer evaporation (SOILEVAP_SEQUEN)

Daily soil ET [mm/d] is linearly proportional to the soil saturation; the top layer storage is exhausted
first, then ET can be withdrawn from the lower layer.

MU
evap = PET ·

(
φUsoil
φUtens

)
(3.5)

ML
evap = (PET−MU

evap) ·
(
φLsoil
φLtens

)
(3.6)

where U and L refer to the upper and lower layers, respectively, and φsoil [mm] and φtens [mm]
are defined in equation 3.2.

UBCWM approach (SOILEVAP_UBC)

Evaporation is controlled by the soil moisture deficit, φmax−φsoil, whereφmax is defined in equation
3.2, and is corrected for e�ective saturated area.

Mevap = PET · (1− βfast)10

(
−φmax−φsoil

γe

)

where γe is the soil parameter UBC_EVAP_SOIL_DEF (the soil deficit at which the actual ET
depletes to 0.1 PET), and βfast, a proxy for the e�ective impermeable fraction is calculated as

βfast = Fimp · 10

(
−φmax−φsoil

γa

)

where Fimp is the impermeable fraction (land use parameter IMPERMEABLE_FRAC) and γa is the
soil parameter UBC_INFIL_SOIL_DEF.

GR4J soil evaporation method (SOILEVAP_GR4J)

From the GR4J model Perrin et al. (2003):

Mevap = αφsoil
2.0− φsoil

φmax

1.0 + α
(

1.0− φsoil
φmax

)
where α = tanh(PET′/φmax), PET′ is the PET remaining a�er ponded water storage is depleted,
φsoil is the water storage [mm] in the topsoil, φmax is the maximum storage in the top soil.

40

HYPR soil/wetland evaporation method (SOILEVAP_HYPR)

From the HYPR model for representing prairie landscapes (Ahmed et al., 2020), intended to be used
in conjunction with theABST_PDMROF abstraction routine, which represents depression storage as
a probability distribution on the landscape. This process algorithm is unique in that it handles both
evaporative losses from the soil and the losses from the depression storage. The soil evaporation
rate is calculated in the same manner as the HBV model, where soil ET is at PET if storage exceeds
the tension storage, then is linearly proportional to the soil saturation:

M∗evap = PET ·min

(
φsoil
φtens

, 1

)
where PET is the potential evapotranspiration rate [mm/d], and φsoil [mm] and φtens [mm] are
defined in equation 3.2. The percentage of the landscape covered by depression storage is calculated
as in Mekonnen et al. (2014):

Fp = Fmax ·
(
φdep
φdmax

)n
whereFmax is the land use parameterMAX_DEP_AREA_FRAC,n is the land use parameterPONDED_EXP,
φdep is the depression storage in mm, and φdmax is the maximum depression storage on the land-
scape, DEP_MAX (mm).

Md
evap = (1− Fp) ·M∗evap

M s
evap = Fp · PETOW

where PETOW is the open water evaporation rate determined from the :OW_Evaporation-
specified method. The first term is evaporation from the soil, the second term is evaporation from
depression storage.

41

3.7 Capillary Rise

Capillary rise is the rise of groundwater above the water table due to surface tension. The capillary zone
extends up from the water table to the limit of capillary rise, and varies based on pore size and surface
tension. In conceptual watershed models, the capillary rise term o�en refers to a process that moves
water from lower to higher soil water stores, which may also implicitly include lateral groundwater flow
processes in a sloping domain.

Capillary rise occurs between SOIL and AQUIFER units, depending upon the soil structure model spec-
ified by the :SoilModel command. The user typically has to specify the ’to’ and ’from’ storage com-
partments. Capillary rise is rate-limited by the availability of soil/aquifer storage and by the capacity of
the receptor ’to’ compartment. Example usage in the .rvi file:

:CapillaryRise CRISE_HBV SOIL[1] SOIL[0]

Available Algorithms

HBV model capillary rise (CRISE_HBV)

Capillary rise rate is linearly proportional to soil saturation of the recipient soil, as done in the HBV
model (Bergstrom, 1995):

Mcrise = M cr
max

(
1− φsoil

φmax

)
where M cr

max is the maximum interflow rate (soil parameter MAX_CAP_RISE_RATE), and φsoil
and φmax are defined in equation 3.2. All parameters refer to that of the ’to’ soil compartment.

42

3.8 Canopy Evaporation

Canopy evaporation converts water from the vegetated canopy to water vapour in the atmosphere. The
rate of evaporation depends on plant type, stage of plant development and weather conditions such as
solar radiation, wind speed, humidity and temperature. Canopy evaporation always occurs between
CANOPY and ATMOSPHERE units. Canopy evaporation is rate-limited by the availability of canopy stor-
age. Example usage in the .rvi file:

:CanopyEvaporation CANEVP_RUTTER CANOPY ATMOSPHERE

Available Algorithms

Maximum canopy evaporation (CANEVP_MAXIMUM)

Moisture on the canopy evaporates at the potential ET rate, provided storage is available.

Mevap = PET · Fc · (1− fs)

where PET is the potential evapotranspiration rate, Fc is the forest cover of the HRU (land use
parameter FOREST_COVERAGE, and fs is the vegetation sparseness factor (land use parameter
FOREST_SPARSENESS.

Complete canopy evaporation (CANEVP_ALL)

All moisture on the canopy evaporates instantaneously, i.e., all intercepted precipitation is sent back
to the atmosphere. This is also the default behaviour if no canopy is present.

Ru�er canopy evaporation (CANEVP_RUTTER)

From (Ru�er et al., 1971):

Mevap = PET · Fc · (1− Ft)
(
φcan
φcap

)
where PET is the potential evapotranspiration rate, Fc is the forest cover of the HRU (land use pa-
rameterFOREST_COVERAGE),Ft is the trunk fraction (vegetation parameterTRUNK_FRACTION),
φcan [mm] is the storage in the canopy over the forested region, φcap [mm] is the storage capacity
of the canopy over the forested region.

43

3.9 Canopy Drip

Canopy drip is the loss of liquid water from canopy to land surface, typically due to the impacts of wind.
Canopy drip always occurs between CANOPY and PONDED_WATER units and is rate-limited by the avail-
ability of canopy storage. Example usage in the .rvi file:

:CanopyDrip CANDRIP_RUTTER CANOPY PONDED_WATER

Available Algorithms

Ru�er canopy drip (CANDRIP_RUTTER)

Moisture on the canopy which exceeds storage (given by vegetation parameter MAX_CAPACITY,
mm) falls instantaneously to the ground.

Slowdrain canopy drip (CANDRIP_SLOWDRAIN)

Moisture on the canopy which exceeds storage falls instantaneously to the ground, but the remain-
ing drip is proportional to storage:

Mdrip = α ·
(
φcan
φcap

)
where α is the vegetation parameter DRIP_PROPORTION, and φcan [mm] and φcap [mm] are
the canopy storage and capacity (vegetation parameter MAX_CAPACITY) in the forested region,
respectively. Drip only occurs in the forested region.

44

3.10 Abstraction

Abstraction refers to the redirection of rainfall to surface impoundments, such as swales, ponds, and
puddles. In Raven, these are collectively referred to as DEPRESSION storage.

Abstraction always moves water from the PONDED_WATER state variable to the DEPRESSION storage
state variable, but in some cases may also generate runo� (e.g., the ABST_PDMROF algorithm. Example
usage in the .rvi file:

:Abstraction ABST_PERCENTAGE PONDED_WATER DEPRESSION
#or
:Abstraction ABST_PDMROF PONDED_WATER MULTIPLE

Available Algorithms

SCS method (ABST_SCS)

The abstraction rate is determined from the Soil Conservation Service method based upon SCS
curve number.

Mabst =
1

∆t
max

(
fSCS · 25.4

(
1000

CN
− 10

)
, φpond

)
Where CN is the curve number corrected for antecedent precipitation conditions, where the type II
(moderate wetness) curve number is given by the land use parameter SCS_CN. The fraction fSCS
is the land use parameter SCS_IA_FRACTION, and is 0.2 for the standard SCS approach (i.e.,
Ia = 0.2S)

Percentage method (ABST_PERCENTAGE)

The abstraction rate is a given fraction of the ponded water accumulation rate,

Mabst = αMpond

where α is the land use parameter ABST_PERCENT

Fill method (ABST_FILL)

In this approach, all ponded water (the cumulative contribution of rainfall and snowmelt) is redi-
rected to depression storage until it is filled, then the remainder is available for infiltration/runo�.
The maximum depression storage amount is given by land use parameter DEP_MAX

PDMROF method (ABST_PDMROF)

This approach, which has been shown to be successful in prairie and wetland systems, is docu-
mented in (Mekonnen et al., 2014), and assumes a probability distribution of storage capacity within
the HRU represented with the Pareto distribution parameter b (land use parameter PDMROF_B). A
maximum local depression storage capacity, cmax is calculated as

cmax = φmax · (b+ 1)

where φmax is the maximum total average depression storage in the HRU, land use parameter
DEP_MAX [mm]. From this, the current critical capacity c∗ may be calculated from the depression

45

storage φdep:

c∗ = cmax

1−
(

1−
φdep
φmax

) 1
b+1


The total amount of abstraction during a time step may be determined from φpond, the available
ponded water ready to be abstracted:

Mabst =
φmax
∆t

[(
1− c∗

cmax

)b+1

−
(

1−
c∗ + φpond
cmax

)b+1
]

where the term c∗ + φpond in the square brackets is constrained to be less than cmax (correspond-
ing to the entire landscape shedding water). The amount of water not abstracted is moved to
SURFACE_WATER storage as runo�.

46

3.11 Depression/Wetland Storage Overflow

Depression overflow refers to water lost from ponds and wetlands to the main surface water network. De-
pression overflow moves water from theDEPRESSION storage variable and is always moved toSURFACE_WATER.
Depression overflow is rate-limited by the availability of water in depression storage. Usage in .rvi file:

:DepressionOverflow DFLOW_THRESHPOW DEPRESSION SURFACE_WATER

Available Algorithms

Power-law threshold (DFLOW_THRESHPOW)

The overflow to surface water is controlled by the amount of water in depression storage past a
certain threshold:

Mdflow = Mmax ·
(
φdep − φth
φmax − φth

)n
where Mmax [mm/d] is the maximum overflow rate, landuse parameter DEP_MAX_FLOW, φdep
is the current depression storage [mm], φth is the given threshold storage level [mm] (landuse
parameter DEP_THRESHHOLD, φmax is the maximum depression storage DEP_MAX [mm], and n
is the landuse parameter DEP_N (unitless).

Linear depression overflow(DFLOW_LINEAR)

The overflow to surface water is controlled by the amount of water in depression storage past a
certain threshold:

Mdflow = kd · (φdep − φth)

where φdep is the current depression storage [mm], φth is the given threshold storage level [mm]
(landuse parameter DEP_THRESHHOLD), and kd is the linear storage coe�icient [1/d] (landuse
parameter DEP_K). If φdep < φth, Mdflow = 0.

47

3.12 Seepage from Depressions/Wetlands

Seepage overflow refers to water lost from ponds and wetlands to lower soil units, including groundwater.

Seepage moves water from the DEPRESSION storage variable and is always moved to SOIL, subject to
the availability of water in depression storage and remaining room in the soil. Seepage is rate-limited by
the availability of water in depression storage. Example usage in the .rvi file:

:Seepage SEEP_LINEAR DEPRESSION SOIL[1]

Available Algorithms

Linear seepage (SEEP_LINEAR)

The seepage to surface water is controlled by the amount of water in depression storage:

Mdflow = kseep · φdep

where φdep is the current depression storage [mm], and kseep is the linear seepage coe�icient [1/d]
(landuse parameter DEP_SEEP_K).

48

3.13 Lake Release

Lake release refers to delayed release of water from lake storage, and is only used when a specificLAKE_STORAGE
storage compartment is specified using the :LakeStorage command (alternately, all water falling on
LAKE-type HRUs will be directed directly to the surface water network a�er accounting for open water
evaporation, which may lead to a flashier-than-expected hydrograph). Lake storage is intended to repre-
sent lakes which are connected to the surface water network either directly or indirectly via groundwater.
Exchange can be bidirectional such that low lake levels may extract water from surface water storage.
Lake release is disabled for LAKE-type HRUs when they are linked to surface water reservoirs; for these
(usually larger) lakes, the delayed release from storage is completely controlled by the reservoir outflow
structure.

Lake release typically moves water from the LAKE_STORAGE storage variable to SURFACE_WATER;
Lake storage may go below zero, which corresponds to a disequilibrium with the surface water network
such that lakes will extract water. Lake release is not rate-limited except for when excess negative lake
storage will dry out the surface water. Example usage in the .rvi file:

:LakeRelease LAKEREL_LINEAR DEPRESSION SOIL[1]

Available Algorithms

Linear release (LAKEREL_LINEAR)

The rate of release to/from surface water is controlled by the amount of water in depression storage:

Mlrel = klrel · φlake

where φlake is the current (positive or negative) net lake storage [mm], and klrel is the linear storage
coe�icient [1/d] (landuse parameter LAKE_REL_COEFF). Note that lake seepage can be negative
(increasing lake storage) if the net lake storage is negative.

49

3.14 Snow Balance

Snow balance algorithms are used to simulate the strongly coupled mass and energy balance equations
controlling melting and refreezing of snow pack and the liquid phase in the snow pores.

Most snow balance algorithms consists of multiple coupled equations, and there are also many ’to’ and
’from’ compartments, depending on which algorithm is selected. ’From’ compartments include SNOW
(as SWE), SNOW_LIQ and SNOW_DEPTH. ’To’ compartments include SNOW, ATMOSPHERE, SNOW_LIQ,
SNOW_DEPTH and SURFACE_WATER. Snow balance is rate-limited by the storage in ’from’ and ’to’
compartments. Example usage in the .rvi file (note that most snow balance models are manipulating
multiple storage compartments):

:SnowBalance SNOBAL_SIMPLE_MELT SNOW PONDED_WATER

or

:SnowBalance SNOBAL_TWO_LAYER MULTIPLE MULTIPLE

Most of the snowmelt algorithms that explicitly simulate liquid water content within the snowpack use the
global parameter SNOW_SWI to determine the maximum possible liquid water storage of the snowpack:

φslmax = SWE · SWI

where φslmax [mm] is the maximum liquid water storage of the snowpack, SWE is the snow water equiv-
alent of the snowpack [mm], and SWI is the global parametre SNOW_SWI, which defaults to 0.05 if not
specified.

Available Algorithms

Simple melt (SNOBAL_SIMPLE_MELT)

The melt rate (in [mm/d]) is simply calculated by applying the potential melt rate to the snowpack
until it is gone.

Mmelt = M ′melt

where the potential melt rate, M ′melt [mm/d], is calculated using one of the methods described in
section 5.8.1. The melt rate is constrained such that only available snow will melt (i.e., the maximum
melt rate is SWE/∆t) . This is the same as using :SnowMelt MELT_POTENTIAL.

HBV snow balance (SNOBAL_HBV)

The HBV snow balance (Bergstrom, 1995) represents both melt and liquid water storage in the pore space
of the snow. The melt rate is determined by the potential melt rate algorithm (POTMELT_HBV for true
HBV emulation), while refreeze is calculated using:

Mrefreeze = Ka ·max(Tf − T, 0)

where Ka is the land use parameter REFREEZE_FACTOR [mm/d/ ◦C].

Meltwater fills the snow pore space first (with the maximum fillable pore space determined by the global
parameter SNOW_SWI), then is allowed to overflow. All overflow percolates into SOIL[0] by default,
but may be redirected to PONDED_WATER using the :Redirect command if desired.

50

UBCWM snow balance (SNOBAL_UBCWM)

As described in the UBC Watershed model documentation (�ick, 1995). Potential melt is typically
calculated using the POTMELT_UBCWM method described in section 5.8.1. If the land use/land
type parameter SNOWPATCH_LIMIT is zero, the method is relatively straightforward - SWE is
melted at a rate equivalent to the potential melt, with some of the water melted first filling up
the Liquid holding capacity of the snow, the remainder becoming ponded water. During melt of
ripened snowpack, the liquid water is released along with the corresponding SWE melted. The user
is referred to the UBCWM documentation for the full description of the snowmelt algorithm with
snow patching.

Cema Neige snow balance (SNOBAL_CEMA_NEIGE)

O�en used with the GR4J model configuration, the Cema Neige snow balance uses the potential
melt rate calculated using the methods of section 5.8.1, but corrected with a snow cover factor,

Mmelt =

(
0.1 + 0.9 ·min

(
φSWE

SAnn
, 1

))
·M ′

where M ′ is the potential melt rate, φSWE is the snow amount as snow water equivalent, SAnn is
the average annual snow amount, specified as the global parameter AVERAGE_ANNUAL_SNOW.

Two-layer snow balance (SNOBAL_TWO_LAYER)

A two-layer snowmelt model that simulates accumulation of cold content, changes in surface snow
temperature, and evolution both liquid and solid snow stores. Available energy (supplied as po-
tential melt) is first used to bring the temperature of the surface snowpack to freezing, then the
remainder is used to melt the frozen snow, which is allocated to liquid snow until the pack is ripe,
at which point it then drains into PONDED_WATER storage. Ripeness is controlled by the global
parameter SNOW_SWI, which represents the maximum liquid snow storage capacity as a fraction
of snowpack SWE. The second (bo�om) layer is only applied when the snow as SWE exceeds the
global parameter MAX_SWE_SURFACE, in mm.

HMETS snow balance (SNOBAL_HMETS)

A snowmelt model documented in Martel et al. (2017). This is a simple single layer snowmelt model
with degree day freezing, which tracks liquid water content in the snowpack in addition to SWE.
The refreeze rate (constrained by water availability) is given by:

Mrf = Kf · (Trf − Tdi)f

whereKf is the land use property REFREEZE_FACTOR, Trf is the degree day refreeze factor (land
use property DD_REFREEZE_TEMP, and f is the land use parameter REFREEZE_EXPONENT. The
water retention capacity (upper limit of liquid water content in snow) varies over the course of the
year based upon cumulative snowmelt:

SWI = max (SWImin, SWImax · (1− α ·Mcumul)

where SWImin and SWImax are the land use parameters SNOW_SWI_MIN and SNOW_SWI_MAX,
α is the land use parameter SWI_REDUCT_COEFF, and Mcumul is the cumulative melt since the
last period of zero snow depth.

51

CRHM EBSM snow balance (SNOBAL_CRHM_EBSM)

A snowmelt model based upon that of Marks and Dozier (1992) as implemented within the CRHM
hydrological model Pomeroy et al. (2007). The single-layer energy-balance-based snow model tracks
liquid water content, SWE, and energy content of the snowpack.

52

3.15 Snow Sublimation

Sublimation is the process of snow transforming to water vapour without passing through the interme-
diate liquid phase. It can be a significant part of the snow balance at high elevations, windy regions, and
when atmospheric water conent is low.

Sublimation always occurs between SNOW and ATMOSPHERE units and is limited by the availability of
snow. Example usage in the .rvi file:

:Sublimation SUBLIM_KUZMIN SNOW ATMOSPHERE

Available Algorithms

Kuzmin (1972) method (SUBLIM_KUZMIN)

The sublimation rate (in [mm/d]) is calculated using the following empirical relationship (Kuzmin,
1972; Kutchment and Gelfan, 1996):

Msubl = (0.18 + 0.098 · vave) · (Psat − Pvap)

where vave [m/s] is the wind velocity at 10m, Psat and Pave [mb] are the saturated vapour pressure
and vapour pressure, respectively.

CRHM method (SUBLIM_CRHM)

The sublimation rate (in [mm/d]) is calculated using a variation of the (Kuzmin, 1972) approxima-
tion:

Msubl = 0.08 · (0.18 + 0.098 · vave) · (P 0
sat − Pvap)

where vave [m/s] is the wind velocity at 10m, P 0
sat is the saturation pressure at zero degrees, and

Pave [mb] is the atmospheric vapour pressure, respectively.

Central Sierra method (SUBLIM_CENTRAL_SIERRA)

The sublimation rate (in [mm/d]) is calculated using the following empirical relationship (U.S.
Dept. of Commerce, 1956):

Msubl = 0.0063 · (hw · hv)−
1
6 · (Psat − Pvap) · vave

where vave [m/s] is the wind velocity at reference height hw [�], Psat and Pave [mb] are the sat-
urated vapour pressure and vapour pressure, respectively, and hv is the elevation of the vapour
pressure reference height [�].

53

3.16 Snow Refreeze

Snow refreeze algorithms are used if the full :SnowBalance algorithms are not applied, and simply
convert SNOW_LIQ to SNOW

Snow refreeze always occurs between SNOW_LIQ and SNOW units. Snow refreeze is limited by the avail-
ability of liquid water in the snowpack. Refreeze rates must be positive. In most cases, snow refreeze
should be handled using the :SnowBalance routines. Example usage in the .rvi file:

:SnowRefreeze FREEZE_DEGREE_DAY SNOW_LIQ SNOW

Available Algorithms

Degree day method (FREEZE_DEGREE_DAY)

The refreeze rate (in [mm/d]) is calculated using the following degree-day relationship (much like
the degree-day melt approaches for calculating potential melt):

Mfrz = Kf ·min(Tf − Ta, 0)

where Kf [mm/d/ ◦C] is the refreeze parameter (land use parameter REFREEZE_FACTOR, Tf is
the freezing temperature (0 ◦C) and Ta is the air temperature.

54

3.17 Snow Albedo Evolution

Snow albedo evolution is the process through which snow albedo changes due to snow compaction, snow-
pack aging, or fresh snow accumulation. The snow albedo evolution algorithms have no sources or sinks,
it simply models the rate of change of albedo over time. Snow albedo is constrained to be in the range 0-1.
Example usage in the .rvi file (note that there is no ’to’ and ’from’ state variable, since this is not changing
the water/energy balance):

:SnowAlbedoEvolve SNOALB_UBC

Available Algorithms

UBC Watershed Model approach (SNOALB_UBC)

The albedo, α, increases with accumulating snow and decreases as the season progresses. It is
bounded by the global parametersMIN_SNOW_ALBEDOMAX_SNOW_ALBEDO, defined in the:UBC-
SnowParams command in the .rvp file.

Msnalb = −α · 1−K
∆t

+
(αmax − α)

∆t
min

(
SN

SNalb
, 1

)
if α > αb

Msnalb = −αb exp

(
−Scum
Smax

)
dScum
dt

+
(αmax − α)

∆t
min

(
SN

SNalb
, 1

)
if α < αb

whereαmax is the global parameterMAX_SNOW_ALBEDO,αb is a threshold albedo value (ALBASE),
SN [mm/d] is the daily snowfall, SNalb [mm/d] is the total daily snowfall required to bring albedo
to that of new snow (global param ALBSNW), K is the global parameter ALBREC (a recession con-
stant), Scum is the cumulative snow deposited in the current winter season and Smax is an estimate
of the maximum cumulative snowfall in a year (MAX_CUM_MELT). All of these global parameters
are specified using the command :UBCSnowParams in the .rvp file.

CRHM Essery Approach (SNOALB_CRHM_ESSERY)

A simple albedo evolution algorithm developed by Richard Essery, now at the University of Edin-
burgh. The albedo decays as follows:

Msnalb = −β if Tsnow < 0

Msnalb = −β2 · (α− αmin) if α < αb

whereβ is he global parameterALB_DECAY_COLD [1/d], β2 is the global parameterALB_DECAY_MELT
[1/d], and αmin is the global parameter MIN_SNOW_ALBEDO [-]. The albedo also increases due to
fresh snow using the following

Msnalb = (αmax − α) ·min(S/Sthresh, 1.0) ·∆t
where αmax is the global parameter MAX_SNOW_ALBEDO [-], S is the snowfall rate [mm/d], and Sthresh
is the global parameter SNOWFALL_ALBTHRESH [mm/d].

Baker Approach (SNOALB_BAKER)

A simple albedo evolution algorithm from Baker et al. (1990), as ported from CRHM (Pomeroy et al.,
2007). The albedo decays as follows:

α = 0.9− 0.0473 ·A0.1
snow

55

where Asnow is the age of the snow in days. The snow age reboots to zero if the snowfall rate
exceeds the global parameter SNOWFALL_ALBTHRESH [mm/d].

56

3.18 Glacier Melt

Glacier melt refers to the process of melting of glacier ice. It is typically only applied to those HRUs treated
as glaciers.

Glacier melt algorithms move water from GLACIER_ICE to either GLACIER (liquid water storage in
or on the glacier itself) or SURFACE_WATER. They may also modify the cold content of the glacier,
GLACIER_CC. Glacial melt is not limited by the available glacier ice, which is assumed to be abundant.
Example usage in the .rvi file:

:GlacierMelt GMELT_SIMPLE_MELT GLACIER_ICE SURFACE_WATER

Available Algorithms

Simple melt approach (GMELT_SIMPLE_MELT)

The melt rate is equal to the potential melt rate, calculated using the methods described in section 5.8.1.

HBV approach (GMELT_SIMPLE_MELT)

The melt rate is equal to the potential melt rate, calculated using the methods described in section
5.8.1. A glacial melt correction factor may be used to modify the melt rate (land use parameter
HBV_MELT_GLACIER_CORR), which is 1 by default. No glacial melt occurs if there is any snow
cover, i.e., the snow must melt first.

UBC Watershed Model approach (GMELT_UBC)

The potential melt rate is applied to melt the glacier, but modified by the snow cover (i.e., no glacial
melt occurs if there is 100% snow cover).

57

3.19 Glacier Release

Glacier release refers to the release of meltwater stored within a glacier to surface water, and is typically
used in conjunction with the glacier melt process, i.e., melt is released from the surface and is temporarily
stored or delayed before reaching the surface water network.

Glacier release algorithms move water from GLACIER to SURFACE_WATER. Glacial release is limited by
the available glacier liquid water storage. Example usage in the .rvi file:

:GlacierRelease GRELEASE_LINEAR_STORAGE GLACIER SURFACE_WATER

Available Algorithms

Linear storage (GRELEASE_LINEAR_STORAGE)

A simple linear storage coe�icient approach:

Mgrelease = −Kφglac

where φglac [mm] is the total glacial storage, and K [1/d] is a linear storage coe�icient (land use
parameter GLAC_STORAGE_COEFF)

Linear storage (analytical) (GRELEASE_LINEAR_ANALYTIC)

A simple linear storage coe�icient approach, but analytically solved for and integrated over the
timestep:

Mgrelease =
φglac
∆t

(1− exp(−K∆t))

where φglac [mm] is the total glacial storage,∆t is the model time step and K [1/d] is a linear
storage coe�icient (land use parameter GLAC_STORAGE_COEFF)

HBV-EC approach (GRELEASE_HBV_EC)

A simple linear storage coe�icient approach:

Mgrelease = −K∗φglac

where φglac [mm] is the total glacial storage, and K∗ [1/d] is a linear storage coe�icient which
is corrected for snow cover, such that the glacier releases more water at times of less snow cover,
calculated as:

K∗ = Kmin + (K −Kmin) exp(−AG(SN + SNliq))

where Kmin [1/d] is a linear storage coe�icient (land use parameter HBV_GLACIER_KMIN), K
[1/d] is a linear storage coe�icient (land use parameter GLAC_STORAGE_COEFF), AG [1/mm]
is the land use parameter HBV_GLACIER_AG, and SN and SNliq [mm] are the SWE and liquid
snow content of the snowpack on top of the glacier, respectively.

58

3.20 Crop Heat Unit Evolution

Crop heat units (CHUs) are used by some organizations in Ontario, Canada in order to assess soil evap-
oration. ET is maximized when CHUs meet their maturity level. To be used in conjunction with the soil
evaporation algorithm SOILEVAP_CHU. The crop heat units grow in magnitude over the course of a
growing season based upon the daily temperature profiles.

Crop heat unit evolution algorithm does not move water between storage compartments. The method
only revises the magnitude of the CROP_HEAT_UNITS state variable. Crop heat units are zero outside
of the growing season. Example usage in the .rvi file:

:CropHeatUnitEvolve CHU_ONTARIO

Available Algorithms

Ontario method (CHU_ONTARIO)

The growing season is determined to begin when the minimum temperature over a 3-day period
is 12.8 ◦C, at which time the crop heat units are set to zero. It ends when the temperature dips
below -2 ◦Cor a�er September 30th. During the growing season, CHUs are incremented using the
following expressions Brown and Bootsma (1993):

CHUd = 3.33 · (Tmax − 10)− 0.084 · (Tmax − 10)2

CHUn = 1.8 · (Tmin − 4.4)

CHUnew = CHUold + 0.5 · (CHUd + CHUn)

where Tmin and Tmax are the minimum and maximum daily temperatures

59

3.21 Special Processes

The flush, lateral flush, split, and overflow processes are used in conceptual models to represent the
’instantaneous’ movement of water from one water storage compartment to another. The convolution
process allows for a time lag of storage. As these are wholly conceptual in nature, they are most o�en
included in order to emulate the functioning of existing hydrologic models. These processes may not work
as intended when using a numerical method other than the ordered series approach.

• The Flush process instantaneously moves all of the water storage from one storage to another.

• The Lateral Flush process instantaneously moves all of the water storage from one storage in one
or more HRUs in a basin to another storage unit in another HRU within the basin.

• The Overflow process moves the excess water storage (more than the maximum capacity of the
water storage unit) to another compartment.

• The Split process instantaneously moves all of the water storage from one storage compartment
into two, with the proportion specified in the input command.

• The convolution process temporarily stores water in a convolution storage compartment, to be re-
leased using a transfer function approach. The output fluxes from a convolution process are typi-
cally an a�enuated and delayed version of the input fluxes.

The flush, lateral flush, overflow, and split processes may move water from any water storage compart-
ment to any other. The convolution process (:Convolve command in the input) releases water added
to a convolution storage structure buy any other process to any storage compartment. Example usage in
the .rvi file:

moves all ponded water to surface water
:Flush RAVEN_DEFAULT PONDED_WATER SURFACE_WATER

moves liquid snow in excess of maximum liquid snow storage
#to surface water
:SnowBalance SNOBAL_SIMPLE_MELT SNOW SNOW_LIQ
:-->Overflow RAVEN_DEFAULT SNOW_LIQ SURFACE_WATER

moves 60% of ponded water to surface water, the rest infiltrates
:Split RAVEN_DEFAULT PONDED_WATER SURFACE_WATER SOIL[0] 0.6

delays release of surface water to outlet through convolution
:Flush RAVEN_DEFAULT SURFACE_WATER CONVOLUTION[0]
:Convolve CONVOL_GR4J_1 CONVOLUTION[0] SURFACE_WATER

moves all runoff from upland HRUs to wetlands
requires definition of Uplands and Wetlands HRU groups
:LateralFlush RAVEN_DEFAULT Uplands SURFACE_WATER To Wetlands DEPRESSION

Available Algorithms (Convolution)

Since convolution methods store the time history of inputs to convolution storage of a duration consistent
with the longest time delay in the convolution, it is not suggested to use convolution with a time constant
in days with an hourly time step. Typically the order of the time delay should be on the order of the model
time step.

60

The below convolution methods are available. All of them perform a discrete version of the following
convolution:

Mconv =

∞∫
0

UH(τ)I(t− τ)dτ

where I(t) is the input flux history (in mm/d) to the convolution storage unit and UH(t) is the transfer
function; the area under the transfer function is always equal to one to ensure mass balance.

GR4J transfer function 1 (CONVOL_GR4J_1)

The transfer function used is

UH(t) =

 5
2x4

(
t
x4

)3
2 for t ≤ x4

0 for t > x4

where x4 is the land use parameter GR4J_X4.

GR4J transfer function 1 (CONVOL_GR4J_2)

The transfer function used is

UH(t) =


5

4x4

(
t
x4

)3
2 for t ≤ x4

5
4x4

(
2− t

x4

)3
2 for x4 < t ≤ 2x4

0 for t > 2x4

where x4 is the land use parameter GR4J_X4.

Gamma transfer function 1 (CONVOL_GAMMA)

The transfer function used is

UH(t) =
1

t

(βt)a

Γ(a)
exp(−βt)

where a and β are the land use parameters GAMMA_SHAPE and GAMMA_SCALE.

Gamma transfer function 2 (CONVOL_GAMMA2)

The transfer function used is

UH(t) =
1

t

(βt)a

Γ(a)
exp(−βt)

where a and β are the land use parameters GAMMA_SHAPE2 and GAMMA_SCALE2. The purpose
of this is to be able to support two convolution processes in serial or parallel.

61

Chapter 4

Routing

The following chapter outlines the routing algorithms available for modelling the downstream migration
of water through a terrain/channel/reservoir network in Raven. As briefly summarized in section 1.2.2,
the routing process in Raven has two components: at the sub-basin level, rainfall and snowmelt from
all HRUs is released to surface water via overland runo�, interflow, and base flow. There is some delay
and/or redistribution of the timing of the release of this water to the subbasin river reach, then again a
delay before the water reaches the outlet. This delay is handled in Raven typically using a linear transfer
function (e.g., Unit Hydrograph) approach, and is termed in-catchment routing. The second form of rout-
ing is the hydraulic/hydrologic routing between subbasins within the main channel of each subbasin. This
is referred to as in-channel routing. The distinction between the two is shown in figure 1.4. In addition to
in-catchment and in-channel routing, a separate routine is used to route waters through reservoirs/lakes
at the end of subbasins.

While this chapter addresses the primary catchment-channel-reservoir routing progression in Raven,
Raven supports alternate means of influencing the timing characteristics of a basin. For instance, some
lateral routing between HRUs may be performed prior to delivery to the stream network (e.g., see sec-
tion 3.21 for discussion of the Lateral Flush process which can be used to route water laterally). This
lateral transfer is separate from the landscape routing described in this chapter, but may therefore impact
propagation of water downstream, for instance by sending landscape runo� to a riparian wetland. Other
conceptual models (e.g., those in HBV) route water through conceptual routing stores; this is supported in
Raven by using ’artificial’ soil horizons as routing stores, as can be seen in the HBV-EC and GR4J model
evaluations in appendix D.

4.1 In-Catchment Routing

4.1.1 Overview

It is important to note that the rate of release of water from storage within an HRU is treated as constant
over a given time step. This is the most appropriate, since water storage state variables are stored as
snapshots in time (at the end of each time step). However, in the channel, the state variable is no longer
storage, but flow rates, as is consistent with the majority of routing algorithms developed in the literature.
Therefore, in addition to impacting the timing of the flows, in-catchment routing is used to map flow rates
which are constant over a time step (losses from the HRU) to those which are varying linearly over a time
step (in-channel flows).

62

In all cases, in catchment routing is treated using a discrete transfer function approach, i.e.,

Q(t+ ∆t) =

N∑
n=0

Qlat(t− n∆t) · UHn (4.1)

where Q(t) [m3/s] is the flow rate into the channel from the subbasin at time t, Qlat(t) [m3/s] is the
constant lateral release flow rate from the HRU surface over the time step from t to t + ∆t, and ~UH
is a unitless vector which describes the distribution of arrival times to the channel. The sum of values
of the ~UH vector equal 1, and the magnitude of UHn may be interpreted as the percentage of the flow
appearing in the channel n time steps a�er its release from the HRU. This is the discrete generalization
of a convolution:

Q(t) =

∞∫
0

Qlat(t− τ) · UH(τ)dτ (4.2)

Either of these may be interpreted as providing a distributed delay between when water is released from
the HRU and when it appears in the channel. There are numerous approaches in the literature for esti-
mating unit hydrograph characteristics. While the unit hydrographs below are reported as continuous,
they are internally converted to a discrete version via the following relation:

UHn =
1

∆t

(n+1)∆t∫
n∆t

UH(t)dt n = 0...∞ (4.3)

Only non-zero ~UH vector elements are retained.

4.1.2 Algorithms

The following algorithms may be used for in-catchment routing. The sole di�erence between the various
catchment routing algorithms is the shape of the unit hydrograph used.

Dump method (ROUTE_DUMP)

In the “dump” method of catchment routing, all of the water released from the HRUs to surface
water over a time step appears in the channel at the end of the time step. This is generally valid for
small subbasins (those with small times of concentration) or large time steps. This is equivalent to
~UH = {1, 0, 0, 0, ...}, and is an approximation of

UH(t) = δ(t)

where δ is the Dirac delta function.

Gamma unit hydrograph (ROUTE_GAMMA_CONVOLUTION)

Here, a Gamma distribution is used to represent the unit hydrograph, i.e.,

UH(t) =
1

t

(βt)a

Γ(a)
exp(−βt)

where Γ(a) is the Gamma function and a and β are the subbasin parameters GAMMA_SCALE and
GAMMA_SHAPE. If not provided, a defaults to a reasonable value of 3. if the GAMMA_SCALE pa-
rameter is not provided but the time to peak subbasin parameter TIME_TO_PEAK (tp) is provided,
then β is calculated as follows:

β =
a− 1

tp

63

Note that this automatic calculation can lead to issues when a<1.0, because the peak value occurs
at t = 0 for this distribution when a < 1.0.

Triangular unit hydrograph (ROUTE_TRI_CONVOLUTION)

A triangular unit hydrograph is used with a peak time of tp, specified as the subbasin property
TIME_TO_PEAK and total duration specified by the time of concentration, tc, specified using the
subbasin property TIME_CONC. Note that variations in the time of concentration smaller than the
model time step will have no impact on model solution.

UH(t) =


2
tc

t
tp

for t < tp
2
tc

(
tc−t
tc−tp

)
for t ≥ tp

Nash unit hydrograph (ROUTE_RESERVOIR_SERIES)

The Nash unit hydrograph is used with a linear reservoir constant (k) specified using the subbasin
property RES_CONSTANT and the number of reservoirs (N) equal to NUM_RESERVOIRS.

UH(t) = tN−1kNe−kt

To do (2)

64

4.2 In-Channel Routing

4.2.1 Overview

In Raven, in-channel routing is the only means by which water, mass, and energy are exchanged laterally
between subbasins. It is assumed that this movement is unidirectional, i.e., water moves downstream
only through a one-dimensional branching stream network fully described by the succession of subbasins
defined in the .rvh file. Each subbasin can have a single outlet and is conceptualized as having a single
primary channel running through it, which may or may not have a reservoir at the end of the channel.
Headwater subbasins (those without an upstream subbasin) are assumed to have no corresponding chan-
nel, but may have a reservoir which is fed purely via in-catchment routing and releases water to the next
downstream basin.

This routing formalization leads to some implicit guidelines for subbasin discretization.

• Subbasin outlets should typically occur at stream network junctions.

• Surface water reservoirs should be located at the outlet of a subbasin (or themselves embody an
entire subbasin)

• All stream gauges used for calibration or model evaluation should be located at the outlet of a
subbasin

• For lumped (single subbasin) models, channel routing is usually disabled entirely.

In-channel routing may be treated by a number of algorithms. However, as indicated in section 1.2.2, all
of these algorithms may be generalized as

Qn+1
out = Froute(Q

n
out, ~Q

in, ~Ps) (4.4)

where Froute is the routing algorithm, ~Qin is the recent time history of upstream (and upbasin) inflows to
the channel, ~Ps is a vector of channel parameters, typically a number of channel rating curves, primary
channel and bank roughness, and weir or reservoir relationships. Figure 1.4 indicates the meaning of these
major parameters. The descriptions of the channel inputs are detailed in section A.2.2 of the appendix,
and specified using the :ChannelProfile command.

4.2.2 Algorithms

While more rigorous hydraulic routing algorithms (which handle backwater e�ects, etc.) may be im-
plemented in future incarnations of Raven, for the most part, the algorithms currently in Raven are
considered hydrologic routing methods based upon simple storage relationships, rather than complete
solution of the Saint-Venant equations for momentum and mass conservation. They fall roughly into two
categories: convolution approaches, which function in a manner nearly identical to that of the unit hy-
drograph approach used for in-catchment routing, and mass-balance approaches, which solve for outflow
through a discrete form of the mass balance equation. Both sets of approaches are mass-conservative.

As with the in-catchment methods, the convolution-based methods (ROUTE_DIFFUSIVE_WAVE) and
(ROUTE_PLUG_FLOW), use a discrete transfer-function approach:

Qn+1
out =

N∑
i=0

Qn−i+1
in · UH ′i (4.5)

where Qn+1
out [m3/s] is the flow rate from the subbasin at the end of the time step, Qnin [m3/s] is the

inflow rate from upstream sources at the end of time step n, and ~UH ′ is a unitless vector which describes

65

the distribution of arrival times to the channel. The sum of values of the ~UH ′ vector equal 1, and the
magnitude if UH ′i may be interpreted as the percentage of the flow leaving from the channel i time steps
a�er its arrival in the channel from upstream sources.

Many of the in-channel routing routines require the reference celerity for the channel reach:

cref =
dQ

dA

∣∣∣∣∣
Qref

(4.6)

cref is the reference celerity for the reach, the velocity corresponding to the reference flow, Qref [m3/s]
in the reach, usually specified as the bank full flow using the subbasin parameter Q_REFERENCE. The
slope of the Q vs. A relationship at Qref is interpolated from that generated for the specific channel.

No routing (ROUTE_NONE)

All inflows (both lateral and upstream), are instantly routed to the channel outlet, i.e.,

Qn+1
out = Qn+1

in +Qn+1
lat

This option is mostly used for single subbasin models.

Simple plug flow (ROUTE_PLUG_FLOW)

Here, there is a delay between water entering and exiting the channel dictated by the celerity of
the channel reach, but there is no smearing out of the hydrograph as it migrates along the channel.

UH ′(t) = δ

(
t− L

cref

)
where δ(t) is the Dirac delta function, L is the reach length within the subbasin (specified from the
subbasin property REACH_LENGTH, and cref is the reference celerity of the channel, as determined
from the channel profile characteristics and the subbasin’s reference flow rate, Qref specified as
the subbasin parameter Q_REFERENCE. The reference celerity cref is calculated using 4.6.

Di�usive wave model (ROUTE_DIFFUSIVE_WAVE)

Here, an analytical solution to the di�usive wave equation is used to smear out the flood wave as it
propagates through the reach. As with the simple plug flow approach, the reference celerity is used
to determine the mean travel time of the wave, and the channel di�usivity,D [m2d−1] controls the
smearing out of the wave signal prior to exiting the reach.

UH ′(t) =
1

2
√
πDt

exp

(
−

(L− cref t)2

4Dt

)
where L [m] is the channel reach length, cref is calculated using 4.6, and the channel di�usivity,
D, is estimated from the channel reference flow Qref (subbasin parameter Q_REFERENCE) using
the following relationship: To do (3)

D =
Qref

2S · d(Qref)

where S is the channel bedslope and d(Q) is the relationship between flow depth, d and flow rate,
Q, in the channel, determined from the channel geometry. The di�usive wave model is currently
the preferred routing method for transport simulation.

66

Storage coe�icient method (ROUTE_STORAGE_COEFF)

The storage coe�icient method evaluates outflow using a discrete approximation of the water bal-
ance for the channel over the time step Williams (1969):

Qn+1
out = c1 ·Qn+1

in + c2 ·Qnin + c3 ·Qnout (4.7)

here, the weights c1, c2, and c3 are calculated from the storage coe�icient, k, given as:

k = min

(
1

K
∆t + 0.5

, 1

)
(4.8)

where K is the representative travel time for the reach (also the Muskingum K parameter, calcu-
lated as ∆x/cref where ∆x is the reach segment length). Here, c1 = k/2, c2 = k/2, and c3 = 1−k.
Caution should be used with this method on long reaches without finely discretizing the reach, as
water will arrive at the outlet immediately a�er entering, even with a large representative travel
time in the reach.

Muskingum-Cunge method (ROUTE_MUSKINGUM)

The standard Muskingum-Cunge approach also evaluates outflow using a discrete approximation
of the water balance for the channel over the time step:

Qn+1
out = c1 ·Qn+1

in + c2 ·Qnin + c3 ·Qnout (4.9)

here, the weights c1, c2, and c3 are calculated from the Muskingum X and K parameters as

c1 =
∆t− 2KX

2K(1−X) + ∆t

c2 =
∆t+ 2KX

2K(1−X) + ∆t

c3 =
−∆t+ 2K(1−X)

2K(1−X) + ∆t

The Muskingum algorithm is well-documented in the literature. To do (4) The Muskingum parame-
ters X and K are calculated using the following relations:

K =
∆x

cref

X =
1

2

(
1−

Qref
Swrefcref∆x

)
where cref is the reference celerity for the reach (calculated using equation 4.6), S is the channel
bedslope, wref is the channel width at the reference flow Qref (basin parameter Q_REFERENCE),
and ∆x is the reach segment length (or reach length, L, if only one segment is used per reach).
Care must be taken to ensure that X and K fall within a reasonable range of values, notably that
2KX < ∆t < 2K(1 − X). If the time step is too large, Raven automatically employs local time
stepping for the routing algorithm. However, the case where the time step is too small (a warning
will be thrown to RavenErrors.txt) must be handled via user intervention, by increasing the number
of segments in the reach.

67

Iterative hydrologic routing approach (ROUTE_HYDROLOGIC)

Here, the routing is performed using an iterative application of Newton’s root-finding algorithm to
the following discretization of the storage relationship for the reach,

V (Qn+1
out)− V (Qnout)

∆t
=

1

2
(Qnin +Qn+1

in)− 1

2
(Qnout +Qn+1

out)

Given that the channel volume, V (Q) may be wri�en as a function of outflow from the reach if
a level-pool assumption is used, this may be expressed as a root-finding problem for Qn+1

out . This
method is very stable, fast, accurate, and mass-conserving. It avoids the numerical pitfalls of the
non-iterative Muskingum algorithm. Right now, it can only be applied to reaches which constitute
a single reach segment.

4.3 Lake and Reservoir Routing

4.3.1 Overview

Lakes or reservoirs may be specified using a :Reservoir-:EndReservoir command in the .rvh file
(see appendix A.3), and are always located a the outlet of a subbasin, i.e., a reservoir linked to a given
subbasin receives its water from that basin’s in-channel routing routine, then releases it downstream.
Raven supports a range of methods for determining the outflow from a reservoir or lake using either stage-
discharge relationships or operational constraints such as flow and stage targets. Each reservoir may have
two stage-discharge curves to represent, for example, combined tunnel underflow and spillway overflow.
For simple natural lakes, stage-discharge curves can be calculated by Raven, only the estimated crest
width of the lake overflow is specified by the user. A schematic of two common reservoir configurations,
one for a prismatic single-parameter lake and one for a general managed reservoir are shown in figure 4.1

Iterative reservoir routing approach

Only one algorithmic option is available for routing water in a reservoir. In this approach, a Newton solver
is used to iteratively calculate the reservoir stage using the following time discretization of the reservoir
level-pool mass balance:

dV (h)

dt
= Qin −Q(h)− E ·A(h)− S(h)

V (hn+1)− V (hn)

∆t
=

1

2
(Qnin +Qn+1

in)− 1

2

(
Q(hn) +Q(hn+1)

)
−E

2

(
A(hn) +A(hn+1)

)
− 1

2

(
S(hn) + S(hn+1)

)
where h is the stage and Q(h), V (h), and A(h) are the stage-discharge, stage-volume, and stage-area
relations defined in the :Reservoir command (appendix A.3.2). E is the timestep-averaged open-water
evaporation rate for the reservoir calculated as determined by the :OWEvaporation command for the
reservoir-linked open water HRU. S(h) = k · (h− hgw) is the groundwater seepage rate of the reservoir,
calculated from a seepage coe�icient k [m3/d] and groundwater reference head hgw (specified using the
:SeepageParameters command). Reservoir evaporation may be modified by the LAKE_PET_CORR
land surface parameter. Note that the reservoir should be included as an HRU with the average reservoir
area. All precipitation falling on this HRU gets added to theQin component, where evaporation from the
surface of the reservoir is only included in the above expression. If no HRU is linked to the reservoir in
the reservoir command, evaporation is considered negligible and not included in the mass balance.

68

Figure 4.1: Example reservoir configurations in Raven. (a) a lake-type reservoir and (b) a general managed
reservoir. h(t) is the absolute stage height and s(t) is the height of the water level above the minimum
crest height. For the lake-type reservoir, D is the :MaxDepth parameter, H is the optional :Abso-
luteCrestHeight parameter, C is the :WeirCoefficient, and W is the :CrestWidth. For
operated reservoirs, typically the stage-volume (V (h)) and stage-discharge (Q(h)) curves are provided,
with optional support for underflow Qu(h) if desired. The gate shi� hw(t) may be specified to represent
the operation of a stop-log weir or similar.

It is critical that the entire range of likely stage elevations are included when specifying the stage-discharge
(Q(h)) and stage-volume (V (h)) curves. The outflow from the reservoir is determined solely from the
stage-discharge curve unless overridden by operational rules.

Operational controls that can be applied to determine reservoir outflow include:

• Maximum Stage constraints - the maximum stage may be provided as a time series using the
:ReservoirMaxStage command in an .rvt file. The maximum stage constraint overrides all
other controls.

• Minimum Stage constraints - the minimum stage may be provide as a time series using the:Reser-
voirMinStage command in an .rvt file. The minimum stage must be less than the maximum
stage; if the minimum stage constraint is hit, then the outflow is set to zero or to the minimum flow
as proscribed in the :ReservoirMinStageFlow time series command.

• Target Stage constraints - the target stage may be provides as a time series using the :Reser-
voirTargetStage command in an .rvt file. The target stage must be between the minimum and
maximum stage. When supplied, the required outflow at the end of the time step Qn+1 needed
to maintain the target stage (i.e., such that hn+1 = hn+1

target) will be determined. If there are no
maximum flow change constraints, this will be applied and the target stage will always be met.
However, if a maximum flow change constraint is met, then the change in discharge over the time

69

step (Qn+1 −Qn) will be limited by the flow constraint, which is expressed as the maximum posi-
tive rate of change in outflow, in m3/s. This maximum flow change constraint is supplied as a time
series via the :ReservoirMaxQDelta command. There can also be a maximum negative rate
of change in outflow specified using the :ReservoirMaxQDecrease command.

• Variable weir height - the datum of the stage-discharge curve may be shi�ed over time by specifying
the relative weir height as a time series with the :VariableWeirHeight command. This can
emulate the operation of a stop-log weir or similar weir structure where the crest height is controlled
by operators.

• Outflow override - the outflow from the reservoir may be completely specified by the user if the
:OverrideReservoirFlow time series command is supplied for the modeled reservoir.

• Minimum flow constraints - the minimum flow may be provided as a time series using the:Reser-
voirMinFlow command in an .rvt file. This specified minimum flow may increase to satisfy down-
stream target flows specified using the :ReservoirDownstreamFlow command, if present.

• Maximum flow constraints - the maximum flow may be provided as a time series using the:Reser-
voirMaxFlow command in an .rvt file.

• The DZTR (Dynamic Zoned Target Release) model of Yassin et al. (2019) - the discharge is calculated
using a time-variable volume-discharge curve generated via matching historical observations occur-
ring under unknown reservoir operational rules using the :DZTRResservoirModel command
in the .rvh :Reservoir block.

Advice

If any of these reservoir constraints are constant in time or annually cyclical, use the :Annual-
Cycle time series command so you don’t have to specify a long redundant time series in the .rvt
file.

The combination of maximum, minimum, and target stage constraints may be used, for instance, to em-
ulate historical application of rule curves during the model calibration/validation process. The override
reservoir outflow control can be used to replace modeled outflows from a reservoir with observed outflows
during model calibration/validation or it can be used in short-term forecasting to examine the influence
of operational decisions on reservoir stage and downstream flows. Lastly, approximate rule curves may be
used in forecasting for systems where actual operational rules are unknown. It is worth noting the order
of priority of these di�erent constraints when multiple operational controls are specified for a reservoir
(from highest priority to lowest priority):

1. Maximum stage constraint has highest priority (:ReservoirMaxStage)

2. Minimum flow and maximum flow constraints (:ReservoirMinFlow and:ReservoirMaxFlow
(and also downstream target flows from :ReservoirDownstreamDemand influencing mini-
mum flow))

3. Overridden flow (:OverrideReservoirFlow)

4. Minimum stage with Min stage specified flow (which is zero if not specified) (:ReservoirMinStage
and :ReservoirMinStageFlow)∗

5. Qdelta constraints (:ReservoirMaxQDelta and :ReservoirMaxQDecrease)

6. Target stage (:ReservoirTargetStage)

7. Natural weir flows has lowest priority

70

∗The minimum stage constraint can be moved to the top of this list (i.e., get highest priority) by using the
:MinStageConstraintDominant command in the :Reservoir block.

Note that there are a number of di�erent approaches available for discretizing and representing lakes and
reservoirs in Raven. For small lakes, we may not wish to explicitly represent their outflow characteristics
and only wish to represent their role in influencing the basin water balance. In this case, water HRUs
would be included in the basin, but a reservoir would not be used. For smaller lakes or reservoirs that still
have a notable influence on downstream flows, a single water HRU would be included in the subbasin and
linked to the reservoir. For natural lakes, it is suggested to use the ’lake-type’ reservoir input structure
described in appendix A.3.2. For large reservoirs (especially those with multiple subbasins draining into
them), it is suggested to treat the reservoir as its own single-HRU subbasin with zero reach length.

Known inflows or outflows from the reservoir (e.g., irrigation diversions) may be considered in the above
mass balance using the :ReservoirExtraction time series command in the .rvt file.

If reservoirs are present in the model, the file ReservoirStages.csv file is automatically created
(with the runname prefix if specified). A full reporting of reservoir mass balance for all gauged subbasins
is provided in the file ReservoirMassBalance.csv if the :WriteReservoirMBFile command
is included in the .rvi file.

Observations of reservoir inflow, reservoir net inflow, and/or reservoir stage may be supplied to Raven
and be evaluated against simulated values using the full set of diagnostics indicated in section 8.2.

4.4 Water Demand and Flow Diversions

4.4.1 Overview

Raven supports user-specified time series of water demand (e.g., irrigation or water treatment with-
drawals) and flow diversions from one part of the watershed to another. It also supports simplified man-
agement constraints upon reservoirs based upon downstream demand. The key tools for representing
these management-driven influences on river discharge include the following commands, described in
details in appendix A.4.4:

• :IrrigationDemand (.rvt): a time series of desired withdrawals from the outlet of a subbasin,
constrained such that stream discharge must be greater than zero or the environmental minimum
flow.

• :EnvironmentalMinFlow (.rvt): used to constrain irrigation demand to maintain environmen-
tal minimum flows. If flows are less than environmental minimum flows, irrigation demand goes
unmet.

• :FlowDiversion (.rvt): moves water from the outlet of one subbasin to the inlet of another
basin. A simple percentage of simulated discharge may be used, or a user-specified lookup table
may be used with the :FlowDiversionLookupTable command.

• :ReservoirDownstreamDemand (.rvt): ensures that the minimum outflow from reservoirs sat-
isfies irrigation demand downstream. This can be specified on a case-by-case basis where (e.g.) a
single reservoir meets a percentage of demand at a single location. Alternately, multi-reservoir sys-
tems may support multiple downstream demands as is controlled by the :ReservoirDeman-
dAllocation command in the .rvi file. Percentages of downstream demand may be determined
by reservoir contributing area or by maximum reservoir capacity.

• :ReservoirExtraction (.rvt): supports both extraction from a reservoir or (if negative) injec-
tion of water into a given reservoir.

71

• :BasinInflowHydrograph (.rvt): can be used to add water to (or remove water from, if nega-
tive) a subbasin at its reach outlet. If negative, this command does not respect positivity constraints,
so the :IrrigationDemand command is preferred.

• :BasinInflowHydrograph2 (.rvt): can be used to add water to a subbasin at its reach inlet.

Because extractions are applied at the inlet (upstream end of basin main reach) or outlet (downstream
end of main reach), users may wish to consider discretizing the watershed into subbasins in such a way
that demand or supply locations correspond to basin outlets. Unmet irrigation demand is reported in the
output file demands.csv when the :WriteDemandsFile command is included.

4.4.2 Reservoir Demand Allocation

Reservoirs are o�en managed in such a way to support downstream irrigation needs. Raven supports
emulation of this management practice by modifying the minimum flow targets for individual reservoirs
based upon the instantaneous flows at irrigation demand locations downstream. The :Reservoir-
DownstreamDemand command implements this functionality, and can support individual demands
(e.g., Reservoir A is expected to meet 80% of irrigation demand at location 1) or multiple demands (e.g.,
the 3 reservoirs upstream of demand location 2 share the responsibility of satisfying the minimum flow at
that location. The impact of multiple controls simultaneously applied are best demonstrated via example.
Consider the watershed in figure 4.2.

Figure 4.2: An example reservoir routing configuration

This system is represented using the following setup:

In the .rvi file:

:ReservoirDemandAllocation DEMANDBY_CONTRIB_AREA

In the .rvt file:

:IrrigationDemand 4
:AnnualCycle 0 0 0 0 20 20 20 20 20 10 0 0 #monthly flows [m3/s]

:EndIrrigationDemand

72

:IrrigationDemand 6
:AnnualCycle 0 0 0 0 10 10 10 10 10 0 0 0

:EndIrrigationDemand
:IrrigationDemand 9

:AnnualCycle 0 0 0 0 5 5 30 5 5 5 0 0
:EndIrrigationDemand
:EnvironmentalMinFlow 6

:AnnualCycle 22 22 22 22 22 22 22 22 22 22 22 22
:EndEnvironmentalMinFlow

20% of irrigation demand in subbasin 4 is supported by
reservoir A (in subbasin 1)
:ReservoirDownstreamDemand 4 1 0.2
90% of irrigation demand in subbasin 6 is supported by
reservoir C (in subbasin 7)
:ReservoirDownstreamDemand 6 7 0.9
50% of irrigation demand in subbasin 9 is supported
by upstream reservoirs
:ReservoirDownstreamDemand 9 _AUTO 0.5

In the .rvp file, the global demand multiplier,αG is set with the command:GlobalParameter RESER-
VOIR_DEMAND_MULT. In the .rvh file, in the :Reservoir command blocks, the local demand multi-
pliers αi are set using the :DemandMultiplier property.

Because these reservoir demand constraints are additive, the minimum outflow from each reservoir can
be calculated as follows:

QAmin = αA · αG ·
(

(0.2 · I4) +
A1

A1 +A2 +A7
· (0.5 · I9)

)
QBmin = αB · αG ·

(
A2

A1 +A2 +A7
· (0.5 · I9)

)
QCmin = αC · αG ·

(
(0.9 · I6) +

A7

A1 +A2 +A7
· (0.5 · I9)

)
+ E6

where Ai, Ii and Ei are the contributing area, irrigation demand, and environmental minimum flow
of basin i, respectively. Note that the αi terms locally correct the influence of each dam; by se�ing to
zero, the influence of this demand constraint can be turned o�. The global modifier αG can evaluate
di�erent management scenarios (e.g., determine the impact of not modifying reservoir flows to support
downstream demand). It can be seen that if the local and global demand multipliers are equal to one, the
minimum flows of all three reservoirs will satisfy 50% of the demand in subbasin 9. It should also be noted
that if an environmental minimum flow is specified at a downstream demand location, then it must be
respected by the reservoir outflow, without any multiplier used.

73

Chapter 5

Forcing Functions

In Raven, forcing functions, such as rainfall or incoming radiation, are calculated from meteorological
information specified at gauge stations in the watershed or, alternatively, from gridded weather/climate
data. This information is interpolated between gauge stations or grid cells to each hydrologic response
unit (HRU), where it may be corrected for orographic or other e�ects. Forcing functions are calculated at
the beginning of each computational time step, and are always constant over individual time steps. Many
forcing functions may be estimated by Raven if field data is unavailable.

Note that the basic data from which forcing functions are generated (o�en daily precipitation, mini-
mum/maximum daily temperature, etc.) must be reported in terms of rates (e.g., mm/d or MJ/m2/d) for
precipitation and radiation data, not total quantities for the time period. For example, if hourly rainfall
information is stored in mm, it must be converted to mm/d prior to simulation. Missing data in the gauge
information is currently not allowed. The time periods of available forcing data must fully overlap the
simulation duration, but they do not have to be identical.

The minimum required forcing data for fueling a Raven simulation is daily precipitation and daily maxi-
mum and minimum temperature. From this, Raven can partition precipitation into snowfall and rainfall,
estimate subdaily temperatures and PET, and provide estimates of incoming shortwave and longwave ra-
diation. Alternately, these parameters may be specified if available. Raven has the ability to estimate the
following forcings from simple records of total precipitation and daily min/max temperatures:

• Snowfall/Rainfall

• Potential ET (or reference ET)

• Shortwave and longwave net radiation

• Cloud cover

• Potential melt

• Wind speed, relative humidity, and air pressure

• Orographic corrections to temperature, precip, and potential ET rates

• Sub-daily corrections to daily ET, SW radiation, and potential melt rates

Refer to section A.1.2 of Appendix A for more details about each of the available processes that will be
discussed in this chapter.

74

5.1 Spatial Interpolation

Spatial interpolation of forcing functions from gauge stations to HRUs is based upon the lat-long locations
of the gauges and HRUs as specified in the .rvt and .rvh files, respectively. These coordinates are internally
converted into the most appropriate local Universal Transverse Mercator (UTM) coordinate system (as
determined by Raven) to calculate distances between points. Raven currently supports nearest neighbor
and inverse distance weighting interpolation, as documented under the :Interpolation command
in appendix A.1. It also supports the provision of a user-specified gauge weighting file, such that gauges
may be assigned specifically to individual HRUs or alternate interpolation schemes may be used external
to the program.

In general, any interpolated field value (e.g., temperature), is calculated for each HRU using a relatively
general weighted averaging scheme:

Vk =
NG∑
g=1

wkg · Vg

i.e., any value Vk for HRU k is generated by weighting the values from all gauges Vg , using an HRU-specific

weighting factor wkg . Note that
NG∑
g=1

wkg = 1 is required. Di�erent interpolation schemes di�er only in

the means by which they generate the weights, usually based upon the relative geographic position of
the HRUs and gauges.

For gridded data, the contributions to each HRU to each grid cell is similarly specified using a weighting
scheme, though in this case the most intuitive weighting scheme is to use an area-weighted average of
the cells that overlap each HRU, i.e.,

Vk =
NC∑
g=1

wkg · Vg

where NC is the number of cells and wkg = (Ag
⋂
Ak)/Ak, i.e., the weighting is determined by the area

of intersection (
⋂

) between the grid cell (Ag) and HRU (Ak). The user must define these weights, typically
using GIS.

As of v2.8, Raven supports two di�erent sets of gauges interpolants, i.e., only a subset of gauges must have
temperature or precipitation. If an automated interpolation technique (e.g., INTERP_NEAREST_NEIGHBOR)
is used, only the gauges that have available temperature data will be used to interpolate temperature;
all other gauges will be given a weight of 0.0; likewise with precipitation. However, if the interpolation
is user-supplied (INTERP_FROM_FILE), all gauges must have precipitation and temperature data. If
windspeed/radiation/humidity data is provided, it must be provided at the same gauges where precipita-
tion is available.

Note that values are first spatially interpolated, then corrected for orography. Orographic corrections are
based upon the interpolated gauge elevation. This ensures, for instance, that an HRU directly between
two met stations at di�erent elevations doesn’t get doubly corrected for orography - the interpolation
already handles this. The interpolated gauge reference elevation is calculated as:

ẑk =
NG∑
g=1

wkg · zg (5.1)

where zg is the elevation of the gth gauge. Note that for a nearest neighbor interpolation, this is equivalent
to standard orographic corrections from the nearest meteorological gauge.

75

5.1.1 Interpolation for Gridded Data

If gridded data in NetCDF format is supplied using the :GriddedForcing command, then the user
must provide a means of mapping grid cell meteorological data to HRUs. This is done in a similar fashion
to the INTERP_FROM_FILE option for meteorological gauges. Usually, one would generate the relative
area coverage of each cell i in each HRU k using a GIS tool. The proper weighting for each grid cell in
each HRU is then wki = Aki/Ak whereAik is the area of the HRU andAik is the area of NetCDF grid cell
i which overlaps HRU k. With this (specified using the :GridWeights command structure explained
in appendix A.4.6), the forcings for each HRU may be calculated as:

In general, any interpolated field value (e.g., temperature), is calculated for each HRU using a relatively
general weighted averaging scheme:

Vk =
NC∑
i=1

wki · Vi

i.e., any forcing (precip/temp/etc.) value Vk for HRU k is generated by weighting the values from all

NC cells Vi, using an HRU-specific weighting factor wki. Note that
NC∑
i=1
wki = 1 is required. Di�erent

interpolation schemes di�er only in the means by which they generate the weights, usually based upon
the relative geographic position of the HRUs and gauges.

If cell representative elevations are provided, the representative elevation of the meteorological data in
each cell is given as

ẑk =

NC∑
i=1

wki · ẑi

where ẑi is the representative cell elevation (usually the mean ground elevation in each climate model
cell). If not provided, it is assumed that no orographic corrections are applied, i.e., ẑk = zk, where zk is
the elevation of the HRU. This is fairly reasonable approximation if the grid cells are small enough such
that there is relatively small variability of elevation within each cell.

76

5.2 Temperature

Daily average, sub-daily, and daily minimum and maximum temperatures are required for many hydro-
logic simulation algorithms. This forcing data is o�en used for partitioning of precipitation into rainfall
and snowfall components, estimating potential and actual evapotranspiration, driving snow melt and re-
freezing, as a proxy for cloud cover, etc., etc. In Raven, one of three temperature data sets are needed at
each gauge or grid cell. Ideally, sub-daily (typically hourly) data is specified, and daily minimum, max-
imum, and average temperatures are calculated directly. If daily minimum and maximum temperature
data are provided, daily averages are calculated as the average of the two, and sub-daily temperatures (if
needed) are specified using the approach dictated by the :SubDailyCorrection command. Lastly,
in the worst case scenario where only daily average temperature is provided, the daily min, max, and sub-
daily temperatures are also generated using the approach specified in the :SubDailyCorrection
command, but with the max and min calculated as the mean daily temperature plus or minus 4 degrees.

5.2.1 Orographic Temperature E�ects

Orographic e�ects may be applied to correct temperature estimates at each HRU based on the specified
elevation of the HRU relative to the local meteorological gauge. The options available for orographic
temperature adjustment are described below. The orographic temperature e�ect is set in the RVI file
using the :OroTempCorrect keyword. Orographic corrections are typically only applied to gauged
(not gridded) input data. Orographic corrections would typically not be applied when gridded temperature
data is provided.

Advice

The OROCORR_SIMPLELAPSE is recommended for most applications, unless trying to emulate
a specific model configuration (i.e., HBV or UBCWM). The UBCWM algorithm performs well on
the western face of the Rockies.

Simple method (OROCORR_SIMPLELAPSE)

The simple method for orographic temperature correction estimates the HRU through the applica-
tion of a lapse rate correction to the associated gauge temperature:

T = Tk − α(z − ẑk) (5.2)

where T is the estimated HRU temperature a�er correction, Tk is the temperature in the HRU in-
terpolated from the gauge data, z and ẑk are the elevation of the HRU and reference elevation at the
gauge respectively, where ẑk is calculated from equation 5.1, and α is the specified adiabatic lapse
rate. Equation 5.2 is applied to all temperature forcing variable time series, including: daily average,
minimum and maximum; and monthly average, minimum and maximum. The adiabatic lapse rate
is set with the :AdiabaticLapseRate keyword in the RVP file. Note that this correction is
equivalent to the standard interpretation of lapse rates for nearest neighbor interpolation, i.e., 5.2
simplifies to:

T = Tg − α(z − zg) (5.3)

where zg is the elevation of the nearest gauge and Tg is the temperature at the nearest gauge.

HBV method (OROCORR_HBV)

The HBV model method from Bergstrom (1995) employs the simple orographic temperature cor-
rection method described above employing Equation 5.2, except that the monthly average temper-
atures are not lapsed to be consistent with their treatment in the standard HBV model.

77

UBCWM method 1 (OROCORR_UBC)

The UBC watershed model orographic temperature correction method 1 employs a series of lapse
rates and inflection points describing the orographic correction profile. The UBC method 1 calcu-
lates four temperature lapse rates: above and below 2000 m elevation for both daily maximum and
daily minimum temperatures. The parameters are set in the .rvp file using the following keyword
and parameter sequence:

:UBCTempLapseRates A0TLXM A0TLNM A0TLXH A0TLNH P0TEDL P0TEDU

The parameters listed above are described in Table 5.1.

Table 5.1: UBC Watershed Model temperature lapse rate parameters
Parameter Description Units

A0TLNH Lapse rate for minimum temperatures when the sta-
tion elevation is greater than 2000 m

C / 1000 m

A0TLNM Lapse rate for minimum temperatures when the sta-
tion elevation is less than 2000 m

◦C/ 1000 m

A0TLXH Lapse rate for maximum temperatures when the sta-
tion elevation is greater than 2000 m

◦C/ 1000 m

A0TLXM Lapse rate for maximum temperatures when the sta-
tion elevation is less than 2000 m

◦C/ 1000 m

P0TEDL Lapse rate of maximum temperature range for eleva-
tions below 2000 m

◦C/ 1000 m

P0TEDU Lapse rate of maximum temperature range for eleva-
tions above 2000 m

◦C/ 1000 m

V =

{
min

(
P

A0PPTP , 1.0
)
, if A0PPTP > 0

0, if A0PPTP ≤ 0
(5.4)

where P is the precipitation rate, A0PPTP is the threshold precipitation for temperature lapse
rate in mm and V is a rainfall correction factor that transition a lapse rate from a dry to wet
adiabatic lapse rate based on current precipitation rate. A corrected adiabatic lapseαc is determined
by providing a weighted average between the specified dry adiabatic lapse rate αd and the wet
adiabatic lapse rateαw as shown in Equation 5.5. The wet and dry adiabatic lapse rates are specified
in the RVP file using the :WetAdiabaticLapse and :AdiabaticLapseRate respectively.

αc = V αw + (1− V)αd (5.5)

A daily temperature range factor wt is calculated as the current daily temperature range divided
by the maximum temperature range parameter A0TERM shown in Equation 5.6.

wt =
Tmax − Tmin

A0TERM
(5.6)

The final equation for the maximum daily temperature lapse rate αmax and the minimum daily
temperature lapse rate αmin are shown in Equations 5.7 and 5.8 respectively. The lapse rates have
an inflection point at 2000 m in all cases, and as the daily temperature range approaches zero the
lapse rates approach the corrected adiabatic lapse rate.

αmax =

{
wtA0TLXM + (1− wt)αc, if elevation ≥ 2000 m

wtA0TLXH + (1− wt)αc, if elevation < 2000 m
(5.7)

78

αmin =

{
wtA0TLNM + (1− wt)αc, if elevation ≥ 2000 m

wtA0TLNH + (1− wt)αc, if elevation < 2000 m
(5.8)

To do (5)

UBCWM method 2 (OROCORR_UBC2)

The UBC Watershed Model method 2 for estimating orographic temperature e�ects is to dynam-
ically derive the lapse rate from the measured temperature data collected at the meteorological
gauges. This routine uses only the first two meteorological gauges (the first two listed in the RVT
file) to derive the lapse rate relationships. The relationship for the maximum daily temperature
lapse rate is shown in Equation 5.9 and the relationship for the minimum daily temperature lapse
rate is shown in Equation 5.10.

αmax =
Tmax2 − Tmax1

z2 − z1
(5.9)

αmin =
Tmin2 − Tmin1

z2 − z1
(5.10)

where Tmin1 and Tmin2 are the minimum daily temperatures at stations 1 and 2 respectively, Tmax1

and Tmax2 are the maximum daily temperatures at stations 1 and 2 respectively, and z1 and z2 are
the elevations at stations one and two respectively.

This method requires two stations configured in the RVT file and subsequent stations are ignored in the
calculations.

79

5.3 Precipitation

Precipitation forcings (rainfall and snowfall) are interpolated directly from gauges or gridded data. At the
very minimum, total daily precipitation and daily average temperature is required to generate required
time series of rainfall and snowfall everywhere in the watershed.

Measured total precipitation, snow precipitation, or rain precipitation may be corrected on a gauge-by-
gauge basis by using gauge-dependent rainfall and snowfall corrections to correct for observation bias.
This is handled using the :RainCorrection and :SnowCorrection commands outlined in ap-
pendix A.4.1. Rainfall and snowfall may further be corrected for bias on a subbasin-by-subbasin basis
using the subbasin properties RAIN_CORR and SNOW_CORR.

5.3.1 Snow-Rain Partitioning

If only total precipitation is specified at a gauge station or grid cell, then this total precipitation is parti-
tioned into rain and snow, based upon the approach specified in the :RainSnowFraction command.
All of the provided algorithms calculate the snow fraction αs, and rain and snow are determined from:

R = (1− αs)P
S = αP

where R [mm/d], S [mm/d], and P are rainfall, snowfall, and total precipitation rates, respectively. The
following algorithms for αs are available:

Determine From Data (RAINSNOW_DATA)

To be used if snowfall (or the snow fraction) is explicitly reported in the gauge/gridded data.

Temperature range approach (RAINSNOW_DINGMAN)

In the temperature range approach, the snow fraction, α, is calculated from the maximum and
minimum daily temperatures:

αs =
Ttrans − Tmin
Tmax − Tmin

(5.11)

where Ttrans is the rain/snow transition temperature (global parameter RAINSNOW_TEMP) [de-
fault: 0 ◦C], and Tmin and Tmax are the min and max daily temperatures. If Ttrans is outside of this
temperature range, the precipitation is either all snow (αs = 1) or all rain (αs = 0), accordingly.
This snow fraction is applied for the entire day.

Linear approaches (RAINSNOW_UBC or RAINSNOW_HBV)

In these approaches, a linear transition between all snow and all rain is determined from the average
daily temperature, Tave:

αs = 0.5 +
Ttrans − Tave

∆T
(5.12)

in the range fromTtrans−∆T/2 toTtrans+∆T/2, whereTtrans is the rain/snow transition tempera-
ture (global parameterRAINSNOW_TEMP, [◦C]) and ∆T is the global parameterRAINSNOW_DELTA
[◦C]. If Tave is outside of this temperature range, the precipitation is either all snow (αs = 1) or
all rain (αs = 0), accordingly. This snow fraction is applied for the entire day.

80

Harder and Pomeroy Approach(RAINSNOW_HARDER)

Using the method of (Harder and Pomeroy, 2013) as implemented in CRHM Pomeroy et al. (2007).
The fraction of snow is given by:

αs = 1− 1

1 + 2.503 · 8−Tib
(5.13)

whereTib is the ice bulb temperature, as determined from the relative humidity and air temperature.

HSPF Approach(RAINSNOW_HSPF)

Using the empirical formula as documented in the HSPF manual Bicknell et al. (1997) (here con-
verted to Celsius). A reference temperature T ∗ is determined using

T ∗ = Ttrans + (Tave − Tdp)(0.5808 + 0.0144 ∗ Tave) (5.14)

where Ttrans is the is the rain/snow transition temperature (global parameter RAINSNOW_TEMP),
Tdp is the dew point temperature, calculated from the relative humidity. If T ∗ > Tave, αs is one,
zero otherwise.

5.3.2 Orographic Precipitation E�ects

Orographic e�ects may be applied to correct total interpolated precipitation at each HRU based upon HRU
elevation. The fraction of precipitation in the form of snow or rain is not modified by these corrections.

Simple method (OROCORR_SIMPLELAPSE)

The simple precipitation lapse rate method employs a simple linear adiabatic method as outlined
in Equation 5.15 below:

P = Pk + α(z − ẑk) (5.15)

where P is the total precipitation rate [mm/d], Pk is the interpolated precipitation at the HRU
[mm/d], z is the elevation of the HRU, ẑk is the reference elevation calculated from equation 5.1
at the HRU, and α [mm/d/km]is the precipitation correction lapse rate specified using the :Pre-
cipitationLapseRate key word in the RVP file. Checks are included to ensure positivity of
the precipitation rate. Note that this simplifies to the traditional interpretation of gauge orographic
corrections for a single gauge or nearest neighbor interpolation algorithm, i.e.,

P = Pg + α(z − zg) (5.16)

where zg is the elevation of the nearest gauge and Pg is the total precipitation rate at the nearest
gauge [mm/d].

HBV method (OROCORR_HBV)

From the HBV model Bergstrom (1995):

P = Pk · (1.0 + α(z − ẑk)) (5.17)

where P is the total precipitation rate [mm/d], Pk is the interpolated precipitation at the HRU
[mm/d], z is the elevation of the HRU, ẑk is the reference elevation calculated from equation 5.1 at
the HRU, and α, the precipitation correction lapse rate, is 0.00008 m−1 below 5000 masl, 0 above
this elevation.

81

UBCWM method 1(OROCORR_UBC)

The UBC Watershed Model method 1 for orographic correction of precipitation estimates employs
a temperature-corrected lapse rate with two inflection points (�ick, 2003). The base orographic
correction equation is shown in Equation 5.18:

P = Pg · (1 + αFt)
z−zg
100 (5.18)

where P is the total applied precipitation rate, Pg is the measured gauge precipitation, z and zg are
the elevation of the HRU and gauge, respectively, and α, the precipitation correction lapse rate. Ft
is a temperature correction factor shown in equation 5.19:

Ft =

{
1, if tband ≤ 0 C

1−A0STAB (tband)
2 , if tband > 0 C

(5.19)

where A0STAB is the precipitation gradient modification factor, and tband is the temperature at
the first listed elevation band in the model. Ft is constrained between 0 and 1.

Figure 5.1: UBC Watershed Model Orographic Correction

82

5.4 Potential Evapotranspiration (PET)

A variety of potential evapotranspiration (PET) estimation algorithms of varying complexity are available
for calculating PET within an HRU. These PET algorithms use many of the same relationships, including
those for the saturated vapor pressure as a function of temperature,

es(T) = 0.6108 · exp

(
17.23T

T + 237.3

)
(5.20)

and the slope of this curve, ∆(T) = des/dT ,

∆ =
4098

(T + 237.3)
· es(T) (5.21)

where T is in ◦C. The latent heat of vaporization of water, λv [MJ/kg], is estimable by:

λv = 2.495− 0.002361 ∗ T (5.22)

where T is the temperature [◦C], and the psychrometric constant, γ is here treated as varying with
atmospheric pressure, p [kPa],

γ =
ca

0.622 · λv
p (5.23)

where ca is the specific heat of air, equal to 1.012x10−3 MJ/kg/K.

Note that most of the algorithms below estimate daily PET. Methods are required to downscale these
daily estimates to sub-daily time steps, as discussed in 5.10. If the :DirectEvaporation command
is used, rainfall is automatically reduced by PET, with a corresponding decrease in the available potential
evapotranspiration.

5.4.1 PET Estimation

Constant PET (PET_CONSTANT)

The daily PET value used is constant and uniform rate of 3 mm/d.

From file (PET_DATA)

The daily PET is explicitly specified at each gauge or grid cell (see section A.4 for details) and inter-
polated in-between. This enables any measured ET or user-specified means of calculating PET to
be used.

From monthly (PET_FROMMONTHLY)

Used in the HBV Model Bergstrom (1995). Monthly PET and temperature norms are provided at the
gauge using the :MonthlyAveEvaporation and :MonthlyAveTemperature commands.
These estimates are assumed not to vary year-to-year. Daily estimates of PET may then be obtained
from:

PET = PETmon ·min(1 + 1
2(Tave − Tmon), 2)

where PETmon and Tmon are the daily PET [mm/d] and temperature norms for the current month,
and Tave is the average daily temperature spatially and temporally interpolated from the gauge
values for :MonthlyAveEvaporation and :MonthlyAveTemperature. Checks are used
to ensure PET is positive and doesn’t exceed twice the average representative monthly PET.

83

Penman Monteith (PET_PENMAN_MONTEITH)

From Monteith (1965). The standard Penman-Monteith equation estimates daily reference evapo-
transpiration over a reference vegetation,

PET =
1

λvρw
·
[

∆

∆ + γ∗
Rn +

ρaCaca
∆ + γ∗

(es − e)
]

where λv [MJ/kg] is the latent heat of vaporization of water, ρw [kg/m3] is the density of water,
∆ = des/dT is the slope of the saturated vapor pressure curve,Rn = Sn+Ln [MJ/m2/d] is the net
radiation to the system, ρa is the air density, Ca [MJ/kg] is the specific heat of air, catm [md−1] is
the atmospheric conductance, e is the vapor pressure of the atmosphere, es(T) [kPa] is the current
saturated vapor pressure of the atmosphere, a function of temperature, and γ∗ [kPa/ ◦C] is the
corrected psychrometric constant,

γ∗ =

(
1 +

ca
ccan

)
γ

where ccan [m/d] is the canopy conductance, and γ [kPa/ ◦C] is calculated using 5.23. The final
expression is converted from m/d to mm/d. The atmospheric conductance is calculated using the
following relationships Dingman (2002):

catm = v · κ2

ln
(
zref−z0
zrough

)
ln
(
zref−z0
zvap

)
where κ is the Von Karman Constant (0.42), zref is the reference height [m] at which the wind
velocity v [m/d] is reported, z0 [m] is the zero-plane displacement height, zrough is the roughness
height [m], and zvap is the vapour roughness height [m]. These parameters are predominantly
calculated from the ground roughness and canopy heights. The canopy conductance is calculated
as a function of vegetative leaf area index Dingman (2002):

ccan = 0.5 · cleaf · LAI

where cleaf is the leaf conductance [m/d], calculated using the expressions detailed in Dingman
(2002) and LAI is calculated from equation 3.1.

Penman combination (PET_PENMAN_COMBINATION)

From Penman (1948). A similar expression to the Penman Monteith equation, daily reference ET is
calculated from the following equation:

PET =
1

λvρw
·
[

∆

∆ + γ
Rn

]
+

[
γεvv

∆ + γ
(es − e)

]
i.e., here the deficit-driven evapotranspiration (the second term) is treated using the wind velocity,
v [m/s] and a vertical transport e�iciency factor, εv , calculated as

εv =
0.622ρa

6.25 · eρw
·

(
ln

(
zref − z0

zrough

)−2
)

terms are defined as defined above in the description of the PET_PENMAN_MONTEITH algorithm.

84

Priestley-Taylor (PET_PRIESTLEY_TAYLOR)

From Priestley and Taylor (1972). A simplified version of the Penman-Monteith approach where
only net radiation explicitly drives daily ET, with an additional correction factor for the unmodeled
ET driven by vapor deficit. The Priestley-Taylor equation is given by:

PET = 1.26 · 1

ρwλv
·
[

∆

∆ + γ
Rn

]
whereRn is the net radiation [MJ/m2/d], and other terms are defined as above in the description of
the PET_PENMAN_MONTEITH algorithm. The factor of 1.26 is used to scale the radiation-driven
ET to account for the (unmodeled) vapor deficit-driven ET. Priestley Taylor is predominantly used
to estimate evaporation from open water.

Hargreaves (PET_HARGREAVES)

From Hargreaves and Samani (1982).

PET =
1

ρwλv
· SET · 0.000938 ·

(√
Tmonmax,F − Tmonmin,F

)
Tave,F

where SET [MJ/m2/d] is the extraterrestrial shortwave radiation, the temperatures Tmonmax,F and
Tmonmin,F are the maximum and minimum monthly temperatures in Fahrenheit, and Tave,F is the
daily temperature in Fahrenheit (converted internally within the code). The temperature factors
a�end to the impact of cloud cover and atmospheric interference with the extraterrestrial radiation.

Hargreaves 1985 (PET_HARGREAVES_1985)

From Hargreaves and Samani (1985). The 1985 Hargreaves equation, an empirical approach based
solely on temperature and incoming solar radiation. Similar to PET_HARGREAVES, but it metric
units.

PET =
1

ρwλv
· SET · 0.0023 ·

√
Tmax − Tmin (Tave + 17.8)

where Tave, Tmax, and Tmin are the average, maximum, and minimum daily air temperature, and
SET [MJ/m2/d] is the extraterrestrial shortwave radiation.

Monthly factor method (PET_MONTHLY_FACTOR)

Method used in the UBC Watershed Model (�ick, 1995). PET is calculated using the following
formula:

PET = max(Emon · Tave − ε, 0) · δforest
whereEmon [mm/d/K] is a monthly PET factor (specified using the :MonthlyEvapFactor com-
mand in the .rvt file, on the order of 0.2), Tave is the daily average temperature in Celsius, and δforest
is the land use parameter FOREST_PET_CORR), applied only to forested regions. The factor ε is
an orographic correction factor, given as

ε = 0.009 · (z − ẑk)

where z is the HRU elevation, and ẑk is the reference elevation for the HRU calculated using equa-
tion 6.1, respectively. Note that, unlike with most other ET approaches, the orographic correction is
necessarily fused with the PET calculation and therefore the orographic PET correction should be
set to OROCORR_NONE. In previous versions (prior to 3.0), ẑk was the elevation of the first gauge
in the .rvt file.

85

Hamon (PET_HAMON)

From Hamon (1961). PET is calculated using the following relationship:

PET = 1115 ·
esatL

2
d

Tave

where esat is the saturated vapor pressure [kPa], Tave is the average daily temperature [K],Ld is the
day length [d], and the PET is in mm/d. The constant 1115 includes both units conversion factors
and an approximate relationship to convert saturated vapor pressure and temperature to absolute
humidity.

Oudin PET (PET_OUDIN)

A simple method from Oudin et al. (2005). PET is calculated using the following relationship:

PET =
SET
λvρw

·min

(
Tave + 5.0

100
, 0.0

)
where SET is the shortwave extraterrestrial radiation [MJ/m2/d], λv is the latent heat of vaporiza-
tion, ρw is the density of water, and Tave is the daily average temperature.

Turc 1961 (PET_TURC_1961)

From Turc (1961) as reported in Liu et al. (2005). This empirical PET estimation algorithm has no
additional parameters required.

PET =

0.013
(

Tave
Tave+15

)
(23.88 ∗ Sn + 50)

(
1 + 50−RH

70

)
for RH<50%

0.013
(

Tave
Tave+15

)
(23.88 ∗ Sn + 50) for RH≥50%

where the PET is in mm/d, Tave is the average daily temperature [◦C], Sn is the daily net shortwave
radiation [MJ/m2/d], and RH is the relative humidity expressed as a percentage.

Makkink 1957 (PET_MAKKINK_1957)

From Makkink (1957) as reported in Liu et al. (2005).

PET = 14.57

(
∆

∆ + γ

)
Sn

58.5
− 0.12

where ∆ is the slope of the saturation vapor pressure-temperature curve [kPa/ ◦C], γ is the psy-
chrometric constant, and Sn is the net incoming solar radiation [MJ/m2/d].

MOHYSE (PET_MOHYSE)

From the MOHYSE model (Fortin and Turco�e, 2006):

PET =
c

π
· cos−1 (− tan(Λ) ∗ tan(δ)) ∗ exp

(
17.3 · T
238 + T

)
where c is the global parameter MOHYSE_PET_COEFF, Λ is the latitude in radians, δ is the solar
declination, and T is the average daily temperature in ◦C.

86

Granger-Gray (PET_GRANGERGRAY)

From Granger and Gray (1989), as implemented in the Cold Regions Hydrologic Model (CRHM)
Pomeroy et al. (2007):

PET =
1

λvρw

∆ · 0.9 ·Rn + γ ·D∗ · (es − ea)
∆ + γ/G

where ∆ = des/dT is the slope of the saturated vapor pressure curve, γ is the psychometric con-
stant, Rn = Sn + Ln [MJ/m2/d] is the net radiation to the system, es(T) is the saturated vapour
pressure and e is the actual vapour pressure. The 0.9 correction for net radiation assumes that
10 percent of energy goes to ground heat flux. Here, the formulation uses a drying power, D∗

[MJ/m2/d/kPa], given as

D∗ = λvρw ((8.19 + 22z0) + (1.16 + 8z0) · v)

where z0 is the vegetation roughness height [m] and v is the wind velocity [m/s]. The correction
term G is given by

G =
1.0

0.793 + 0.2 exp(4.902D)
+ 0.006D

where
D =

1

1 + Rn
D∗·(es−ea)

Note that in Granger and Gray (1989), this ’potential’ evapotranspiration rate is an actual evapora-
tion rate constrained by moisture availability. The formula for G is similar to that of Granger and
Gray (1989) in trend, but not precisely the same.

Linacre (PET_LINACRE)

From Linacre (1977).

PET =
a ·Tave100−φ + 15 · (Fave − Tdew)

80.0− Tave
where Tave is the average daily temperature, Tdew is the daily dew point temperature, φ is the
latitude, in degrees. The parameter a is equal to 700 for open water evaporation, 500 otherwise.

5.4.2 PET Orographic E�ects

Orographic e�ects are calculated using the following algorithms, specified using the :OroCor-
rPET command in the .rvi file. Note that these should typically only be applied if PET data is
provided at the gauge; otherwise, temperature orographic corrections will already impact PET es-
timates.

HBV method (OROCORR_HBV)

From the HBV model (Bergstrom, 1995):

PET = PETk · α (1− β) (z − ẑk)

where PETk is the interpolated gauge-provided PET rate [mm/d], α is the global PET correction
factor (GLOBAL_PET_CORR), β is the HBV precip correction factor (HBV_PRECIP_CORR), z is
the HRU elevation, and ẑk is the reference elevation for the HRU calculated using equation 5.1,
respectively.

87

PRMS method (OROCORR_PRMS)

This orographic correction factor is described in the users’s manual of the PRMS model (Leavesley
et al. (1983)). It uses the maximum saturated vapor pressure, emaxsat [kPa] (calculated from the aver-
age August temperature) and the minimum saturated vapor pressure eminsat [kPa] (calculated from
the average February temperature).

PET = PETk ·

(
1

68− 0.0118z + 650
emaxsat −eminsat

)

where z is the HRU elevation [masl] and PETk is the interpolated PET at the HRU (implicitly pre-
sumed to be calculated at an elevation of zero). Note that because this algorithm implicitly includes
orographic temperature e�ects, it must be used with care in combination with orographic temper-
ature corrections.

88

5.5 Shortwave Radiation

Solar radiation contributes to the earth surface’s energy balance, and is important for estimating snow
melt and evapotranspiration, amongst other things. Since solar radiation is not directly measured in many
places, here the standard routines documented in (Dingman, 2002) are used to estimate critical terms
needed to estimate extraterrestrial shortwave radiation. This can then be corrected using information
about cloud cover and/or optical air mass. Used in many of these calculations is the day angle, Γ [rad],
and the solar declination, δ [rad]:

Γ =
2πJ

365
(5.24)

δ = 0.006918− 0.399912 · cos(Γ) +

0.070257 · sin(Γ)− 0.006758 · cos(2 · Γ) +

0.000907 · sin(2Γ)− 0.002697 · cos(3 · Γ) +

0.001480 · sin(3Γ)

Day length is calculated as follows, with additional corrections for polar latitudes:

Day Length =
arccos(− tan(δ) · tan(Λ))

π

where Λ is the latitude of the location (in radians). In Raven, net shortwave is calculated as

Sn = (1− α) · fcan · fcloud · Scs (5.25)

where fcan and fcloud [0..1] are correction factors for canopy cover and cloud cover, respectively, and the
clear sky solar radiation is given as

Scs = fatm · fasp · SET (5.26)

where fatm and fasp [0..1] are a correction factors for atmospheric refraction and slope/aspect of the
ground surface, SET is the extra terrestrial radiation. Section 5.5.1 details methods for calculating SET ,
section 5.5.2 details methods for handling fatm, section 5.5.3 details methods for handling fcloud and
section 5.5.4 details methods for handling fcan. These individual terms may be visualized in figure 5.2.

5.5.1 Extraterrestrial Shortwave Generation

The following shortwave radiation estimation algorithms are available, and are specified using the:SWRadi-
ationMethod command in the .rvi file.

Raven default (SW_RAD_DEFAULT)

Extraterrestrial radiation flux on a horizontal plane is calculated using Dingman (2002):

SET = Isc · E0 · [cos(δ) · cos(Λ) · cos(2πt) + sin(δ) sin(Λ)] (5.27)

where Isc is the solar constant (118.1 MJm−2d−1), E0 is an eccentricity correction (see Dingman
(2002)), and t is the time of day in days (i.e., t = 0 is midnight, t = 0.5 is noon). Corrections
are applied for radiation on a sloping surface (i.e., on HRUs with a non-zero slope). Aspects are
corrected for in the default approach using the corrections put forth in Dingman (2002), and can
handle the two sunset e�ect.

89

Figure 5.2: The surface energy balance in Raven. Important components include shortwave radiation (S),
longwave radiation (L), conductive/convective heat transfer (H), and latent heat/phase change (LH).

UBCWM approach (SW_RAD_UBCWM)

Shortwave radiation is calculated using the same equations as the SW_RAD_DEFAULT approach
(equation 5.27), but employs a correction to the day length to account for mountain barrier e�ects.
Two sets of monthly correction parameters are employed in this method to correct for SW radiation
for north- and south-facing slopes. The parameters are included in the UBCNorthSWCorr and
UBCSouthSWCorr keywords in the RVP file with one parameter for each month (January to
December). The HRU orientation factor is calculated as a function of the aspect of the HRU

O = 1−
∣∣∣∣ θπ − 1

∣∣∣∣
where θ is the dominant aspect direction and O is the orientation (eg. north = 0 and south = 1,
east/west = 0.5). The final SW radiation estimate is

fasp = [O · CS + (1−O) · CN]

where fasp is the correction factor for shortwave radiation on an inclined plane, SET is the un-
corrected shortwave radiation estimate based on equation 5.27, and CS and CN are the south and
north correction factors respectively (from UBC_S_CORR and UBC_N_CORR).

Interpolate from data (SW_RAD_DATA)

The incident shortwave radiation is read from a file, specified at one or more gauge locations. The
radiation could be either measured, generated from an atmospheric model, or estimated using an
external preprocessor. If incident shortwave is provided directly, cloud cover corrections (but not
aspect, or canopy corrections) are implicitly contained in this number. What is actually being input
is

fcloud · fatm · SET
Additional algorithms are required to a�end to slope/aspect and canopy corrections.

90

5.5.2 Clear Sky Radiation

As radiation passes through the earths atmosphere, energy is absorbed and sca�ered by particles and
water vapor, both in cloudy and cloud-free areas. Corrections must be made to extraterrestrial radiation
to account for this.

Dingman (SW_RAD_DEFAULT)

The approach outlined in Dingman (2002), total incident radiation is calculated as:

fatm = (τdir + 0.5(1− τdiff)) · (1 + 0.5(1− τdiff)α)

where α is the surface albedo, and the sca�ering correction factors for di�use and direct solar
radiation τdiff and τdir are given by

τdir = exp (−0.124− 0.0207Wp − (0.0682 + 0.0248Wp)Mopt) (5.28)

τdiff = exp (−0.0.363− 0.0084Wp − (0.0572 + 0.0173Wp)Mopt)

where the precipitable water vapor, Wp, is calculated as Wp = 1.12 exp(0.0614Td), where Td is
the dew point temperature, and the optical air mass, Mopt, is calculated using the methods of Yin
(1997).

UBCWM approach (SW_RAD_UBCWM)

In the UBC watershed model, the corrections for atmospheric sca�ering and adsorption are given
as

fatm = exp(−2.0 · (0.0128− 0.0234 ln(ma))

where the air mass, ma is given by

ma =
1− 0.001 · z

[cos(δ) · cos(Λ) · cos(2πt) + sin(δ) sin(Λ)]
(5.29)

This product fatm · SET is numerically integrated over the course of the day to estimate the daily
clear sky radiation. The day length in this integration calculation is corrected for using a mountain
barrier correction.

5.5.3 Cloud Cover Corrections

Additional corrections are required to handle cloud cover. While the algorithms for estimating actual
cloud cover are included in section 5.7 below, the use of the cloud cover factor for estimating incident
radiation is treated here.

UBC approach (SW_CLOUDCOV_CORR_UBC)

The UBC watershed model (�ick, 1995) corrects shortwave radiation due to cloud cover using the
following equation

fcloud = (1− (1− POCAST) · Cc)

where SC is the shortwave radiation corrected for cloud cover, S is the uncorrected shortwave
radiation, CC is the cloud cover correction factor and POCAST is the cloud penetration factor
specified in the RVP file with the :UBCCloudPenetration keyword.

91

Dingman approach (SW_CLOUDCOV_CORR_DINGMAN)

The cloud cover correction factor may also be estimated as outlined in Dingman (2002, Eq. 5-30):

fcloud = (0.355 + 0.68 · (1− Cc)) (5.30)

where Cc is cloud cover. This approach does not require any parameters to be set in the RVP file.

Annandale approach (SW_CLOUDCOV_CORR_ANNANDALE)

The cloud cover correction factor is generating using the approach from Annandale et al. (2002):

fcloud = 0.16 ∗ (1.0 + 0.00027z)
√

(Tmax − Tmin) (5.31)

where z is the elevation in masl, andTmax/Tmin are the maximum and minimum daily temperature.

5.5.4 Canopy Cover Corrections

Calculates the ratio of solar radiation under forest canopy relative to open. The default canopy cover
correction method is no correction (SW_CANOPY_CORR_NONE).

UBCWM method (SW_CANOPY_CORR_UBC)

To correct for shortwave correction due to canopy cover the UBC watershed model method employs
the following equation

fcan = FE

where SC is the shortwave energy corrected for canopy cover, S is the uncorrected shortwave
energy, and FE is the forest cover correction factor specified using the :UBCExposureFactor
command in the RVP file.

Bulk transmi�ance approach (SW_CANOPY_CORR_STATIC)

The Bulk transmi�ance approach provides a static canopy transmi�ance based on leaf-area index
and stem-area index estimates to produce a “sky view” factor, or the fraction of the ground that
receives sunlight (Dingman, 2002):

fcan = exp(−k(LAI + SAI))

where k is the extinction coe�icient, LAI is the leaf-area index and SAI is the stem-area index, both
estimated as indicated in equation 3.1. The extinction coe�icient, leaf-area index and stem-area
index are supplied or calculated from parameters within the :VegetationClasses parameter
structure in the .rvp file by the SVF_EXTINCTION, MAX_LAI, and SAI_HT_RATIO columns
respectively.

5.6 Longwave Radiation

Longwave radiation is the electromagnetic radiation emi�ed by materials with near-earth-surface tem-
peratures. The net longwave is the di�erence between the incident longwave emi�ed (or back sca�ered)
by the atmosphere, clouds, and canopy and the outgoing radiation from the land surface (see figure 5.2).

92

Interpolate from data (LW_RAD_DATA)

The net longwave radiation (in MJm−2d−1) is read from a file, specified at one or more gauge
locations or as a gridded climate product. The radiation could be either measured or estimated
using an external preprocessor.

Raven Default method (LW_RAD_DEFAULT)

Net longwave radiation is treated using the Stefan -Boltzmann law, with a correction factor for the
ine�iciency of the land and atmospheres as black-body emi�ers.

Ln = σ · εs ·
(
εatm · T 4

atm,K − T 4
s,K

)
where σ is the Stefan Boltzmann constant (4.9x10−9 MJm−2d−1K−4), Tatm,K and Ts,K [◦K] are
the e�ective temperatures of the atmosphere and ground surface (here presumed equal to the air
temperature in Kelvin), and εs and εatm are the e�ective emissivities of the surface and atmosphere,
respectively. In Raven, the surface emissivity is held constant as εs = 0.99 and the atmospheric
emissivity is calculated as Dingman (2002)

εatm = (1− Fc) · 1.72 ·
(

e

Ta,K

)1/7

· (1 + 0.22 · C2
C) + Fc

where Fc [0..1] is the forest cover (treated as a blackbody), e is the vapor pressure, Ta,K is the air
temperature in Kelvin, and Cc is the cloud cover.

UBCWM method (LW_RAD_UBC)

The longwave radiation is estimated in the UBC Watershed model separately for open and forested
covers. The open longwave radiation is estimated using

Lo = (1− fcloud) · λfρw · (−20 + 0.94Tavg) + fcloud · λfρw · (1.24Tmin)

where Lo is the net longwave radiation estimate for open forest cover in mm/d, Tavg ◦Cis the
daily average temperature, Tmin ◦Cis the daily minimum temperature, f is the UBC cloud cover
correction factor (see Section 5.7), and λf is the latent heat of fusion. The net longwave radiation
estimate for forest covered areas is:

Lf = λfρwfLWTavg

whereLf is the longwave radiation estimate for open forest cover in mm/d, tavg is the daily average
temperature, and fLW is the temperature multiplier factor in mm/dK−1 which is set in the RVP file
using the :UBCLWForestFactor keyword. If the forest cover for an HRU is greater than zero
then the la�er equation is employed. Note that this expression is a linearization of the Stefan-
Boltzmann law.

HSPF method (LW_RAD_HSPF)

Net longwave radiation is given as a simple function of average daily temperature, Tavg [◦C]

Ln = 0.361 ∗ (Tavg − 6.6) (5.32)

where Ln is in MJm−2d−1.

93

5.7 Cloud Cover

This section outlines the various method for the estimation of a cloud cover in the model and the as-
sociated cloud cover corrections for incident short wave radiation. The default cloud cover method is
CLOUDCOV_NONE, implying no cloud cover estimation or cloud cover correction.

No cloud cover calculations (CLOUDCOV_NONE)

No cloud cover is the default approach to cloud cover for Raven and can be set explicitly in the RVI
file using the :CloudCoverMethod keyword of NONE, or by excluding the keyword entirely.

Interpolate from data (CLOUDCOV_DATA)

The cloud cover data [0-1] may be incorporated from gauge data if available in which case the
CLOUDCOV_DATA option for the CloudCoverMethod keyword should be employed in the RVI
file. The cloud cover data is stored in the meteorological time series data files (see Section A.4 for
details).

UBC approach (CLOUDCOV_UBC)

Cloud cover factor in the UBC watershed model are estimated by determining the daily temperature
range as observed at the meteorological gauges that influence an HRU and comparing that range
to specified cloud temperature range parameters. The observed temperature range for the HRU is
calculated as

∆T = Tmax − Tmin (5.33)

where Tmax and Tmin are the interpolated maximum and minimum temperatures and ∆t is the
temperature range at HRU. The cloud cover correction factor is

Cc =


1, if ∆T ≤ Tcmin
1− ∆T−Tcmin

Tcmax−Tcmin , if Tcmin > ∆T > Tcmax

0, if ∆t ≥ Tcmax
(5.34)

where Cc is the cloud cover factor [0-1], and Tcmin and Tcmax are the cloud cover temperature
ranges in ◦Cas specified for each gauge within the RVT file using the keyword :CloudTem-
pRanges.

5.8 Energy

This section includes a number of processes that are involved in the energy balance in the Raven model,
including the estimates of potential snowmelt

5.8.1 Potential Melt

Potential snow melt can be estimated using a number a methods in the Raven model. To set the
appropriate process in the model the RVI must include the :PotentialMeltMethod keyword
along with the appropriate value for the method selected.

94

Degree day method (POTMELT_DEGREE_DAY)

The degree day method estimates a potential snow melt using an temperature index approach as
described in, e.g., Dingman (2002):

Mmelt = Ma ·max(T − Tf , 0)

where Mmelt is the potential melt rate [mm/day], T is the atmospheric temperature of the HRU
[deg C], Tf is the freeze/melt temperature [◦C] (zero by default, but can be set with the land use
parameter DD_MELT_TEMP), and Ma is the melt factor [mm/day/deg C], specified using the land
use/land type parameter MELT_FACTOR.

UBC approach (POTMELT_UBC)

The UBC watershed model approach to calculating potential snowmelt is described below. The
model requires a certain number of participating parameters defined in the RVP file: FOREST_COVERAGE
supplied in the :LandUseClasses table, and UBC_MIN_SNOW_ALBEDO, UBC_SW_S_CORR
and UBC_SW_N_CORR provided as global variables. The total snow melt is an accumulation of
separate melt components:

Mmelt =
1

λfρw
((1− αs)S + Ln +Qc +Qa +Qr)

where Mmelt is the total potential melt rate [mm/d], S is the incoming shortwave radiation, αs is
the snow albedo, Ln [MJ/m22/d] is the long wave radiation, Qc [MJ/m22/d] is the convective melt
energy,Qa [MJ/m22/d] is the condensation or advective melt energy andQr [MJ/m22/d] is the melt
energy due to rainfall. The convective and advective melt energy is estimated using

Qc = 0.113 · p · Ta · V ·RM
Qa = 0.44 · Tmin · V ·RM · [(1− fc)p+ fc]

where p is the air pressure Ta is the average air temperature, Tmin is the minimum daily air tem-
perature, V is the wind velocity, fc is the fraction of forest cover and RM is a reduction factor as
described below,

RM = 1.0− 7.7 ·RI
0 ≤ RM ≤ 1.6

where RI is a linearized estimate of Richardson’s number:

RI =
0.095 · Tavg

V 2

The rainfall related melt is estimated using the following equation:

Qr = k · Ta · Pr

where k represents the heat content of the rain mm/C and Pr is the rainfall over the time step.

HBV method (POTMELT_HBV)

The potential melt in the HBV method (Bergstrom, 1995) is given by a corrected version of the
degree day approach, with the corrected melt coe�icient given by

M ′a = Cf · Ca
(
Ma.min + (Ma.max −Ma.min) · 1.0− cos(Γ− Γs)

2

)
(5.35)

95

whereM ′a is the potential melt coe�icient,Cf is the forest correction factor,Ca is the aspect correc-
tion factor, Ac is the aspect correction factor, Ma.max and Ma.min are the maximum and minimum
potential melt rate parameters specified using the MELT_FACTOR and MIN_MELT_FACTOR key-
words respectively, and are specified in the land use parameters. Γ is the day angle calculated using
equation 5.24 and Γs is the winter solstice angle and is a model constant of 23.5◦. The forest and
aspect correction factors are described below:

Cf = (1.0− Fc) · (1.0 + (Fc) ·MRF) (5.36)

Ca = max (1−Am · Cs · cos(θ), 0.0) (5.37)

where Fc is the fraction of forest cover,MRF is the forest melt correction parameter specified using
HBV_MELT_FOR_CORR,Am is the aspect melt correction parameterHBV_MELT_ASP_CORR, and
θ is the landscape aspect angle. Cs is slope correction factor described below:

Cs = (1.0− Fc) · (1.0 + (Fc) · sin(θs)) (5.38)

where θs is the landscape slope.

Restricted method (POTMELT_RESTRICTED)

The potential melt rate is given by the degree day method plus a correction term due to net incoming
radiation:

Mmelt = Ma · (T − Tf) +
Sn + Ln
λfρw

where Sn andLn are the net incoming radiation, and the melt factor,Ma is the land surface param-
eter MELT_FACTOR. λf and ρw are the latent heat of fusion [MJ/kg] and density of water [kg/m3],
respectively. An additional factor in the la�er portion of the equation converts from meters to
millimeters.

Energy balance method (POTMELT_EB)

Similar to the POTMELT_UBCWM approach, except the estimates for Qc, Qa and Qr are obtained
using the methods of Dingman (2002). This approach requires no additional parameters: all energy
estimates are taken from the current air and surface temperatures, and roughness heights of the
land/vegetation.

U.S. Army Corps method (POTMELT_USACE)

The U.S. Army Corps of Engineers potential melt model (U.S. Army Corps of Engineers, 1998) takes
into account various factors including solar radiation, wind, and long-wave radiation exchange.
The equation combines several melt equations, depending on the physical characteristics of the
hydrologic response unit (HRU) and precipitation. These melt estimates include shortwave radi-
ation melt, long-wave radiation melt, convection (sensible heat) melt, condensation (latent heat)
melt, rain melt, and ground melt. Requires the parameter WIND_EXPOSURE, which represents the
mean exposure of the HRU to wind considering topographic and forest e�ects; for open areas this
would be equal to 1.0, but may be as low as 0.3 for forested areas. Details may be found in U.S.
Army Corps of Engineers (1998).

96

HMETS method (POTMELT_HMETS)

A revised degree day model from the HMETS model (Martel et al., 2017), which uses a degree day
factor which varies with cumulative snowmelt. The degree day model is given as

Mmelt = Ma · (T − Tf)

where T is the daily average temperature. Tf is the melt temperature (zero by default, but can
be set with the land use parameter DD_MELT_TEMP), and Ma [mm/d/ ◦C] is the degree day melt
factor, calculated as a function of cumulative melt:

Ma = min
(
Mmax
a ,Mmin

a · (1 + α ·Mcumul

)
where the following land use parameters are used: the maximum melt rate Mmax

a [mm/d/ ◦C]
(MAX_MELT_FACTOR), the minimum melt rate Mmin

a [mm/d/ ◦C] (MIN_MELT_FACTOR), and α
[1/mm] is the parameter DD_AGGRADATION.

CRHM EBSM method (POTMELT_CRHM_EBSM)

A parameter-free energy-based potential melt model from the Cold Regions Hydrologic Model
(CRHM) (Pomeroy et al., 2007).

Mmelt =
1

λvρw
(Sn + Ln +Qh+Qp)

where convective/conductive heat transfer Qh [MJ/m2/d] is estimated from wind velocity, v [m/s],
and maximum daily temperature, Tmax [◦C],

Qh = −0.92 + 0.076 · v + 0.19 · Tmax

and the energy content of the rainfall is given by the rainfallR [mm/d] and air temperature T [◦C]:

Qp = cpρw ·R ·max(T, 0.0)/1000

where cp and ρw are the specific heat capacity and density of water; the 1000 factor converts rainfall
to m/d.

Not calculated (POTMELT_NONE)

Potential melt is not calculated by the model.

5.9 Atmospheric Variables

This section includes various methods for estimating wind speed, relative humidity, and air pressure.

5.9.1 Wind Speed

The following methods can be used to estimate the wind speed at 2 meters, as used for a number of ET
and potential melt estimation algorithms.

Constant wind velocity (WINDVEL_CONSTANT)

Returns a constant value of 2.0 m/s (the global average).

97

Interpolate from data (WINDVEL_DATA)

Wind velocity is interpolated from data supplied at a gauge location, as specified in the .rvt file.

UBCWM approach (WINDVEL_UBC)

An algorithm adapted from the UBC Watershed model. The base wind speed, vb [km/hr] is first
estimated to be between a reasonable range using the temperature range for the day

vb = (1− ω)vmax + (ω)vvmin

where vmax = 8 km/hr, vmin = 1 km/hr, and ω = 0.04 · min(Tmax − Tmin,∆Tmax). Here Tmax
and Tmin are the orographically corrected minimum and maximum daily temperature, ∆Tmax is
the global parameter MAX_RANGE_TEMP, which may be corrected for elevation. If the following
maximum temperature range is smaller thanMAX_RANGE_TEMP, it overridesMAX_RANGE_TEMP:

∆Tmax = 25.0− 0.001 · P0TEDL · zg − 0.001 · P0TEDU(z − zg)

where P0TEDL and P0TEDU are global lapse rate parameters specified using the :UBCTem-
pLapseRates command, and zg and z are the elevation of the temperature gauge and HRU,
respectively. The wind velocity is then converted to m/s, then corrected for forest cover and eleva-
tion,

v = αf · (0.001 · z)1/2 · vb
where αf is equal to 1 for bare ground and 0.7 if FOREST_COVER is greater than zero.

5.9.2 Relative Humidity

The following algorithms may be used to estimate relative humidity in Raven:

Constant humidity (RELHUM_CONSTANT)

The relative humidity is (somewhat arbitrarily) estimated to be 0.5.

Interpolate from data (RELHUM_DATA)

Relative humidity is interpolated from data supplied at a gauge location or gridded data, as specified
in the .rvt file.

Minimum daily temp as estimator of dew point (RELHUM_MINDEWPT)

The minimum daily temperature is assumed to be equal to the dew point, allowing relative humidity
to be estimated as

RH =
es(Tmin)

es(Tave)

where Tmin and Tave are the minimum and average daily temperatures and es(T) is the saturated
vapor pressure, a function of temperature.

5.9.3 Air Pressure

The following approaches may be used to estimate atmospheric pressure:

Constant air pressure (AIRPRESS_CONSTANT)

A constant air pressure of 101.3 kPa is used (air pressure at standard temperature of 25 ◦C).

98

Interpolate from data (AIRPRESS_DATA)

Air pressure is interpolated from data supplied at a gauge location, as specified in the .rvt file.

UBCWM approach (AIRPRESS_UBC)

From �ick (1995). Air pressure is corrected for elevation above mean sea level, z,

P = 101.3 · (1− 0.001z)

where P is in kPa.

Basic Approach (AIRPRESS_BASIC)

Air pressure is corrected for both temperature and pressure using the following relationship:

P = 101.3 ·
(

1− 0.0065
z

TKave

)5.26

where TKave is the average temperature for the time step in ◦K, and z is the HRU elevation.

5.10 Sub-daily Corrections

Many of the above algorithms estimate incoming radiation, potential melt, and/or ET on a daily timescale.
When simulating at a sub-daily timescale, it is advantageous to be able to downscale these estimates for
smaller time intervals. If a time step less than ∆t=1.0 is used, the sub-daily corrections are used to modify
the following quantities:

• potential melt

• shortwave radiation

• PET

No sub-daily correction (SUBDAILY_NONE)

No modification is used.

Simple method (SUBDAILY_SIMPLE)

The half-day length is used to scale a cosine wave which peaks at midday, is zero a�er sunset and
before sunrise, and has a total area of 1.0 underneath; the average value of this sine wave over the
time step is used as the subdaily correction.

δ =
1

∆t

t+∆t∫
t

− 1

2
cos

(
πt

DL

)
dt

where DL is the day length, in days.

UBC Watershed model approach (SUBDAILY_UBC)

To do (6)

99

5.11 Monthly Interpolation

Various methods to be used for interpolation and use of all monthly data.

Uniform method (MONTHINT_UNIFORM)

Monthly values are assumed to be uniform throughout the month, jumping abruptly when moving
from month to month.

Relative to first day of month (MONTHINT_LINEAR_FOM)

Monthly values are linearly interpolated, assuming that the specified monthly values correspond
to the first day of the month.

Relative to middle day of month (MONTHINT_LINEAR_MID)

Monthly values are linearly interpolated, assuming that the specified monthly values correspond
to the middle of the month.

Relative to 21st day of the month (MONTHINT_LINEAR_21)

Monthly values are linearly interpolated, assuming that the specified monthly values correspond
to the 21st day of the month (as done in the UBC Watershed model (�ick, 1995)).

100

Chapter 6

Forecasting and Assimilation

Raven has a number of built-in features to support short-term flood and reservoir inflow forecasting.

6.1 Streamflow Assimilation

Raven can integrate real-time observations of streamflow into its forecasting model via a simple and
unique direct insertion algorithm. For more complicated applications of data assimilation (e.g., ensemble
Kalman Filter or similar), it is recommended to use external tools.

When supplied with streamflow observations (using the :AssimilateStreamflow command in the
.rvi file), Raven will override the stream discharge modeled at any point in the domain with streamflow
observed at a subbasin outlet. In addition to overriding the flows during hindcasting (when observations
are available), it can also propagate a scaled flow forward in time and upstream in space, with the key
assumption that the ratio of the observed to modeled flow is more likely to be constant than not. The
following scaling relationship is used:

ωi(t, xi, t
last
i) = 1 + α ·

(
Qiobs(t)−Qmod(t)

Qimod(t)

)
· exp(−βxi) · exp(−γt− tlasti)

where ωi(t) is the weighting factor in subbasin i at time t, Qiobs(t) is the observed flow at the nearest
downstream observation location from basin i at time t, Qimod(t) is the modeled flow at the same loca-
tion at time t (which may reflect the impact of upstream data assimilation in previous time steps), xi is the
downstream distance to the nearest downstream observed flow, and tlasti is the time since the last observa-
tion was observed at this location (typically equal to t in hindcasting). The parameter α (global parameter
ASSIMILATION_FACT) indicates the degree of assimilation, where α = 1 corresponds to full insertion
and α = 0 corresponds to none. The parameter β (global parameter ASSIM_UPSTREAM_DECAY) deter-
mines how the scaling factor decreases with distance to the observation. For β = 0, the scaling factor
persists to the headwater of the basin, scaling all upstream flows by the ratio of observed to modeled
discharge at the downstream observation. The parameter γ (global parameter ASSIM_TIME_DECAY)
determines how the scaling factor diminishes with time a�er the observations are unavailable, such that
the assimilated flows converge upon the modeled unassimilated flows at some time forward in the fore-
cast.

In all basins upstream of an observation point, the streamflows and rivulet flows in the basin are scaled
using the following:

Q′ = ωi ·Qmod

101

For basins without a downstream observation point, the scaling factor ωi is one, and no assimilation is
performed.

In this algorithm, the closest downstream observation is always used for scaling.

6.2 Deltares FEWS support

Raven readily plugs into the Deltares Del�-FEWS forecasting environmenthttps://www.deltares.
nl/en/software/flood-forecasting-system-delft-fews-2/. An adaptor developed by
NRC-OCRE (in the form of a a Python script) is available upon request.

102

https://www.deltares.nl/en/software/flood-forecasting-system-delft-fews-2/
https://www.deltares.nl/en/software/flood-forecasting-system-delft-fews-2/

Chapter 7

Tracer and Contaminant Transport

Raven can be used to track contaminants and/or tracers (referred to as constituents) through a watershed
via advection. It also has the capacity to (in the future) simulate dispersion, turbulent dispersion, and
single and multi-species chemical reactions, volatilization, and se�ling; these capabilities have yet to be
implemented. Transport is now limited to single-subbasin models; mass cannot yet be routed downstream
through the channel reach.

The advective transport capabilities of Raven are relatively simple in concept. During each time step, water
exchange in the HRU is first calculated. Using the known water fluxes between storage compartments
over a given time step, and the mass of a given constituent in each storage compartment, the net mass flux
is calculated between all storage compartments for the time step. Internally, the mass density (in mg/m2)
is stored in each storage compartment (i.e., soils, surface water, snow, etc.), though concentrations of
constituents are reported in more natural concentration units of mg/L. Advective fluxes between all water
storage compartments are calculated as

J = M ·
(
m

φ

)
where J is the advective flux [mg/m2/d], M is the water exchange rate between compartments [mm/d],
m is the constituent mass [mg/m2], φ is the water storage of the compartment which the mass is leaving
[mm]. In any of the storage compartments, constituent concentration is calculated as

C =
m

φ

With theORDERED_SERIES global numerical algorithm, mass balance errors for each constituent should
be exactly zero. Because the transport module wraps around the hydrologic water balance model, the ad-
dition of new hydrologic processes and algorithms does not require the addition of new code for simulating
mass transport.

For flow tracers, the option may be used to ignore the inherent units of mass density, and instead track
the percent of flows sourced from particular sources. This can be useful, for example, in tracking snow
vs. rain components of streamflow, or determining the timing of outflow coming from a given HRU. In
the case of a tracer, the same expression as above is valid, though using an equivalent flux and equivalent
mass, i.e.,

J ′ = M ·
(

(
m′

φ

)
where J ′ is the advective flux [mm/d], andm′ is the e�ective mass [mm]. In this case, J ′/M may be inter-
preted as the fraction of the flow which contains the tracer fluid; likewise,m′/φ, the tracer concentration

103

[unitless] can be interpreted as the fraction of storage which is marked by tracer. Tracer concentrations
should range from 0 to 1.

The primary outputs from the transport simulation are the average concentrations of a given constituent
in each of the various storage compartments and pollutographs at subbasin outlets.

7.1 Constituent Sources

Sources of constituents may be handled in one of two ways:

• As Dirichlet conditions, where the constituent concentration in a given compartment is fixed at a
user-specified value

• As Neumann conditions, where a user-specified (dry) mass flux is applied to a given compartment

Other source types may be incorporated into Raven at a later date.

7.2 Catchment Routing

Constituents are routed through the catchment in a manner consistent with the catchment routing pro-
cess described in section 4.1. A discrete transfer function approach is used,

QC(t+ ∆t) =
N∑
n=0

QClat(t− n∆t) · UHn (7.1)

where QC [mg/d] is the mass loading, QClat is the loading released from the catchment at time t, and
~UH is a unitless vector which describes the distribution of arrival times to the channel, and is the same

distribution used by the catchment routing for water, described in section 4.1.

7.3 In-channel Routing

Raven currently supports in-channel routing of transport constituents only with the di�usive wave, plug
flow, and ROUTE_NONE methods of in-channel routing. Plans are to support the remaining methods
before the end of 2018. For these methods, a discrete transfer function approach is used similar to that
used in the in-catchment routing,

QC(t+ ∆t) =

N∑
n=0

QCin(t− n∆t) · UH ′n (7.2)

whereQC [mg/d] is the mass loading, QCin is the loading from upstream at time t, and ~UH ′ is a unitless
vector which describes the distribution of arrival times to the channel outlet, and is the same distribution
used by the in-channel routing for water, described in section 4.2.

7.4 In-reservoir Routing

Constituent routing in the reservoir is based upon an explicit solution of the Crank-Nicolson discretized
mass balance on the reservoir,

dM

dt
=

N∑
i=1

QiinC
i
in −QoutC − λM (7.3)

104

where M is the reservoir mass (in mg), Qiin and Qout are the N inflows and single outflow rates from
the reservoir (in m3/s), Ciin are the concentrations [mg/m3] from the multiple inflows, and λ is the decay
rate of the constituent [1/d]. Note that evaporation is presumed not to carry the constituent from the
reservoir surface. The discrete form of the equation, a�er summing all of the mass inflow terms together

into a single e�ective mass inflow, QinCin =
N∑
i=1
QiinC

i
in, is:

Mn+1 −Mn

∆t
=

1

2

(
QninC

n
in +Qn+1

in Cn+1
in

)
+

1

2

(
QnoutC

n +Qn+1
out C

n+1
)
− λ

2

(
Cn + Cn+1

)
(7.4)

where n indicates the time step, and the concentration Cn is evaluated as Mn/V (hn) where V (h) is the
volume of the reservoir for a stage of h. This expression may be directly rearranged to determine the mass
in the reservoir at the end of the time step, Mn+1.

105

Chapter 8

Model Diagnostics

While Raven doesn’t have built-in calibration functionality, it supports it’s own assessment by internally
comparing observation data to model output. The model diagnostic output can readily be used by model-
independent optimization and parameter estimation tools (as briefly discussed in section 2.6). This chapter
includes information about all of the available diagnostics.

8.1 Pointwise vs. Pulsewise comparison

Note that in all cases, Raven is comparing a time series of observations to a time series of model output.
It is assumed that the observations are instantaneous observations at a point in time (e.g., a single soil
moisture measurement or snow depth measurement). The key exception to this is observed hydrographs.
Most observed hydrographs available from government or municipal agencies report averaged data over
discrete time intervals, e.g., daily average flows. Raven is careful to treat this continuous data as is appro-
priate, and compares the modeled average flows over each time interval to the observed average flows.

For non-hydrograph data, the model output is interpolated to the exact time of observation.

The documentation for the relevant .rvi and .rvt input commands (:ObservationData, :Observa-
tionWeights, and :EvaluationMetrics) can be found in appendix A.

8.2 Diagnostic Algorithms

In all of the algorithms below, φi is an observation of interest, φ̂i is the corresponding modeled value,
wi is the corresponding weight of the observation (1.0 by default, 0 for blank observation data) and N is
the number of non-blank observations. Note that many of these diagnostics are useful for hydrographs
but may not make particular sense for other observed state variables (even though we can calculate them
anyhow).

Nash-Sutcli�e E�iciency (NASH_SUTCLIFFE)

NS = 1−

N∑
i=1
wi

(
φ̂i − φi

)2

N∑
i=1
wi
(
φ̄− φi

)2

106

where φ̄ is the weighted mean of observations,

φ̄ =
1

N

N∑
i=1

wiφi

Log-transformed Nash-Sutcli�e E�iciency (LOG_NASH)

NS = 1−

N∑
i=1
wi

(
ln(φ̂i)− ln(φi)

)2

N∑
i=1
wi
(¯ln(φ)− ln(φi)

)2
where φ̄ is the weighted mean of observations,

φ̄ =
1

N

N∑
i=1

wiφi

Root-mean-squared Error (RMSE)

RMSE =

√√√√ N∑
i=1

wi

(
φ̂i − φi

)2

Percentage Bias (PCT_BIAS)

Returns the percent bias. Non-zero weights have no e�ect on this calculation, but zero weights will force
the corresponding data points to be ignored.

PCT_BIAS =

N∑
i=1

(
φ̂i − φi

)
N∑
i=1

(φi)

Average Absolute Error (ABSERR)

Returns the weighted average absolute error.

ABSERR =
1

N

N∑
i=1

wi

∣∣∣φ̂i − φi∣∣∣
Maximum Absolute Error (ABSMAX)

The maximum absolute error between observed and modeled data. Non-zero weights have no e�ect on
this calculation, but zero weights will force the corresponding data points to be ignored.

ABSMAX = max
{∣∣∣φ̂i − φi∣∣∣}

Peak di�erence (PDIFF)

The di�erence between the peak modeled data and peak observed data. Non-zero weights have no e�ect
on this calculation, but zero weights will force the corresponding data points to be ignored.

PDIFF = max
{
φ̂i

}
−max {φi}

107

Monthly Mean Squared Error (TMVOL)

Describes the total monthly mean error between modeled data and observed data.

TMVOL =
M∑
j=1

 1

N

Nj∑
i=1

wi

(
φ̂i − φi

)2


where M is the number of months in the simulation and Nj is the number of data points in month j.

Correlation of Error (RCOEF)

Describes the correlation of error between adjacent time steps. It represents the tendency for the error to
remain constant from one time step to the next and should only be applied to continuous time series.

RCOEF =
1

σφσφ̂

1

N∗ − 1

N−1∑
i=1

(φ̂i − φi)(φ̂i+1 − φi+1)

where σφ is the standard deviation of the observed data and σφ̂ is the standard deviation of the modeled
data. N∗ is the number of adjacent non-blank data entries. Non-zero observation weights are ignored.

Number of Sign Changes (NSC)

NSC describes the number of sign changes in the error from one data point to the next. A low NSC (as
compared to the total number of data points) would imply that the modeled values are constantly above
or below the observed values.

Kling Gupta E�iciency (KLING_GUPTA)

Kling-Gupta e�iciency metric as defined in Gupta et al. (2009).

108

Chapter 9

Raven Code Organization
∗

This section is intended primarily for Raven so�ware developers

The Raven code is fully object-oriented code designed to, as much as possible, separate the numerical
solution of the coupled mass-balance and energy-balance ODEs and PDEs from the evaluation of flux-
storage relationships, enabling the testing of various numerical schemes without having to dig into each
subroutine for each hydrologic process.

9.1 Classes

The Class diagram for the Raven code is depicted in figure 9.1. The code operates by generating a single
instance of the CModel class, which may be considered a container class for all of the model data, i.e.
the arrays of basins, HRUs, land/vegetation classes, and meteorological gauges/gridded forcing data that
define the entirety of the model.

Figure 9.1: Raven class diagram

109

9.1.1 CModel class

The CModel class is a container class for all of the hydrologic response units (HRUs), subbasins, hydro-
logic processes (“HydroProcesses”) and measurement gauges/gridded data. It also has global information
about all of the state variables. It has a few key functions called by the solver routines:

• Initialize() Called before the simulation begins to initialize all variables. This also calls all
Subbasin, Gauge, HRU and other initialize functions.

• IncrementBalance()

• IncrementLatBalance()

• IncrementCumulInput()

• IncrementCumOutflow() increment the individual cumulative HRU water and energy bal-
ances, stored within the CModel class

• WriteMinorOutput() Called at the end of each timestep, writes water and energy balance and
watershed-scale storage information (i.e., total storage in snowpack, etc.), in addition to all custom
output.

• WriteMajorOutput() Called at user-specified intervals, basically dumps a snapshot of all sys-
tem state variables and derived parameters to an output file.

• UpdateHRUForcingFunctions() Called every time step - si�s through all of the HRUs and
updates precip, temperature, radiation, and other (external) atmospheric forcing functions, inter-
polated from gauge/measurement data or gridded forcings. These values are then stored locally
within each HRU. Called at the start of each time step.

• RecalculateHRUDerivedParams(), UpdateTransientParams() called every time step
- updates derived and specified model parameters which change over time.

• ApplyProcess(), ApplyLateralProcess() Based upon some assumed current water
storage/state variable distribution, returns a prediction of the rate of water (or energy) movement
from one storage unit (e.g., canopy) to another (e.g., atmosphere) during the time step. This func-
tion DOES NOT actually move the water/energy - this is done within the solver. Basically returns
Mk({φ}, {P}) in the above discussion for specified values of {φ}

• UpdateDiagnostics Compares current modelled and observed output for the time step and
updates diagnostic measures.

The CModel class has an abstracted parent class, CModelABC, that ensures the model can only pro-
vide information to, but cannot be modified by, other classes aware of its existence (e.g., any hydrologic
processes (CHydroProcess), or subbasin (CSubBasin), etc.)

9.1.2 CGauge class

The CGauge class stores a set of time series (of class CTimeSeries) corresponding to observations of atmo-
spheric forcing functions (precipitation, air temperature, radiation, etc.) at a single point in the watershed.
The model interpolates these forcing functions from gauge information in order to determine forcing func-
tions for individual HRUs at any given time step.

Interpolation is performed using the most appropriate local UTM coordinate system automatically calcu-
lated from the specified lat-long centroid of the watershed.

110

9.1.3 CSubBasin class

A container class for HRUs - only used for routing of water, as it stores information about the connected-
ness of itself to other subbasins in the modeled watershed(s). Conceptualized as a subbasin.

9.1.4 CHydroUnit class

An abstraction of an HRU - a homogeneous area of land to which the zero- or one-dimensional water
and energy balances are applied. It is unaware of the CModel class. It stores the state of all local HRU-
specific parameters that are valid for the current timestep, the values of the HRU forcing functions (e.g.,
precipitation, PET, radiation) averaged over the entirety of the current timestep, and the values of the
state variables (water storage, energy storage, and snow parameters) that are valid at the start of the
current timestep. It also stores its membership to the landuse and vegetation cover classes via pointers to
those instances, so that it may be used to access properties shared by all measures of that class.

Key routines:

• SetStateVarValue() updates the values of a specific state variable. Called at the end of each
time step by the main Raven solver

• UpdateForcingFunctions() updates the values of the forcing functions (rainfall, tempera-
ture, saturated water vapor, etc.) uniformly applied to the HRU at the beginning of each time step.
The HydroUnit is unaware of the source of these values, but they are interpolated from measured
data.

• RecalculateDerivedParams() Given some set of state variables and the current time of
year, updates all derived parameters (e.g., Leaf area index) stored locally within the HRU. These are
used within GetRatesOfChange functions

9.1.5 CHydroProcessABC class

An abstraction of any hydrologic process that moves water or energy from one or more storage units
to another set of storage units (i.e., an abstraction of Mij for one-to-one transfer of water/energy, or a
summation of more than one Mij that moves water through multiple compartments, as is required for
PDE solution). Each CHydroProcess child class has five key subroutines:

• Initialize() initializes all necessary structures, etc. prior to solution

• GetParticipatingStateVars() returns the list of participating state variables for the model.
This is used to dynamically generate the state variables used in the model. For example, snow will
not be tracked in the model until a process (e.g., snowmelt) is introduced that moves snow between
storage compartments.

• GetParticipatingParameters() returns the list of algorithm-specific parameters needed
to simulate this process with the specified algorithm. This is used to dynamically ensure that all
parameters needed by the model are specified by the user within each HRU.

• GetRatesOfChange() calculates and returns rate of loss of one set of storage units to another
set, in units of mm/d (for water), mg/m2/d (for constituent mass) or MJ/m2/d (for energy).

• ApplyConstraints() Corrects the rates calculated by rates of change to ensure that model
constraints (e.g., state variable positivity) are met.

The CHydroProcessABC class is purely virtual - inherited classes each correspond to a single (or coupled
set of) hydrologic process(es) as described in section 9.1.6

111

9.1.6 Hydrologic Processes

All hydrologic process algorithms are specified as individual child classes of CHydroProcessABC. Note
that each HydroProcess may include multiple algorithms; distinction between classes is mostly based
upon physical interpretation, i.e., baseflow and snowmelt are fundamentally di�erent. While independent
snow melt/snow balance algorithms may be very di�erent, they are still grouped into one class.

9.2 Contributing to the Raven Framework*

Source code for Raven is available online, with file support for Microso� Visual Studio, both 2013 and 2017
versions. Users are encouraged to develop custom-made algorithms for representing hydrologic processes,
estimating forcing functions from gauge data, or interpolating gauge data. If a new algorithm is tested and
found useful, feel free to submit your code to the Raven development team to be considered for inclusion
into the main Raven code.

9.2.1 How to Add a New Process Algorithm

1. Make sure the process algorithm is not already included in the framework with a slightly di�erent
“flavour”

2. Determine whether the algorithm requires new state variable types to be added to the master list.
The complete list of state variables currently supported may be found in the enum sv_type def-
inition in RavenInclude.h. If a new state variable is required, follow the directions in section
9.2.2.

3. Determine whether the algorithm requires new parameters, and whether these parameters will be
fixed for the model duration or depend upon transient factors. The lists of existing parameters
(all linked to soils, vegetation, land use, or terrain types) are found in Properties.h. If a new
parameter is needed, follow the directions in section 9.2.3

4. Determine whether the algorithm fits within an existingCHydroProcess class, i.e., is it a di�erent
means of representing one of the many processes already simulated within Raven? If so, you will
be editing the code in 6 or 7 places, all within either the CHydroProcess header/source files or
the main input parsing routine:

(a) Add a new algorithm type to the enumerated list of algorithms for that process. For example,
if it is a new baseflow algorithm, you would add BASE_MYALGORITHM to the enum base-
flow_type in SoilWaterMovers.h. Follow the apparent naming convention.

(b) Edit the CHydroProcess constructor. Constructors should be dynamic for all routines that
have fixed input and output variables. Others, such as baseflow, can have user-specified in-
put/output pairs declared. The CmvBaseFlow and CmvSnowBalance codes are excellent
templates for class construction. Edit the if-then-else statement in the constructor, specifying
the iFrom and iTo state variables manipulated by the algorithm connections. For exam-
ple, most infiltration algorithms move water from ponded storage to both topsoil and surface
water, requiring the following specification:

CHydroProcessABC::DynamicSpecifyConnections(2);
iFrom[0]=pModel->GetStateVarIndex(PONDED_WATER);
iTo [0]=pModel->GetStateVarIndex(SOIL,0);
iFrom[1]=pModel->GetStateVarIndex(PONDED_WATER);
iTo [1]=pModel->GetStateVarIndex(SURFACE_WATER);

112

This creates two connections, one from ponded water to the topmost soil (SOIL[0]) and
one from ponded water to surface water. The corresponding rates of exchange will later be
calculated in GetRatesOfChange() and stored in rates[0] and rates[1]. Note you
shouldn’t have to check for existence of state variables in the constructor - if they are later
specified in GetParticipatingStateVarList, they will be generated in the master
state variable list prior to instantiation of the class.

(c) Edit the if-then-else statement in the corresponding GetParticipatingParamList rou-
tine with the list of parameters needed by your new algorithm. This information is used for
quality control on input data (ensuring that users specify all parameters needed to operate
the model).

(d) Edit (if necessary) in GetParticipatingStateVarList the list of state variables re-
quired for your algorithm, within a conditional for your specific algorithm. See CmvSnow-
Balance for a good example.

(e) Add the actual flux calculation algorithm to the corresponding GetRatesOfChange()
function for this CHydroProcesss class. Some key things to keep in mind:
(a) parameters may be obtained from the corresponding soil, vegetation, or land use structure
via the HRU pointer, e.g.,

double lambda,K;
K =pHRU->GetSoilProps(m)->max_baseflow_rate;
lambda=pHRU->GetTerrainProps()->lambda;

(b) the final result of the algorithm (rates of change of modeled state variables) are assigned
to the rates[] array. The rates[i] array value corresponds to the flux rate of mass/wa-
ter/energy from state variable iFrom[i] to iTo[i], which you have defined in the con-
structor (step b).
(c) Try to follow the following code habits:

• unless required for emulation of an existing code, constraints should ideally not be used
except later in the ApplyConstraints routine. A good rule of thumb is that the time
step should not appear anywhere in this code. This may not be strictly possible with some
more complicated algorithms.

• each process algorithm longer than about 20-30 lines of code should be relegated to its
own private function of the class

• all unit conversions should be explicitly spelled out using the provided global constants,
defined in RavenInclude.h

• constants that might be used in more than one process subroutine should not be hard-
coded, where at all possible.

• references should be provided for all equations, where possible. The full reference should
appear in the back of this manual

• all variables should be declared before, not within, algorithm code

• All returned rates should be in mm/d or MJ/m2/d for water storage and energy storage,
respectively

(f) If needed, add special state variable constraints in the ApplyConstraints() function,
conditional on the algorithm type.

113

(g) Lastly, add the process algorithm option to the corresponding command in the ParseMain-
InputFile() routine within ParseInput.cpp.

9.2.2 How to Add a New State Variable

1. Make sure the state variable is not already included in the framework with a slightly di�erent name.
Note that proxy variables should be used cautiously. For example, right now snow (as SWE) and
snow depth are included in the variable list, while snow density is not (as it may be calculated from
the other two).

2. Add the state variable type to the sv_type enumerated type in RavenInclude.h

3. Edit the following routines in the CStateVariables class (within StateVariables.cpp)
(revisions should be self-evident from code):

• GetStateVarName()

• StringToSVType()

• IsWaterStorage()

• IsEnergyStorage()

4. Edit the CHydroUnit::GetStateVarMax() routine in HydroUnits.cpp if there is a max-
imum constraint upon the variable

9.2.3 How to Add a New Parameter

1. Make sure that the parameter is not included in the framework by examining the available param-
eters in the soil_struct, canopy_struct, terrain_struct defined in Properties.h
and the global parameters currently defined within the global_struct (RavenInclude.h).
If it is not, determine whether the parameter is (and should always be) global (i.e., not spatially or
temporally varying). If it is not global, determine whether the property is best tied to land use/land
cover class, soil class, vegetation class, or terrain class.

2. Add the new global parameter to the global_struct structure, non-global parameters to the
corresponding soil_, veg_, terrain_, or surface_struct (corresponding to land use). The
units of the parameter should generally be consistent with those used throughout Raven, i.e., SI
units, with fractions represented from 0 to 1 (not 1-100%), time units preferably in days, and energy
in MJ.

3. Depending upon the type of parameter, di�erent classes will have to be revised. As an example, if
it is a soil parameter, the following code must be revised:

• CSoilClass::AutoCalculateSoilProps() In most cases, the new parameter will be
conceptual and therefore not autocalculable from the base parameters of soil composition. In
this case, code may be replicated from other parameters (see, e.g., VIC_zmin code for an
example).

• CSoilClass::InitializeSoilProperties() (revisions evident from code)

• CSoilClass::SetSoilProperty()(revisions evident from code)

• CSoilClass::GetSoilProperty()(revisions evident from code)

Similar functions exist in the alternate classes (e.g., CVegetationClass, CGlobalParams).
With these revisions, the parameter is now accessible via (for soils)

114

pHRU->GetSoilProps(0)->new_param_name

where pHRU is a pointer to a specific instantiated HRU. New global parameters (which are not
specific to an HRU) may be accessed via

CGlobalParams::GetParams()->new_param_name

To do (7)

115

Appendix A

Input Files

A.1 Primary Input file (.rvi)

The primary input file stores the model simulation options and numerical options. An example .rvi file is
shown below. Note that comments may be included on individual lines using the * or # characters as the
first word on the line. An .rvi file is structured as follows:

--
Raven Input (.rvi) file
--
:StartDate 2000-10-01 00:00:00
:EndDate 2001-09-30 00:00:00
:TimeStep 01:00:00
-Options-----------------------------------
:Routing ROUTE_HYDROLOGIC
:CatchmentRoute ROUTE_GAMMA_CONVOLUTION
:Evaporation PET_PENMAN_MONTEITH
:SoilModel SOIL_TWO_LAYER
-Processes----------------------------------
:HydrologicProcesses

:Precipitation PRECIP_RAVEN ATMOS_PRECIP MULTIPLE
:Infiltration INF_GREEN_AMPT PONDED_WATER SOIL[0]
:SoilEvaporation SOILEVAP_SEQUEN SOIL[0] ATMOSPHERE
:Percolation PERC_POWER_LAW SOIL[0] SOIL[1]
:Percolation PERC_POWER_LAW SOIL[1] GROUNDWATER
:Baseflow BASE_LINEAR SOIL[1] SURFACE_WATER

:EndHydrologicProcesses
-Custom Output------------------------------
:CustomOutput Daily Average SOIL[0] BY_HRU
:CustomOutput Monthly Maximum SOIL[1] BY_BASIN

Note that, for the most part, input commands in Raven are unstructured - spacing, tabs, etc., should not
impact the ingestion of input. Most commands can be input in arbitrary order. The only exceptions to
this are

1. The :SoilModel command must preceded the :HydrologicProcesses block.

2. The :HydrologicProcesses block must precede any :Transport command.

116

3. If HRU groups are to be used for conditional application of processes in the :HydrologicPro-
cesses block, for :CustomOutput, for disabling HRUs, or for transport boundary conditions,
they must be declared first using the :DefineHRUGroups command.

A.1.1 Required Commands

The .rvi file consists of the following required commands:

:StartDate [yyyy-mm-dd hh:mm:ss]

(Required) Starting time of the simulation.

:EndDate [yyyy-mm-dd hh:mm:ss]

(Required) Ending time of the simulation.

:Duration [days]

Duration of the simulation, in decimal days, beginning from the start date specified. An alternative to
using the :EndDate command.

:TimeStep [time step in days]
OR
:TimeStep [hh:mm:ss]

(Required) Time step for the simulation, expressed in days as a real-valued number (e.g., 0.4166667 for
one hour) or using hh:mm:ss format (e.g., 01:00:00 for one hour). As Raven is intended for sub-daily
calculations, the time step must be less than or equal to 1.0. It also must evenly divide into a day - 2 hours
or 5 minutes is allowed, but 1 hour 40 minutes is not.

:SoilModel [soilmodel string] {(conditional) other_data}

(Required) Soil model used in the simulation, one of the following:

• SOIL_ONE_LAYER - Single soil layer

• SOIL_TWO_LAYER - Two soil layers

• SOIL_MULTILAYER [number of layers] - Any number of soil layers

This command must be placed before the :HydrologicProcesses block.

:DefineHRUGroups [HRUgrp1] {HRUgrp2} ... {HRUgrpN}

(Somewhat required) Declaration of HRU groups that may be used for (1) conditional application of
hydrologic processes, (2) grouping of custom output, (3) disabling of groups of HRUs, or (4) . They
must be defined prior to use in the .rvi file. They are populated in the .rvh file using the :HRUGroup-
:EndHRUGroup command. Here, theHRUgrp is a unique string identifier for the group (e.g., OpenHRUs
or ForestBurnSite)

:HydrologicProcesses
...
:EndHydrologicProcesses

117

(Required) These commands bracket the list of hydrologic processes to be modeled (see section A.1.6)

118

A.1.2 Model Operational Options

The following section discusses about the several hydrologic processes that are supported by Raven and
their respective algorithms. Some of these algorithms require specific parameters to be entered by the
users. Refer to section A.1.3 for more details about the required parameters.

:CatchmentRoute [method]

Catchment routing method, used to convey water from the catchment tributaries and rivulets to the
subbasin outlets. Can be one of the following methods, discussed in section 4.1:

• DUMP (default) - water from the catchment is dumped directly to the basin outlet.

• ROUTE_GAMMA_CONVOLUTION - a Gamma distribution is used to represent the unit hydrograph

• ROUTE_TRI_CONVOLUTION - a triangular distribution is used for the unit hydrograph

• ROUTE_RESERVOIRS_SERIES - series of linear reservoirs (Nash Hydrograph)

:Routing [method]

Channel routing method which is used to transport water from upstream to downstream within the main
subbasin channels. Can be one of the following methods, as described in section 4.2:

• ROUTE_DIFFUSIVE_WAVE (default) - analytical solution to the di�usive wave equation along
the reach using a constant reference celerity

• ROUTE_HYDROLOGIC - iterative level-pool routing using channel characteristics and Manning’s
equation

• ROUTE_NONE - water is not routed from subbasin to subbasin. Intended for single-subbasin/single
catchment models or numerical testing only.

• ROUTE_STORAGE_COEFF - From Williams (1969)

• ROUTE_PLUG_FLOW - water travels as a pulse of uniform celerity along the reach

• ROUTE_MUSKINGUM - reach storage is updated using the Muskingum-Cunge routing algorithm

:Method [method]

(Optional) Numerical method used for simulation. The method string be one of the following:

• ORDERED_SERIES (default) - Process ordering is defined as being the same as the order of hy-
drologic process in the input file

• EULER - uses the classical Euler method, with operator-spli�ing. Process order as specified in the
input file does not ma�er

:InterpolationMethod [method]

(Optional) Means of interpolating forcing function data (e.g., precipitation, PET, etc.) between monitoring
gauges. The centroid of the HRU is used as the interpolation point. The following methods, discussed in
section 5.1 are supported:

• INTERP_NEAREST_NEIGHBOR (default) - the nearest neighbor (Voronoi) method

• INTERP_INVERSE_DISTANCE - inverse distance weighting

119

• INTERP_AVERAGE_ALL - averages all specified gauge readings

• INTERP_FROM_FILE [filename]- weights for each gauge at each HRU are specified in a file named
filename with the following contents:

:GaugeWeightTable
[NG] [# of HRUs]
{w_n1 w_n2 ... w_nNG} x {# of HRUs}

:EndGaugeWeightTable

where NG is the number of gauges. The sum of the weights in each row (i.e., for each HRU) should
be 1. It is assumed that the number of HRUs is the same as in the current model .rvh file; the orders
are also assumed to be consistent.

:RainSnowFraction [method]

(Optional) Means of partitioning precipitation into snow and rain, if these values are not specified as time
series data. The following methods, discussed in detail in section 5.3.1, are supported:

• RAINSNOW_DINGMAN (default)

• RAINSNOW_DATA - gauge or gridded time series of snowfall used

• RAINSNOW_UBC

• RAINSNOW_HBV

• RAINSNOW_HSPF

• RAINSNOW_HARDER

:Evaporation [method]

PET calculation method for land surface. Can be one of the following methods, described in detail in
section 5.4:

• PET_HARGREAVES_1985 (default)

• PET_CONSTANT - not recommended in practice

• PET_PENMAN_MONTEITH

• PET_PENMAN_COMBINATION

• PET_PRIESTLEY_TAYLOR - physically-based, but data requirements are intensive

• PET_HARGREAVES

• PET_FROMMONTHLY

• PET_DATA - gauge or gridded time series used

• PET_HAMON_1961

• PET_TURC_1961

• PET_MAKKINK_1957

• PET_MONTHLY_FACTOR

120

• PET_MOHYSE

• PET_OUDIN - works quite well in Canadian watersheds

Note that the evaporation algorithm will be influence by whether the :DirectEvaporation com-
mand is used.

:OW_Evaporation [method]

(Optional) PET calculation method for open water. Has the same options as :Evaporation command.

:DirectEvaporation

(Optional) If this command is added, rainfall is automatically reduced through evapotranspiration up to
the limit of the calculated PET. PET is likewise reduced by the quantity of rainfall evaporated.

:SnowSuppressesPET

(Optional) If this command is added, presence of snow suppresses PET to zero.

:SuppressCompetitiveET

(Optional) If this command is added, competitive ET is disabled and ET routines independently remove
water based upon PET, not PET corrected for other processes.

:OroPrecipCorrect [method]

(Optional) Method for correcting total precipitation for orographic (elevation) e�ects. The following meth-
ods, discussed in detail in section 5.3.2, are supported:

• OROCORR_NONE (default)

• OROCORR_HBV

• OROCORR_UBC

• OROCORR_UBC_2

• OROCORR_SIMPLE

:OroTempCorrect [method]

(Optional) Method for correcting estimated Temperatures for orographic (elevation) e�ects. The following
methods are supported:

• OROCORR_NONE (default)

• OROCORR_HBV

• OROCORR_UBC

• OROCORR_UBC_2

• OROCORR_SIMPLE

121

:OroPETCorrect [method]

(Optional) Method for correcting estimated PET for orographic (elevation) e�ects. The following methods
are supported, as discussed in section 5.3.2:

• OROCORR_NONE (default)

• OROCORR_HBV

• OROCORR_UBC

• OROCORR_UBC_2

• OROCORR_PRMS

Note: No specific parameter required for any of the methods mentioned above.

:SWRadiationMethod [method]

(Optional) Means of estimating shortwave radiation to the surface. The following methods, described in
detail in section 5.5, are supported:

• SW_RAD_DEFAULT(default) - From Dingman (2002)

• SW_RAD_DATA - gauge or gridded time series used

• SW_RAD_UBCWM - From �ick (2003)

:SWCanopyCorrect [method]

(Optional) Means of correcting shortwave radiation to the surface due to canopy cover. The following
methods, described in detail in section 5.5, are supported:

• SW_CANOPY_CORR_NONE(default)

• SW_CANOPY_CORR_STATIC

• SW_CANOPY_CORR_DYNAMIC

• SW_CANOPY_CORR_UBC - From �ick (2003)

:SWCloudCorrect [method]

(Optional) Means of correcting shortwave radiation to the surface due to cloud cover. The following
methods, described in detail in section 5.5, are supported:

• SW_CLOUDCOV_CORR_NONE(default)

• SW_CLOUDCOV_CORR_DINGMAN

• SW_CLOUDCOV_CORR_UBC - From �ick (2003)

:LWRadiationMethod [method]

(Optional) Means of estimating longwave radiation. The following methods are supported, as discussed
in section 5.6:

• LW_RAD_DATA - gauge or gridded time series used

122

• LW_RAD_DEFAULT(default) - From Dingman (2002)

• LW_RAD_UBC - From �ick (2003)

• LW_RAD_HSPF - From (Bicknell et al., 1997)

:CloudCoverMethod [method]

(Optional) Means of calculating cloud cover percentages, if used. The following methods, as described in
section 5.7, are supported:

• CLOUDCOV_NONE (default)

• CLOUDCOV_DATA - gauge or gridded time series used

• CLOUDCOV_UBC - From �ick (2003)

:WindspeedMethod [method]

(Optional) Means of calculating wind speed at a reference height. The following methods are supported,
as described in section 5.9.1:

• WINDVEL_CONSTANT (default) - constant wind velocity of 3 m/s

• WINDVEL_DATA - gauge or gridded time series used

• WINDVEL_UBC - From �ick (2003)

:RelativeHumidityMethod [method]

(Optional) Means of calculating relative humidity. The following methods are supported, as described in
section 5.9.2:

• RELHUM_CONSTANT (default) - constant relative humidity of 0.5

• RELHUM_DATA - gauge or gridded time series used

• RELHUM_MINDEWPT - uses minimum dew point to estimate relative humidity

Note: No specific parameter required for any of the methods mentioned above.

:AirPressureMethod [method]

(Optional) Means of estimating air pressure. The following methods are supported, as described in section
5.9.3:

• AIRPRESS_BASIC (default)

• AIRPRESS_CONST - standard atm. pressure at 20 ◦C

• AIRPRESS_DATA - gauge or gridded time series used

• AIRPRESS_UBC - From �ick (2003)

:PrecipIceptFract [method]

(Optional) Means of estimating the precipitation interception fraction (i.e., what percentage of precip is
intercepted by the canopy). The following methods are supported, as described in section 3.1.1:

123

• PRECIP_ICEPT_USER (default)

• PRECIP_ICEPT_LAI

• PRECIP_ICEPT_EXPLAI

:PotentialMelt [method]

(Optional) If used, estimates the potential melt. The following methods are supported , as discussed in
section 5.8.1:

• POTMELT_DEGREE_DAY (default)

• POTMELT_EB

• POTMELT_RESTRICTED

• POTMELT_UBCWM

• POTMELT_HBV

• POTMELT_CRHM

• POTMELT_HMETS

:RechargeMethod [method]

(Optional) Typically used for coupling with other hydrologic models that independently calculate runo�
and recharge, which is handled by Raven for routing and water management.

• RECHARGE_NONE (default)

• RECHARGE_DATA - gridded time series used

:MonthlyInterpolationMethod [method]

(Optional) If used, performs monthly interpolations. The following methods, as discussed in section 5.11,
are supported:

• MONTHINT_UNIFORM - monthly variables are treated as constant during each month

• MONTHINT_LINEAR_MID (default) - the monthly variables are linearly interpolated from the
midpoint of each month

• MONTHINT_LINEAR_FOM - the monthly variables are linearly interpolated from the 1st day of
each month

• MONTHINT_LINEAR_21 - the monthly variables are linearly interpolated from the 21st day of
each month (yes, this seems very specific)

Note: No specific parameter is required for any of the methods mentioned above.

:SubDailyMethod [method]

(Optional) Used for sub-daily temporal downscaling of daily average PET and snowmelt. The supported
methods are, as described in section 5.10:

• SUBDAILY_NONE (default)

124

• SUBDAILY_UBC

• SUBDAILY_SIMPLE

Note: No specific parameter required for any of the methods mentioned above.

:LakeStorage [lake storage variable]

Specifies the state variable to be used for rainfall on lake HRUs, typically SURFACE_WATER (default) or
LAKE_STORAGE. If the lake storage state variable is used, it is critical that the user provide a hydrologic
process mechanism which removes water from the lake in addition to accumulating it through precipi-
tation. This is typically only used for HBV emulation, which uses a non-conventional lake evaporation
routine.

:Calendar [calendar string]

(Optional) Specifies the calendar to be used. By default, Raven uses the standard proleptic Gregorian
calendar which includes leap years. However, for compatibility with some climate model outputs for long-
term forecasting, sometimes it is useful to be able to run with (e.g.,) 365 day calendars. Raven supports
the following calendars (consistent with the NetCDF calendar convention):

• PROLEPTIC_GREGORIAN (default)

• JULIAN - ignores special leap years (every 100/400 years)

• GREGORIAN - ignores special leap years before 1583

• STANDARD - same as GREGORIAN

• NOLEAP - leap years ignored

• 365_DAY - same as NOLEAP

• ALL_LEAP - every year gets a February 29

• 366_DAY - same as ALL_LEAP

The :Calendar command MUST be near the very top of the .rvi file before the :StartDate or
:EndDate commands are indicated, because all date calculations are dependent upon the proper cal-
endar description. Warning: strange things can happen when mixing di�erent calendars for forcings and
simulation, and it is strongly advised that all calendars are consistently applied.

125

A.1.3 Required Parameters for Model Operation Options

The following table (Figure A.1) shows the required parameters in order to use the di�erent model oper-
ation options that were listed in the previous section (Section A.1.2).

Table A.1: Required parameters for all model operation options. The asterisk∗ denotes the default algo-
rithm for each method.

126

Table A.2: Required parameters for all model operation options (cont’d)

127

A.1.4 Optional Input/Output Control Commands

:RunName [name]

The name of the model run. This acts as a prefix to all output files generated by the program. The default
is no run name, and no prefix is appended to the file outputs.

:rvh_Filename [name]

The name of the *.rvh file. By default, the .rvh file has the same name as the .rvi file; this command allows
the user to override this default behavior. If no directory is specified, it is assumed the file exists in the
working directory. Equivalent to the command prompt argument -h [name].

:rvc_Filename [rvc_name]
:rvp_Filename [rvp_name]
:rvt_Filename [rvt_name]

Same as :rvh_Filename [name] above, but for .rvc,.rvp, and .rvt files, respectively

:OutputDirectory [directory name]

Sets the output directory, which by default is the working directory from which the executable is called.
Directory name is usually in a system independent format, using all forward slashes for folders, ending
with a forward slash, e.g., C:/Temp/Model Output/run 3/. Equivalent to the (preferable) command
line argument -o [directory name]. If used, this should be called as early as possible in the .rvi file.
This command supports both absolute and relative pathnames.

:CreateRVPTemplate

Produces a template .rvp file in the same directory as the .rvi file based upon the hydrologic process list
and model options in the .rvi file, so the user knows which parameters need to be specified for the given
model configuration. NOTE: this turns o� model operation, only the template file will be created.

:OutputInterval [frequency]

The frequency of printing output to the output files. Default of 1 (printing every time step). Typically
used for simulations with small time steps (e.g., if frequency=60 for a model with a time step of 1 minute,
standard output is printed hourly).

:WriteMassBalanceFile

The file runname_WatershedMassEnergyBalance.csv (or .tb0) is generated (see appendix B)

:WriteForcingFunctions

The file runname_ForcingFunctions.csv (or .tb0) is generated (see appendix B)

:WriteEnergyStorage

The file runname_WatershedEnergyStorage.csv is generated (see appendix B)

128

:WriteDemandFile

The file runname_Demands.csv is generated (see appendix B)

:WriteEnsimFormat

Specify that the output files generated by Raven should be in an EnSim (*.tb0) format instead of .csv. Used
primarily for visualization with the Green Kenue so�ware.

:WriteExhaustiveMB

The file runname_ExhaustiveMB.csv is generated (see appendix B)

:EndPause

This command forces the program output to stay on the screen (e.g., as a DOS window) until the user
exits manually. Default behaviour is that the command prompt will close once execution finished.

:DebugMode

The equivalent of including:WriteMassBalanceFile, :WriteForcingFunctions, and:WriteEn-
ergyStorage. Also generates the output file debug.csv.

:SilentMode

If this command is included, output to the command prompt is minimized. Useful during automated
calibration or uncertainty analysis to speed program operation.

:SuppressOutput

Suppresses all standard output, including generation of Hydrograph, transport output, and watershed
storage files. Does not turn o� optional outputs which were requested elsewhere in the input file. Does
not turn o� creation of diagnostics.csv. Useful during automated calibration to speed program operation.

:WaterYearStartMonth [integer month]

Changes the start of the water year from October 1st (the default) to the 1st of another month (for exam-
ple, :WaterYearStartMonth 7 #July for Australian application). The water year is only used for
reporting of annual (WATER_YEARLY) budget reporting in the :CustomOutput command.

:OutputDump [YYYY-MM-DD hh:mm:ss]

Outputs snapshot of all state variables to file state_(timestamp).rvc, where timestamp is the indicated
time in the command. The format of this file is the same as solution.rvc. This can later be used as an
initial condition file. Multiple calls to this command will cause snapshots to be wri�en at all requested
dump times. This is useful for long model operations where interruption could cause work to be lost.
Alternately, it can be used to generate intermediate warm start states.

:SnapshotHydrograph

129

Hydrographs are reported using the values at the end of each time step. By default, hydrographs are
reported as averaged over the time step, to be consistent with most available observation data, typically
reported using time-averaged values. This is mostly used for direct comparison to emulated models, which
typically do not report time step-averaged flows.

:EvaluationMetrics [metric1] {metric2} {metric3} ... {metricN}

If observation time series are provided (see :ObservationData command in appendix A.4.2), Raven
will generate the evaluation metrics listed in this command. The metrics include:

• NASH_SUTCLIFFE

• RMSE

• PCT_BIAS

• ABSERR

• ABSMAX

• PDIFF

• TMVOL

• RCOEF

• NSC

• RSR

• R2

• LOG_NASH

• KLING_GUPTA

These metrics are defined in section 8.2. By default, these metrics are calculated for the full model duration
(or whenever non-zero observation weights are present). However, the metrics may also be calculated only
for specific time periods (e.g., calibration or validation periods using the :EvaluationPeriod

:EvaluationPeriod [per_name] [start yyyy-mm-dd] [end yyyy-mm-dd]
e.g.,
:EvaluationPeriod CALIBRATION 2002-10-01 2008-09-30

Specifies that the diagnostics specified using the :EvaluationMetrics command should be calcu-
lated also for subperiods of the model simulation, usually calibration or validation periods. Each period
is bounded by a start date and end date. The period name is appended to the name of the diagnostic in
the Diagnostics.csv output file.

:NetCDFAttribute [attribute name] [value]

Adds a user-specified a�ribute with name attribute name and arbitrary string value value. Commas are
not allowed in the value string.

130

A.1.5 Custom Output

:CustomOutput [time_per] [stat] [variable] [space_agg] {filename}

This command is used to create a custom output file that tracks a single variable, parameter, or forcing
function over time at a number of basins, HRUs, or across the watershed. Here, thevariable is specified
using either the state variable name(for an exhaustive list, see table C.1), the forcing name (see table C.2),
or parameter name. time_per refers to the time period, one of:

• DAILY

• MONTHLY

• YEARLY

• WATER_YEARLY

• CONTINUOUS (for output created every time step)

For the water year aggregation, a default water year of October 1-September 30 is used. The start month
can be changed using the :WaterYearStartMonth command above. stat is the statistic reported
over each time interval, one of:

• AVERAGE

• MAXIMUM

• MINIMUM

• RANGE

• MEDIAN

• QUARTILES

• HISTOGRAM [min] [max] [num. of bins]

If HISTOGRAM is selected, the command should be followed (in the same line) with the minimum and
maximum bounding values of the histogram range and the number of evenly spaced bins.

space_agg refers to the spatial evaluation domain for reporting, and is either BY_BASIN, BY_HRU,
BY_HRU_GROUP, or ENTIRE_WATERSHED. In all cases, the variable statistics will be determined using
the area-weighted average, i.e., if MONTHLY MAXIMUM SOIL[0] BY_BASIN is chosen, it will report
the maximum basin average soil moisture in the top soil layer in any given month, not the maximum HRU
soil moisture found in the basin within that month.

If the state variable is not used in the model (it does not participate in any of the user-specified hydrologic
processes), the output file will not be created; a warning will be generated.

As an example, the custom output command may be used as follows:

:CustomOutput DAILY MAXIMUM SNOW BY_BASIN

This would create the file runname_DailyMaximumSnowByBasin.csv, which would include a time
series of daily maximum snow contents (as mm SWE) for all subbasins in the model. An optional specified
filename may be appended to the end of any command to override the default filename.

131

There are also three special forms of custom output for tracking fluxes between modeled storage com-
partments. The first reports the cumulative flux from a single storage compartment, using the following
syntax:

:CustomOutput DAILY AVERAGE From:SNOW BY_HRU

where the term a�er the From: command is a state variable from table C.1. This example returns the
cumulative loss from snowpack in the form of snowmelt or sublimation (in mm).

:CustomOutput DAILY AVERAGE To:SNOW BY_HRU

where the term a�er the To: command is a state variable from table C.1. This example returns the
cumulative gain of snow (in mm).

:CustomOutput DAILY AVERAGE Between:SOIL[0].And.ATMOSPHERE BY_HRU

where the terms a�er the Between: and .And. commands are both state variables from the table C.1.
This example returns the cumulative loss of water from the top soil (SOIL[0]) to the atmosphere, i.e.,
the actual evapotranspiration rate from the top soil.

If the user requires this custom output file to be wri�en as an Ensim (.tb0) or NetCDF (.nc) file, the :Cus-
tomOutput command must be preceded by the :WriteEnsimFormat or :WriteNetCDFFormat
command, respectively.

A.1.6 Hydrologic Processes

In addition to the above commands, the .rvi file must include the list of all of the necessary hydrologic pro-
cesses to be included in the model, which are bracketed by the :HydrologicProcesses and :End-
HydrologicProcesses commands. The process commands are typically in some variation of the
following format:

:ProcessName ALGORITHM {ProcessFrom} {ProcessTo}

where :ProcessName is the name of the process (e.g., :CanopyDrip), ALGORITHM refers to the par-
ticular algorithm used for simulation (e.g., CANDRIP_RUTTER corresponds to the (Ru�er et al., 1971)
model for loss of water from canopy to ground surface), and ProcessFrom and ProcessTo are the
state variable code for the source and sink storage compartments, which are selected from the complete
list of state variables in table C.1.

The state variables SURFACE_WATER, PONDED_WATER, ATMOS_PRECIP and ATMOSPHERE are auto-
matically included in all models. The others will be dynamically included in the model as processes are
added. For example, the SNOW variable will be automatically added if a snowmelt or sublimation hydro-
logic process is added to the list. Note that the computational cost of a model is directly related to the
number of state variables and number of processes included in that model. Note that the SOIL variable
is followed by the index of the soil layers in the model, with [0] corresponding to the topmost layer. The
MULTIPLE tag is a placeholder, indicating that there are more than one compartments either receiving
water/energy/mass, or more than one losing. The specific compartments are usually determined from
the chosen algorithm, though there are certain routines (e.g., many baseflow or percolation algorithms)
which require the user to specify the ’to’ or ’from’ compartment.

132

Important: depending upon the numerical method chosen, the ordering of the processes in the
input file may determine the accuracy and/or behavior of the solution. In general, processes should
be ordered from fast to slow and precipitation and snowmelt should be applied prior to infiltration.
This becomes less of an issue with decreasing time step size.

As shown in the template files in appendix D, the :Alias command may be used to give ’nicknames’
to state variables which can be used instead of the Raven standard syntax. This is most o�en done to
distinguish between actual storage compartments (e.g., SOIL[1]) and conceptual storage compartments
(e.g., the alias ROUTING_STORE). For example,

:Alias FAST_RESERVOIR SOIL[1]
:Alias SLOW_RESERVOIR SOIL[2]
SLOW_RESERVOIR now refers to SOIL[2] when used

Table A.3 includes a detailed description of the process commands available in Raven.

133

The Lateral Flush process

Lateral flow processes may require the specification of the source and destination HRU groups as well as
the state variables. The :LateralFlush process, for instance, uses the following syntax:

:LateralFlush RAVEN_DEFAULT [SourceGrp] [SourceSV] To [DestGrp] [DestSV]

Where the source and destination HRU group (SourceGrp and DestGrp, within a given basin) and
source and destination state variable (water compartments SourceSV and DestSV, from table C.1), are
specified. For instance,

:LateralFlush RAVEN_DEFAULT Uplands SURFACE_WATER To Wetlands DEPRESSION

The preceding command will drain all surface and subsurface runo� from the Uplands HRU group to
depression storage in an HRU belonging to the WetlandsHRU group. Note that only one recipient HRU
in the destination group is allowed in each subbasin (i.e., you couldn’t have two HRUs belonging to the
Wetlands group in a single subbasin).

Conditional Application of Processes

Note that application of any given process algorithm can be made conditional using the:->Conditional
command immediately a�er the process command. For example,

:Flush RAVEN_DEFAULT PONDED_WATER SURFACE_WATER
:-->Conditional HRU_TYPE IS_NOT GLACIER

:Flush RAVEN_DEFAULT PONDED_WATER GLACIER
:-->Conditional HRU_TYPE IS GLACIER

The above input file snippet moves ponded water to surface water, unless the HRU type is a glacier (as
defined by its soil profile properties). Currently, the conditional command supports:

• conditionals based upon HRU type (HRU_TYPE), where the type is one of (GLACIER, LAKE, ROCK,
WETLAND, or STANDARD)

• conditionals based upon land use type, e.g.,

:-->Conditional LAND_CLASS IS PEATLAND

where LAND_CLASS names are as defined in the :LandUseClasses command in the .rvp file

• conditionals based upon HRU group, e.g.,

:-->Conditional HRU_GROUP IS_NOT BURNED_FOREST

where the HRU_GROUPs are defined using the :HRUGroup command in the .rvh file.

The only available comparison operators are IS and IS_NOT.

To do (8)

134

A.1.7 Transport Commands

:Transport [const_name] {units}

(Optional) This command declares a new transport constituent named const_name which can be ad-
vected through the system. The optional units command should be either mg/l or none (for tracers).

:FixedConcentration [const_name] [compartment] [concent.] {HRUgrp}

(Optional) This command applies a type one boundary condition in all water storage compartment state
variables of type compartment (taken from the state variable list of table C.1) in HRU group HRUgrp.
All water passing through this storage compartment will be assigned the specified concentration (concent.)for
the constituent named const_name. Note that the constituent name needs to be specified using the
:Transport command prior to calling this command. If the optional HRU_group is omi�ed, then the
condition applies to all storage compartments of this type throughout the watershed. For tracers, it is
useful to specify a concentration of 1.0 (no units).

A.1.8 Other Control Commands

:DisableHRUGroup [HRUgrp]

(Optional) This command disables all of the HRUs in the group, meaning that the model will not simulate
the mass/energy balance for any of the HRUs. For instance, if you had a large model and only wanted
to simulate a single headwater basin, you would create an HRU group that included HRUs not within
that basin, then apply the :DisableHRUGroup command to that single group of HRUs. In most cases,
it is desirable to disable entire subbasins - the model will not provide comprehensible results if random
assortments of individual HRUs are disabled.

:AssimilateStreamflow

(Optional) If this command is used, all available streamflow observations are assimilated into model pre-
dictions as indicated in section 6.1. Model output will then be a combination of data and model simulation;
this is typically used only in a forecasting environment.

:ReservoirDemandAllocation [method]

This command indicates how irrigation demand addressed using the :ReservoirDownstreamDe-
mand command is distributed to upstream reservoirs. Here, method = DEMANDBY_CONTRIB_AREA if
demand is allocated proportionately to contributing area of each reservoir and method =DEMANDBY_MAX_CAPACITY
if reservoir maximum storage capacity is used (to specify this, use the command below). This is only used
if the _AUTO flag is used to determine the reservoirs supplying a single :ReservoirDownstreamDe-
mand item.

:CallExternalScript [system command]

This calls an external script or system command at the start of every time step. If the system command
includes the tags <model_time>, <date>, <version>, or <output_dir>, then these tags in the
command will be replaced with the model time (time from the start of the model, in days), date string in
ISO standard format, version number (e.g., 3.0.2), or output directory, respectively. This can be used, for
instance, to assist in coupling multiple models, and would typically be used with the Raven live (.rvl) file.

135

:ReadLiveFile [frequency]

Reads externally-generated live file (see appendix A.6) every frequency time steps.

136

Table A.3: Hydrologic process commands for the .rvi file. Compartments with an asterisk must be specified
within the command.

137

Table A.4: Hydrologic process commands for the .rvi file. (cont’d)

138

A.2 Classed Parameter Input file (.rvp)

The classed parameter input file stores a database of soil, vegetation, river, aquifer, and land class prop-
erties. Not all classes specified in the *.rvp file need to be included in the model. An example .rvp file is
shown below.

--
Raven Example Classed Parameter File
--
Class definition ---------------------------
:SoilClasses

:Attributes, %SAND, %CLAY, %SILT, %ORGANIC
:Units, none, none, none, none
SAND, 1, 0, 0, 0
LOAM, 0.5, 0.1, 0.4, 0.4

:EndSoilClasses
:VegetationClasses

:Attributes, MAX_HT, MAX_LAI, MAX_LEAF_COND
:Units, m, none, mm_per_s
CONIFER_FOREST, 25, 6.0, 5.3

BROADLEAF, 25, 5.0, 5.3
:EndVegetationClasses
:LandUseClasses

:Attributes, IMPERMEABLE_FRAC, FOREST_COVERAGE
:Units , fract, fract

GRASSLAND, 0, 0
SUBURBAN, 0.3, 0.3

:EndLandUseClasses
Soil Profile definition -------------------
:SoilProfiles
name, #horizons, hor1, th1, hor2, th2

LAKE, 0
GLACIER, 0
LOAM_SEQ, 2, LOAM, 0.5, SAND, 1.5
ALL_SAND, 2, SAND, 0.5, SAND, 1.5

:EndSoilProfiles
Parameter specification -------------------
:GlobalParameter WET_ADIABATIC_LAPSE 0.5
:LandUseParameterList

:Parameters, MELT_FACTOR, MIN_MELT_FACTOR
:Units , mm/d/K, mm/d/K

[DEFAULT], 3.2, 1.3
GRASSLAND, 3.5, _DEFAULT

:EndLandUseParameterList

As with the *.rvi file, * or # denotes a comment.

A.2.1 Required Commands

:SoilClasses
:Attributes ,%SAND,%CLAY,%SILT, %ORGANIC
:Units , none, none, none, none

139

{soil_class_name,%sand,%clay,%silt,%organic}x[NSC]
:EndSoilClasses

or

:SoilClasses
{soil_class_name}x[NSC]

:EndSoilClasses

Defines each soil class and (optionally) specifies the mineral and organic composition of the soil which can
be used to automatically generate some physical properties such as porosity or hydraulic conductivity.
These parameters are defined as follows:

• soil_class_name is the code (less than 30 characters) used to identify the soil class within the
.rvp file and in the .rvh file, discussed below. The name may not contain spaces or special characters.

• %SAND,%CLAY,%SILT,%ORGANIC [0..1] are the percent sand, clay, and organic ma�er of the soil,
expressed in decimal form, between 0 and 1. The sand, silt, and clay fractions refer to the non-
organic component of the soil, i.e., specifying %SAND=0.5, %CLAY=0.3, %SILT=0.2, %ORGANIC=0.1
indicates a soil composition of 45% sand, 27% clay, 18%silt, and 10% organic ma�er. The sum of the
mineral components (%SAND, %CLAY, and %SILT) must be 1.

With the soil information provided, Raven can autogenerate many other physically-based (i.e., measur-
able) soil properties such as hydraulic and thermal conductivities, wilting pressure, etc. To override these
autogenerated parameters or to specify other soil parameters, an additional command (:SoilParameterList),
described below, may be added to the input file a�er the :SoilProperties command has been called.
For conceptual models, the soil composition will generally not be specified.

:SoilProfiles
{profile_name,#horizons,{soil_class_name,thick.}x{#horizons}}x[NP]

:EndSoilProflles

Defines all NP stored soil profiles, which is a collection of soil horizons with known depth and thickness,
each belonging to a soil class. The soils should be specified from the top downward. Because the parameter
soil_class_name is required, this command must come a�er the :SoilClasses command. The
thickness (thick.) of each horizon is specified in meters.

The special cases of lakes, exposed rock, wetlands, and glaciers (land surface elements with ’no’ surface
soils, or where it is not appropriate to simulate using soil infiltration and evaporation routines, are rep-
resented with the special profile names LAKE, ROCK, WETLAND, and GLACIER, all with zero horizons.
ANY soil profile that starts with these terms is not subject to soil-based process algorithms. Glaciers can
have more than zero horizons to represent groundwater processes, but infiltration and evapotranspiration
from the surface soil is disabled.

:VegetationClasses
:Attributes , MAX_HT,MAX_LAI,MAX_LEAF_COND
:Units , m, none, mm_per_s
{veg_class_name,MAX_CANOPY_HT,MAX_LAI,MAX_LEAF_COND}x[NVC]

:EndVegetationClasses

Defines the basic parameters for each vegetation class, which are used to optionally autogenerate many
canopy and root properties. Here,

140

• veg_class_name is the tag (less than 30 characters) used to identify the vegetation class within
the .rvp file and in the .rvh file, discussed below.

• MAX_CANOPY_HT [m] is the maximum canopy height reached during the year.

• MAX_LAI [m2/m2] is the maximum leaf area index (LAI) of the vegetation.

• MAX_LEAF_COND [mm/s] is the maximum leaf conductance of the vegetation.

:LandUseClasses
:Attributes ,IMPERMEABLE_FRAC, FOREST_COVERAGE
:Units , fract, fract
{LU_class_name,IMPERMEABLE_FRAC, FOREST_COVERAGE}x[NLU]

:EndLandUseClasses

Defines all NLU land use/land type classes in the model. Land use is assumed to determine many of the
surface roughness, albedo, and snow parameters. Here,

• LU_class_name is the tag (less than 30 characters) used to identify the land use class within the
.rvp file and in the .rvh file, discussed below.

• IMPERMEABLE_FRAC [0..1] is the percentage of the land surface that is considered impermeable.

• FOREST_COVERAGE [0..1] is the percentage of the land surface that is covered with a vegetation
canopy. It is recommended (but not required) to use either 0 (open) or 1 (fully forested), with partial
coverage handled via HRU definition.

A.2.2 Optional Classes and Objects

Terrain classes and channel profiles do not need to be included in all models.

:TerrainClasses
:Attributes , HILLSLOPE_LENGTH, DRAINAGE_DENSITY
:Units , m, km/km2
{terrain_class_name, HILLSLOPE_LENGTH, DRAINAGE_DENSITY}x[NTC]

:EndTerrainClasses

Defines all NTC physiographic terrain classes in the model, ranging from flat to hilly to steep and moun-
tainous. Here,

• terrain_class_name is the tag (less than 30 characters) used to identify the terrain class within
the .rvp file and in the .rvh file, discussed below.

• HILLSLOPE_LENGTH [m] is the representative hillslope length within the terrain.

• DRAINAGE_DENSITY [km/km2] is the terrain drainage density.

If no terrain classes are specified, the tag [NONE] should be placed in the :HRUs command under terrain
class.

:ChannelProfile [channel_name]
:Bedslope [slope]
:SurveyPoints

{[x] [bed_elev]}x num survey points
:EndSurveyPoints

141

:RoughnessZones
{[x_zone] [mannings_n]} x num roughness zones

:EndRoughnessZones
:EndChannelProfile

Defines a channel profile with the unique name channel_name. The channel geometry is fully defined
by a number of survey points (at least 2) along a transect. At the le�most and rightmost points along the
transect, it is assumed that the channel is bounded with infinitely steep sides. The x-coordinate system is
arbitrary. In the same coordinate system, at least one zone with one Manning’s n value must be specified.
The coordinate xzone is the le�most boundary of the zone, and therefore the le�most xzone must be to
the le� of or equal to the le�most (smallest) survey coordinate x. The channel configuration definitions
are depicted in figure A.1. A representative bedslope (expressed as the slope ratio) is also needed: this is
used to calculate flow rates using Manning’s equation.

Figure A.1: Channel Profile definition. Each channel is defined by a cross sectional profile and a number
of zones with di�erent Manning’s n values.

As an example, the following profile command generates the channel shown in figure A.2.

:ChannelProfile Reach3
:Bedslope 0.08
:SurveyPoints

0.000 0.25
1.000 0.00
1.750 0.00
2.000 0.25

:EndSurveyPoints
:RoughnessZones

0.000 0.07
0.500 0.02
1.875 0.08

:EndRoughnessZones
:EndChannelProfile

Note that it is undesirable to overly constrain the lateral extent of the channel, i.e., if there is any chance
that the water levels reach the le�most or rightmost channel point. Also note that Manning’s n and slope
may both be overwri�en for a specific subbasin via the :SubBasinProperties command in the .rvh
file.

142

Figure A.2: Example channel profile generated using example command.

:ChannelRatingCurves [channel_name]
:Bedslope [slope]
:StageRelations

{[stage] [area] [width] [flow]} x num curve points
:EndStageRelations

:EndChannelRatingCurves

Defines a channel profile with the unique namechannel_name, and is used as an alternative to:Chan-
nelProfile. Here, the stage-area, stage-top width, and stage-flow rating curves are explicitly provided.
The first data point should correspond to stage and flow equal to zero, with all values entered with in-
creasing stage. The units are stage [m], area [m2], width [m], flow [m3/s].

143

A.2.3 Parameter Specification

In addition to the required terms above, the following optional commands may be used to override auto-
generation of parameters and specify parameters that cannot be autogenerated. If these are not included,
either for an entire class or individual parameter, it is assumed that the parameter is to be autogenerated.

Soil Parameter Specification

The following command is used to specify parameters linked to each soil class:

:SoilParameterList
:Parameters , { param_name1, param_name1,..., param_nameNP}
:Units , { unit_type1, unit_type2,..., unit_typeNP}
{[DEFAULT] , {default_val1,default_val2,..., default_valNP} [optional]
{soil_class_name, { param_val1, param_val2,...,

param_valNP}}x[<=NSC]
:EndSoilParameterList

where available soil parameter names (param_name) are described in the table A.5 and the soil class
names (with the exception of the special[DEFAULT] tag) must already have been declared in the:Soil-
Classes command.

The [DEFAULT] soil class name is used to specify parameter values for all classes not explicitly included
as rows in the parameter list. Only soil classes which have parameters di�erent from the default soil
properties need to be specified in this list. If the user desires to autogenerate any of the parameters in
the list (if Raven has the capacity to autogenerate these parameters), the _AUTO flag should be placed
instead of a numerical value, as depicted in the example file. The _DEFAULT flag may be used if the
default property (which can also be _AUTO) should be applied.

Note that the units must be consistent with the native units of each parameter indicated in table A.5 - this
line is intended for user interface processing and readability; units will not be automatically converted

if alternative unit specifiers are used.

While many watershed model and algorithm parameters have a physical basis (e.g., hydraulic conductiv-
ity), certain algorithms, particularly for lumped models, abstract a physical process so that coe�icients in
the relationships between storage and fluxes are completely artificial. These artificial parameters, which
cannot be automatically generated based upon soil type, need to be specified directly by the user, and are
o�en used as calibration (or ’tuning’) parameters. These parameters are described in the second section
of table A.5.

144

Vegetation Parameter Specification

:VegetationParameterList
:Parameters , { param_name1, param_name1,..., param_nameNP}
:Units , { unit_type1, unit_type2,..., unit_typeNP}
[DEFAULT] , {default_val1,default_val2,..., default_valNP} [opt.]
{VEG_CLASS_NAME , { param_val1, param_val2,...,

param_valNP}}x[<=NVC]
:EndVegetationParameterList

The :VegetationParameterList command operates in the same fashion as the :SoilParam-
eterList command described above. The available vegetation parameters in Raven are described in
table A.7. Note that the [DEFAULT] vegetation type is optional.

:SeasonalCanopyLAI
[DEFAULT] , J, F, M, A, M, J, J, A, S, O, N, D {optional}

{ veg_class_name, J, F, M, A, M, J, J, A, S, O, N, D}x[<=NVC]
:EndSeasonalCanopyLAI

The :SeasonalCanopyLAI command provides a monthly correction factor that can be used to adjust
leaf area indices as the seasons change, i.e., LAI = LAImax · f , where f(t) is the monthly correction
factor for time t. By default, no correction factor is applied. This correction factor must be between zero
and one for all months and will be interpolated based upon the specification of the :MonthlyInter-
polationMethod command in the .rvi file.

:SeasonalCanopyHeight
[DEFAULT] , J, F, M, A, M, J, J, A, S, O, N, D {optional}

{ veg_class_name, J, F, M, A, M, J, J, A, S, O, N, D}x[<=NVC]
:EndSeasonalCanopyHeight

The :SeasonalCanopyHeight command provides a monthly correction factor that can be used to
adjust vegetation height as the seasons change, i.e., hveg = hmax ·f , where f(t) is the monthly correction
factor for time t. By default, no correction factor is applied. This correction factor must be between zero
and one for all months and will be interpolated based upon the specification of the :MonthlyInter-
polationMethod command in the .rvi file.

145

Land Use / Land Type Parameter Specification

:LandUseParameterList
:Parameters , { param_name1, param_name1,..., param_nameNP}
:Units , { unit_type1, unit_type2,..., unit_typeNP}
[DEFAULT] , {default_val1,default_val2,..., default_valNP} [optional]
{lult_class_name, { param_val1, param_val2,...,

param_valNP}}x[<=NSC]
:EndLandUseParameterList

The:LandUseParameterList command operates in the same fashion as the:SoilParameterList
command described above. The available land use parameters in Raven are described in table A.6

146

Global Parameter Specification

The following global parameters can also be specified, anywhere in the .rvp file. Note that the preferred
format for single-value parameters (i.e., not vectors of parameters) is to use the :GlobalParameter
command. Many of the below commands are equivalent to this command, retained only for backwards
compatibility with earlier versions of Raven.

:GlobalParameter [PARAM_NAME] [value]

Can be used to specify the value of any scalar global parameter, where the list of global parameter names
is in table A.8.

Please note that the :GlobalParameter command is the only one truly needed to specify
single-valued global parameters in table A.8. The remainder of the commands shown below have
been deprecated, and are only provided as a reference for those using older models which may in-
clude these commands. The only exception to this are the global parameters which include monthly
sequences (e.g., :UBCNorthSWCorr)

:AdiabaticLapseRate [rate]
is equivalent to (the preferred option)
:GlobalParameter ADIABATIC_LAPSE [rate]

The base adiabatic lapse rate [◦C/km].

:PrecipitationLapseRate [rate]
is equivalent to (the preferred option)
:GlobalParameter PRECIP_LAPSE [rate]

The simple linear precipitation lapse rate [mm/d/km], as used in the OROCORR_SIMPLELAPSE oro-
graphic correction algorithm.

:RainSnowTransition [rainsnow_temp] [rainsnow_delta]| \\ %
equivalent to (the preferred option)
:GlobalParameter RAINSNOW_TEMP [rainsnow_temp]
:GlobalParameter RAINSNOW_DELTA [rainsnow_delta]

Specifies the range of temperatures (rainsnow_delta, [◦C]) over which there will be a rain/snow
mix when partitioning total precipitation into rain and snow components. The midpoint of the range is
rainsnow_temp.

:IrreducibleSnowSaturation [saturation]
equivalent to (the preferred option)
:GlobalParameter SNOW_SWI [saturation]

Maximum liquid water content of snow, as percentage of SWE [0..1]. Usually ∼0.05.

:AvgAnnualRunoff [runoff]
equivalent to (the preferred option)
:GlobalParameter AVG_ANNUAL_RUNOFF [runoff]

147

This parameter should be the average annual runo� for the entire modeled watershed, [mm/yr]. It is used
to autogenerate initial flows and reference flows in the channel network. While the resultant estimates of
initial flows will wash out with time, reference flows may be critical and modelers may wish to overwrite
these by specifying the Q_REFERENCE parameter for each channel in the :SubBasinProperties
command of the .rvp file.

:WetAdiabaticLapseRate [rate] [A0PPTP]
equivalent to (the preferred option)
:GlobalParameter WET_ADIABATIC_LAPSE [rate]
:GlobalParameter UBC_A0PPTP [A0PPTP]

The wet adiabatic lapse rate [◦C/km] and the UBCWM threshold precipitation, A0PPTP, for temperature
lapse rate [mm/d] (usually ∼5 mm/d).

:ReferenceMaxTemperatureRange [range]
equivalent to (the preferred option)
:GlobalParameter UBC_MAX_RANGE_TEMP [range]

A parameter (A0TERM) used in the UBC watershed model orographic corrections for temperature [◦C].

:UBCTempLapseRates [A0TLXM A0TLNM A0TLXH A0TLNH P0TEDL P0TEDU]

Parameters used in the UBC watershed model orographic corrections for temperature. A0TLXM and
A0TLXH [◦C/km] are the low and high elevation lapse rates of the maximum daily temperature; A0TLNM
and A0TLNH [◦C/km] are the low and high elevation lapse rates of the minimum daily temperature;
P0TEDL and P0TEDU [◦C/km] are the low and high elevation lapse rates of the maximum temperature
range. Low and high elevation refer to below or above 2000 masl.

:UBCPrecipLapseRates [E0LLOW E0LMID E0LHI P0GRADL P0GRADM P0GRADU A0STAB]

Parameters used in the UBC watershed model orographic corrections for precipitation. E0LLOW E0LMID
and E0LHI, are the low, medium, and high reference elevations [m]; P0GRADL, P0GRADM, and P0GRADU
are the precipitation gradient factors (%) applied below E0LMID, between E0LMID and E0LHI, and above
E0LHI, respectively; A0STAB is a precipitation gradient modification factor.

:UBCEvapLapseRates [A0PELA]

The PET lapse rate in the UBCWM PET orographic correction algorithm [◦C/km].

:UBCNorthSWCorr [J F M A M J J A S O N D]

Monthly correction factors (unitless) for shortwave radiation on north-facing slopes, used in the UBC
shortwave generation routine.

:UBCSouthSWCorr [J F M A M J J A S O N D]

Monthly correction factors (unitless) for shortwave radiation on south-facing slopes, used in the UBC
shortwave generation routine.

148

:UBCSnowParams [P0ALBMIN P0ALBMAX P0ALBREC P0ALBASE P0ALBSNW P0ALBMLX]

Parameters used in the UBCWM-style snow albedo evolution algorithm. P0ALBREC [-] is the recessional
constant for albedo decay of new snow (∼0.9); P0ALBSNW [mm] is the daily snowfall required to bring
albedo to that of new snow; P0ALBMAX is the albedo of fresh snow (∼0.95); P0ALBMIN is the albedo of
an aged snowpack or glacier (∼0.30); P0ALBMLX [mm] is a constant on the order of total snowmelt in
one year; P0ALBASE is the albedo initial decay value (∼0.65).

:UBCGroundwaterSplit [value]

The UBC watershed model deep zone share, which controls how much infiltration goes to deep vs. shallow
storage.

:UBCExposureFactor [value]

The UBCWM sun exposure factor for forested areas (∼0.01), indicating the percentage of forested areas
exposed to solar radiation. Used in the SW_CANOPY_CORR_UBCWM canopy correction algorithm.

:UBCCloudPenetration [value]

The UBCWM fraction of solar radiation penetrating cloud cover [0..1], as used in theSW_CLOUD_CORR_UBCWM
cloud cover correction algorithm.

:UBCLWForestFactor [value]

The UBCMW Longwave correction factor for forests [mm/d/K](∼0.75), as used in the LW_RAD_UBCWM
longwave radiation estimation routine.

:AirSnowCoeff [value]

This is the air/snow heat transfer coe�icient in units of [1/d], as used in the SNOTEMP_NEWTONS snow
temperature evolution routine.

:AvgAnnualSnow [value]

This parameter is the average annual snow for the entire watershed in mm SWE. It is used in theCEMA_NEIGE
snowmelt algorithm.

149

Special Commands

The following special commands can be used for temporally variable landscape change (e.g., to simulate
urbanization, glacial retreat, forest fire impacts, or changes in agricultural practices).

:LandUseChange [HRU group] [new LULT tag] [YYYY-mm-dd]

The land use for the specified HRU group is changed to the new LULT type (as specified in the :Lan-
dUseClasses-:EndLandUseClasses block) on the specified date in ANSI YYYY-mm-dd format.
The change occurs just a�er midnight of the night before. Note that all parameters from the new land
use class are applied to all of the specified HRUs in the group. There is no limit to the number of land use
changes in the model. All land use changes prior to the model start date are processed at the start of the
simulation. Any series of :LandUseChange commands should be input in chronological order.

:VegetationChange [HRU group] [new vegetation tag] [YYYY-mm-dd]

The vegetation for the specified HRU group is changed to the new vegetation type (as specified in the
:VegetationClasses-:EndVegetationClasses block) on the specified date in ANSI YYYY-
mm-dd format. The change occurs just a�er midnight of the night before. Note that all parameters
from the new vegetation class are applied to all of the specified HRUs in the group. There is no limit
to the number of vegetation changes in the model. All land use changes prior to the model start date
are processed at the start of the simulation. Any series of :VegetationChange commands should be
input in chronological order.

:HRUTypeChange [HRU group] [new type tag] [YYYY-mm-dd]

The HRU type vegetation for the specified HRU group is changed to the new HRU type (GLACIER,ROCK,WETLAND,STANDARD,or
LAKE) on the specified date in ANSI YYYY-mm-dd format. This command is mostly used to represent
conversion from glacier to non-glacier. The change occurs just a�er midnight of the night before. There is
no limit to the number of HRU type changes in the model. All HRU type changes prior to the model start
date are processed at the start of the simulation. Any series of :HRUTypeChange commands should be
input in chronological order.

:TransientParameter [PARAM_NAME] [class] {(optional) ClassName}
[date yyyy-mm-dd] [time hh:mm:ss.0] [interval] [N]
{double value} x N

:EndTransientParameter

This command may be used to replace any (usually fixed) parameter specified in the .rvp file with a
time series of user-specified parameter values. This is o�en used to represent the influence of chang-
ing land use, seasonal impacts of agriculture, or unmodeled hydrologic processes such as frozen soils.
Here, interval is the time interval of the supplied time series and N is the total number of entries.
PARAM_NAME corresponds to one of the parameters included in tables A.5, A.6, A.7, or A.8. class is
one of SOIL, VEGETATION, LANDUSE, TERRAIN or GLOBALS. The optional ClassName specifies the
particular soil/vegetation/land use class to override; if not included, the parameter will be overridden for
all soil/vegetation/land use classes. Note that the specified transient parameter completely overwrites the
static value specified earlier in the .rvp file. It is common to put this time series in another file and point
to it via the :RedirectToFile command.

150

:RedirectToFile [filename]

This treats the contents of file “filename” as if they were simply inserted into the .rvp file at the location of
the:RedirectToFile command. This is useful for storing individual sets of commands in an organized
format (e.g., the :TransientParameter time series). If no path is specified, the filename must be
reported relative to the working directory. Note that this command cannot work within data blocks (e.g.,
a the entire :SoilParameters-:EndSoilParameters block would have to be in a single file, not
just the tabular data in that block).

151

Table A.5: Soil Parameters. The top section described autocalculable parameters which may be generated
automatically using only the base soil class information (sand, clay, silt, and organic content). The bo�om
section must be user-specified.

Name Definition Units Range

Ph
ys

ic
al

Pa
ra

m
et

er
s

SAND_CON percent sand content of mineral soil (sand+clay+silt=1) [0..1] 0.0-1.0
CLAY_CON percent clay content of mineral soil [0..1] 0.0-1.0
SILT_CON percent silt content of mineral soil [0..1] 0.0-1.0
ORG_CON percent organic content of soil (mineral+org.=100%) [0..1] 0.0-0.8

POROSITY e�ective porosity of the soil [0..1] 0.1-0.6
STONE FRAC stone fraction of the soil [0..1] 0.0-0.5
SAT_WILT hydroscopic minimum saturation [0..1] 0.0-0.9
FIELD CAPACITY field capacity saturation of the soil [0..1] 0.0-1.0
BULK_DENSITY bulk dry density of the soil [kg/m3]
HYDRAUL_COND saturated hydraulic conductivity of the soil [mm/d]
CLAPP_B Clapp-Hornberger exponent [-]
CLAPP N,CLAPP M Clapp-Hornberger transition parameters [-],[mm]
SAT_RES residual saturation [0..1]
AIR_ENTRY_PRESSURE (positive) air entry pressure (?ae) [-mm]
WILTING_PRESSURE (positive) wilting pressure [-mm]
HEAT_CAPACITY saturated volumetric heat capacity [J/m3/K]
THERMAL_COND saturated soil thermal conductivity [W/m/K]
WETTING_FRONT_PSI Green-Ampt we�ing front pressure [-mm]
EVAP_RES_FC soil evaporation resistance at Field capacity [d/mm]
SHUTTLEWORTH_B Shu�leworth b expon. relating resistance to pressure [-]
ALBEDO_WET albedo of the soil when fully saturated [-]
ALBEDO_DRY albedo of the soil when dry [-]

VIC_ZMIN Xinanjiang parameters for VIC model [mm]

C
on

ce
pt

ua
lM

od
el

Pa
ra

m
et

er
s

VIC_ZMAX Xinanjiang parameters for VIC model [mm]
VIC ALPHA [-] Xinanjiang parameters for VIC model [-]
VIC_EVAP_GAMMA power law exponent for VIC soil evaporation [-]
MAX_PERC_RATE VIC/ARNO/GAWSER percolation rate [mm/d] 0.01 - 1000
PERC N VIC/ARNO percolation exponent [-] 1.00 - 20
SAC_PERC_ALPHA Sacramento percolation multiplier [-] 1.0 - 250.0
SAC PERC EXPON Sacramento percolation exponent [-] 1.00 - 5.0
MAX BASEFLOW RATE maximum baseflow rate [mm/d] 0.001 - 1000
BASEFLOW_N VIC/ARNO baseflow exponent [-] 1.0 - 10.0
BASEFLOW_COEFF linear baseflow storage/routing coe�icient [1/d]
BASEFLOW_THRESH threshold saturation for onset of baseflow [0..1]
MAX_CAP_RISE_RATE HBV max capillary rise rate [mm/d]
MAX_INTERFLOW_RATE PRMS max interflow rate [mm/d]
INTERFLOW_COEFF linear interflow storage/routing coe�icient [1/d]
UBC_EVAP_SOIL_DEF UBC model evaporation reference soil deficit [mm]
UBC_INFIL_SOIL_DEF UBC watershed model infiltration reference soil deficit [mm]
GR4J_X2 GR4J Maximum groundwater exchange rate [mm/d]
GR4J_X3 GR4J reference storage for baseflow/GW exchange [mm]

152

Table A.6: Land use parameters. The parameters with an asterisk can be autogenerated by Raven or
overriden by the model user.

Name Definition Units Range

Ph
ys

ic
al

Pa
ra

m
et

er
s

FOREST_COVERAGE fraction of land covered by vegetation canopy [0..1] 0-1
IMPERMEABLE_FRAC fraction of surface that is impermeable [0..1] 0-1

ROUGHNESS* roughness of ground surface [m] 0-10
FOREST_SPARSENESS* sparseness of canopy in land covered by forest [0..1] 0-0.99
DEP_MAX maximum amount of water that can be stored in depressions [mm] 0-5
MAX_DEP_AREA_FRAC percentage of landscape coverd by depressions when full [0..1] 0-0.8

MELT_FACTOR* maximum snow melt factor used in degree day models [mm/d/ ◦C] 3.5

C
on

ce
pt

ua
lM

od
el

Pa
ra

m
et

er
s

DD_REFREEZE_TEMP* degree day reference (freezing) temperature [◦C] 0.0
MIN_MELT_FACTOR* minimum snow melt factor used in degree day models [mm/d/ ◦C] 2
REFREEZE_FACTOR maximum refreeze factor used in degree day models [mm/d/ ◦C] 3
REFREEZE_EXP exponent used in HMETS_SNOWBAL refreeze relationship [-] 0.5
DD_AGGRADATION degree day increase rate with cumulative melt (HMETS pot. melt.) [1/mm] 0.1
SNOW_PATCH_LIMIT* SWE limit below which snow does not completely cover ground [mm] 0-100
HBV_MELT_FOR_CORR* HBV snowmelt forest correction (MRF in HBV-EC) [-] <1
HBV_MELT_ASP_CORR* HBV snowmelt aspect correction (AM in HBV-EC) [-] 0-1

GLAC_STORAGE_COEFF maximum linear storage coe�icient for glacial melt [-]
HBV_MELT_GLACIER_CORR degree day correction factor for glacial melt (MRG in HBV-EC) [-]
HBV_GLACIER_KMIN minimum linear storage coe�icient for glacial melt [-]
HBV_GLACIER_AG extinction coe�icient for diminishing storage coe�icient [1/mm]
CC_DECAY_COEFF linear decay coe�icient for decreasing cold content [1/d]

SCS_CN SCS curve number (for antecedent wetness condition II) [0-100] 1-100
SCS_IA_FRACTION* fraction of rainfall initially abstracted to depression storage [0..1] 0-0.2
PARTITION_COEFF simple rational method partitioning coe�icient [0..1] 0.5
MAX_SAT_AREA_FRAC PRMS maximum saturated area (pct)- [0-1]
B_EXP ARNO/VIC b exponent [-] 0.001-3.0
ABST_PERCENT percentage of rainfall which is abstracted to depression storage [0-1]
DEP_MAX_FLOW outflow rate with full depression storage [mm/d]
DEP_N power law coe�icient for depression outflow [-] 0.5-3
DEP_THRESHOLD threshold storage at which flow commences [mm]
PONDED_EXP exponent used in SOILEVAP_HYPR model [-] 1-5

OW_PET_CORR* fraction of PET to apply to open water evaporation [-] 0.1-1
LAKE_PET_CORR* fraction of PET to apply to lake evaporation [-] 0.1-1
FOREST_PET_CORR* fraction of PET to apply to forest evapotranspiration [-] 0.1-1
GAMMA_SCALE(2) Gamma unit hydrograph scale parameters [1/d] 0.1-20
GAMMA_SHAPE(2) Gamma unit hydrograph shape parameters [-] 0.5-5
HMETS_RUNOFF_COEFF HMETS runo� coe�icient [0..1] 0.3-1 (<1)
AET_COEFF SOILEVAP_LINEAR proportionality constant [1/d] 0.05

GR4J_X4 GR4J time routing parameter [d] 0-100
UBC_ICEPT_FACTOR* UBC Interception factor [-]

153

Table A.7: Vegetation Parameters. The parameters with an asterisk can be automatically generated by
Raven or overridden by the model user.

Name Definition Units Range

Ph
ys

ic
al

Pa
ra

m
et

er
s

MAX_HEIGHT maximum vegetation height [m]
MAX_LEAF_COND maximum leaf conductance [mm/s]
MAX_LAI maximum leaf area index [m2/m2]

SVF_EXTINCTION* extinction coe�icient used to calculate skyview factor [-] 0.5
RAIN_ICEPT_PCT* relates percentage of throughfall of rain to LAI+SAI [-] 0.02-0.20
SNOW_ICEPT_PCT* relates percentage of throughfall of snow to LAI+SAI [-] 0.02-0.20
RAIN_ICEPT_FACT* percentage of rain intercepted (maximum) [0..1] 0.06
SNOW_ICEPT_FACT* percentage of snow intercepted (maximum) [0..1] 0.04
SAI_HT_RATIO* ratio of stem area index to height [m2/m3]
TRUNK_FRACTION* fraction of canopy a�ributed to tree trunk [0..1]
STEMFLOW_FRAC* [0..1] 0.03
ALBEDO* visible/near-infrared albedo of leaf [-] 0.15
ALBEDO_WET* albedo of wet leaf [-]
MAX_CAPACITY* maximum canopy storage capacity [mm]
MAX_SNOW_CAPACITY* maximum canopy snow (as SWE) storage capacity [mm]
ROOT_EXTINCT extinction coe�icient for roots, exp(-ext*z) []-
MAX_ROOT_LENGTH root length per unit canopy area [mm/m2]
MIN_RESISTIVITY 1.0/max_conductivity [d/mm]
XYLEM _FRAC fraction of plant resistance in xylem [0..1]
ROOTRADIUS average root radius (used to calculate cowan alpha) [mm]
PSI_CRITICAL minimum plant leaf water potential [-mm]

DRIP_PROPORTION drip proportion for bucket drip model [1/d]

C
on

ce
pt

ua
lM

od
el

Pa
ra

m
et

er
s

MAX_INTERCEPT_RATE maximum rate of rainfall interception [mm/d]
CHU_MATURITY crop heat unit maturity; level at which PET is maximized [-]

154

Table A.8: Available global parameters in Raven.
Name Definition Units Range

Ph
ys

ic
al

Pa
ra

m
et

er
s

ADIABATIC_LAPSE adiabatic temperature lapse rate ◦C/km 0-7
WET_ADIABATIC_LAPSE wet adiabatic temperature lapse rate ◦C/km 0-7
PRECIP_LAPSE precipitation lapse rate for orographic correction mm/d/km 0-100
RAINSNOW_TEMP rain/snow halfway transition temperature ◦C -1.0-1.0
RAINSNOW_DELTA range of rain-snow transition zone (about RAINSNOW_TEMP) ◦C 0-4
SNOW_SWI water saturation fraction of snow 0..1 0.04-0.07
SNOW_SWI_MIN minimum water saturation fraction of snow 0..1 0.04-0.05
SNOW_SWI_MAX minimum water saturation fraction of snow 0..1 0.05-0.15
SNOW_TEMPERATURE default snow temperature if not explicitly modelled ◦C -2.0-0.0
SNOW_ROUGHNESS roughness height of snow mm 0-5.0
AVG_ANNUAL_SNOW avg annual snow as SWE mm 0-100
AVG_ANNUAL_RUNOFF avg annual runo� from basin mm 0-1000
MAX_SNOW_ALBEDO albedo of fresh snow 0..1 0.95
MIN_SNOW_ALBEDO very old snow/glacier albedo 0..1 0.3
BARE_GROUND_ALBEDO bare ground albedo 0..1 0.1-0.4

MAX_REACH_SEGLENGTH maximum reach segment length km

C
on

ce
pt

ua
l/N

um
er

ic
al

M
od

el
Pa

ra
m

et
er

sMAX_SWE_SURFACE maximum SWE in surface snow layer (SNOBAL_TWO_LAYER) mm
AIRSNOW_COEFF air/snow heat transfer coe�icient 1/d
UBC_GW_SPLIT UBC groundwater split parameter 0..1 0.4
UBC_EXPOSURE_FACT UBC Sun exposure factor of forested areas 0..1
UBC_CLOUD_PENET UBC Fraction of solar radiation penetrating cloud cover 0..1
UBC_LW_FOREST_FACT UBC temperature factor to estimate LW radiation in forests mm/d/K
UBC_FLASH_PONDING UBC ponding threshold for flash factor mm

UBC_ALBASE albedo exponential decay threshold value - 0.65
UBC_ALBREC albedo decay constant 1/d 0.9
UBC_ALBSNW daily snowfall required to bring albedo to that of new snow mm 15
ALB_DECAY_COLD linear albedo decay rate for cold conditions 1/d 0.008
ALB_DECAY_MELT linear albedo decay rate for melting conditions 1/d 0.12
SNOWFALL_ALBTHRESH threshhold snowfall rate to refresh albedo to fresh snow mm/d 10
UBC_MAX_CUM_MELT estimate of maximum annual snowmelt mm 4000
SWI_REDUCT_COEFF rate of SWI reduction with increasing cumulative melt 1/mm 0.02
MOHYSE_PET_coe� PET coe�icient for MOHYSE PET algorithm - 1.0

ASSIMILATION_FACT degree of assimilation (=0 for none, =1 for full insertion) 0..1 1

A
lg

Pa
ra

m
s

ASSIM_TIME_DECAY controls degree of assimilation a�er observations end 1/d 0.2
ASSIM_UPSTREAM_DECAY controls degree of assimilation upstream of observation 1/km 0.1
RESERVOIR_RELAX relax. factor for reservoir simulation of target stage/flow 0..1 0.4

155

A.3 HRU / Basin Definition file (.rvh)

The HRU/basin definition file describes the topology of the basin network and the class membership of
all constituent HRUs. An example .rvh file is shown below:

Example File: modelname.rvh

--
Raven HRU Input file
TEST input
--
:SubBasins
:Attributes, NAME, DOWNSTREAM_ID, PROFILE, REACH_LENGTH, GAUGED
:Units, none, none, none, km, none

1, Downstream, -1, DEFAULT, 3.0, 1
2, Upstream, 1, DEFAULT, 3.0, 0

:EndSubBasins
:HRUs
:Attributes, AREA, ELEVATION, LATITUDE, LONGITUDE, BASIN_ID, LAND_USE_CLASS,

...VEG_CLASS,SOIL_PROFILE, AQUIFER_PROFILE, TERRAIN_CLASS, SLOPE, ASPECT
:Units, km2, m, deg, deg, none,

none, ...
none, none, none,

none, deg, degN
101, 10,143, 43,-80, 1,FORESTED,BROADLEAF, ALL_SAND,SAND_AQ,

[NONE],0.0,0.0
102, 10,145, 43,-80, 1,URBAN ,BROADLEAF, ALL_SAND,SAND_AQ,

[NONE],0.0,0.0
103, 10,143, 43,-80, 2,FORESTED,BROADLEAF, TILL,SAND_AQ,

[NONE],0.0,0.0
104, 10,147, 43,-80, 2,FORESTED,BROADLEAF, TILL,SAND_AQ,

[NONE],0.0,0.0
:EndHRUs
:HRUGroup ForestedHRUs
101,103,104

:EndHRUGroup
:RedirectToFile Reservoirs.rvh
:RedirectToFile SubBasinParams.rvh

Note that, as with the .rvi file, comments may be included on individual lines using the * or # characters
as the first word on the line.

A.3.1 Required Commands

The .rvh file consists of the following required commands:

:SubBasins
:Attributes, ID, NAME, DOWNSTREAM_ID, PROFILE, REACH_LENGTH, GAUGED,
:Units , none, none, none, none, km, none,

156

{ID,name,downstream_ID profile,reach_length,gauged}x[number of subbasins]
:EndSubBasins

To specify an array of SubBasins of the watershed and the connectivity between subbasins. Each subbasin
may only have one outlet subbasin, specified by ID (a unique positive integer). The subbasin-specific
parameters are defined as follows:

• ID - A positive integer unique to this subbasin. Used to refer to the subbasin in other parts

of the input file.

• name - The nickname for the basin (cannot include commas or spaces). Can be non-unique.

This value is used for labelling output.

• downstream_ID - The ID of the basin that receives this subbasins outflowing waters. If the

drainage for this subbasin leaves the modeled watershed, a value of -1 for the downstream

ID should be specified.

• profile - The representative channel profile code (channel profiles specified in the .rvp

file)

• reach_length - The length of the primary reach channel in the basin (in km). If this is a

headwater basin, in-channel routing can be avoided by se�ing reach_length to zero. If

set to _AUTO, the reach length will be estimated from total subbasin area.

• gauged - Flag which determines whether modeled hydrographs for this subbasin are gen-

erated as output from the model (either 1 or 0, true or false)

:HRUs
:Attributes,AREA,ELEVATION,LATITUDE,LONGITUDE,BASIN_ID,LAND_USE_CLASS,

VEG_CLASS,SOIL_PROFILE,AQUIFER_PROFILE,TERRAIN_CLASS,SLOPE,ASPECT
:Units ,km2, m, deg, deg, none, none,

none, none, none, none, deg, degN
{ID,area,lat,long,basin_ID,...

LU/LT,veg_class_name,soil_profile_name,...
terrain_class_name,slope,aspect}x[number of HRUs]

:EndHRUs

To specify an array of HRUs within the subbasins defined above. The HRU-specific parameters are defined
as follows:

• ID - A positive integer unique to this HRU. Used to refer to the HRU in other parts of the

input file.

• AREA - the total HRU area (in km
2
)

• ELEVATION - the mean HRU elevation (in m.a.s.l)

• LATITUDE - Latitude of the HRU centroid (in decimal degrees). Used primarily for inter-

polation and estimation of solar radiation.

• LONGITUDE - Longitude of the HRU centroid (in decimal degrees). Used primarily for

interpolation and estimation of solar radiation.

• BASIN_ID - the ID of the basin in which the HRU is located (as defined in the :SubBasins
command ID column)

157

• LAND_USE_CLASS - the representative land use class of the HRU (defined in the .rvp file)

• VEG_CLASS - the representative vegetation class of the HRU (defined in the .rvp file)

• SOIL_PROFILE - the representative soil profile of the HRU (defined in the .rvp file)

• AQUIFER_PROFILE - unused. use [NONE].

• TERRAIN_CLASS - (optional) the representative terrain class of the HRU (defined in the

.rvp file). If terrain classes not used use [NONE]

• SLOPE - mean HRU slope, in degrees

• ASPECT - mean aspect (in degrees from north - i.e., a western aspect would be 90
◦
). Note:

this convention is opposite that used by most GIS terrain analysis tools.

If terrain classes or aquifer profiles are not used in the model (as is common), the flag [NONE] goes in
the place of the class specifier.

A.3.2 Optional Commands

:SubBasinProperties
:Parameters, {PARAM_1, PARAM_2, .. , PARAM_N}
:Units , {UNITS_1, UNITS_2, .. , UNITS_N}
{[basin ID], [p_1] , [p_2] , .. , [p_N] }} x NSB

:EndSubBasinProperties

Subbasin properties are used to control the in-catchment routing behaviour of individual subbasins. Here,
PARAM_i represents the name of a subbasin parameter (the full list of valid parameters can be found in
table C.3), UNITS_i is the units tag (not used by Raven), p_i refers to numeric values of each parameter,
basin id is the subbasin ID as defined in the :SubBasins command, and NSB is the number of
subbasins in the model.

:HRUGroup [group_name]
17,18,30-37

:EndHRUGroup

HRU Groups are used for a number of reasons: to generate custom output only for a select set of HRUs (or
organize/aggregate output for multiple sets) or to control which processes are applied in what locations.
Group names are typically specified using the :DefineHRUGroups command in the .rvi file; this com-
mand populates the memberships of these predefined groups. Individual HRUs are specified with their
ID numbers (as defined in the :HRUs command), separated by commas. Ranges of HRUs can be specified
using the hyphen, as shown above.

:PopulateHRUGroup [HRUgroup] With [con_base] [condition] [con_data]

An alternative to the :HRUGroup command which automatically populates the HRU group based upon
certain criteria. The cond_base command indicates the basis for the criterion, one of (HRUS, LANDUSE,
VEGETATION, or ELEVATION). The condition indicates the means of evaluating the criterion, one of
(NOTWITHIN, BETWEEN, EQUALS, NOTEQUALS). The con_data is dependent upon the condition.
For the NOTWITHIN condition, the condition data is another HRU group name and the criterion must
be HRUS. For the BETWEEN condition, the condition data is a range of elevations, and the only currently
valid criterion basis is the elevation. For the EQUALS and NOTEQUALS conditions, the vegetation or land

158

use names are specified, to group HRUs based upon class membership (or non-membership). For example,
the following commands are valid:

:PopulateHRUGroup CroplandHRUs With LANDUSE EQUALS CROPLAND
:PopulateHRUGroup NonCroplandHRUs With LANDUSE NOTEQUALS CROPLAND
:PopulateHRUGroup BroadleafHRUs With VEGETATION EQUALS BROADLEAF
:PopulateHRUGroup NotRock With HRUS NOTWITHIN RockHRUGroup
:PopulateHRUGroup LowBand With ELEVATION BETWEEN 0 500

:DisableHRUGroup [group_name]

This command disables the HRU group specified, and has to be included a�er the HRU group has been
defined (in the .rvi file via :DefineHRUGroup) or populated (in the .rvh file via :HRUGroup). All
disabled HRUs are not included in the simulation, and all subbasins comprised entirely of disabled HRUs
are likewise not simulated.

:SubBasinGroup [group_name]
2118, 3024, 3056, 4567

:EndSubBasinGroup

Subbasin groups are used for a number of reasons: to generate custom output only for a select set of basins
(or organize/aggregate output for multiple sets of basins) or to control parameterization of a large number
of basins (for instance, to set or adjust the Manning’s n parameter for a set of geomorphologically similar
river reaches). Individual subbasin members of the group are specified with their ID numbers (as defined
in the :SubBasins command), separated by commas. Unlike the :HRUGroup command, ranges are
not supported.

:PopulateSubBasinGroup [SBgroup] With [con_base] [condition] [con_data]

An alternative to the :SubBasinGroup command which automatically populates the subbasin group
based upon certain criteria. Thecond_base command indicates the basis for the criterion, currently only
SUBBASINS. Thecondition indicates the means of evaluating the criterion, currently only (NOTWITHIN).
The con_data is dependent upon the condition. For the NOTWITHIN condition, the condition data
is another subbasin group name and the criterion must be SUBBASINS. For example, the following com-
mands are valid:

:PopulateSubBasinGroup NotErie With SUBBASINS NOTWITHIN Erie

:DisableSubBasinGroup [group_name]

This command disables the subbasin group specified, and has to be included a�er the subbasin group
has been defined and populated (in the .rvh file via :SubBasinGroup). All disabled subbasins are not
included in the simulation, and all HRUs within these subbasins are also disabled and not simulated.

Advice

This command may be used to simulate or calibrate only a subset of the model domain. Sub-
domains in the middle of a watershed may also be simulated if all inflows to the subbasins are
proscribed using the :BasinInflowHydrograph command.

159

:SBGroupPropertyOverride [group_name] [parameter_name] [value]

This command simultaneously sets the parameter values for all subbasins within a group. Thegroup_name
refers to a subbasin group created using the :SubBasinGroup command, the parameter_name is
one of the parameters named in table C.3, and value is the value of the parameter being specified. Units
have to be consistent with those in table C.3.

:SBGroupPropertyMultiplier [group_name] [parameter_name] [mult]

This command is typically used for calibration, allowing the user to simultaneously adjust the parameter
values for a large number of subbasins simultaneously. The group_name refers to a subbasin group cre-
ated using the :SubBasinGroup command, the parameter_name is one of the parameters named in
table C.3, and mult is the multiplier used to adjust the parameters (base values should already have been
specified using the :SubBasinProperties command; this multiplier will not work for parameters
which are automatically calculated).

A.3.3 Reservoirs and Lakes

Man-made reservoir
:Reservoir [name]
:SubBasinID [SBID]
:HRUID [HRUID] # optional
:StageRelations

[number of points (N)]
h_1, Q_1, V_1, A_1, {U_1}
h_2, Q_2, V_2, A_2, {U_2}
...
h_N, Q_N, V_N, A_N, {U_N}

:EndStageRelations
:MaxCapacity {capacity, in m^3} # optional
:SeepageParameters [K_seep] [h_ref] # optional

:EndReservoir

This command creates a reservoir at the outlet of the subbasin referenced by SBID characterized by N
points on the indicated stage-discharge, stage-volume, and stage-area curves. Here, stage (h_i) is in
meters, flow (Q_i) and underflow (U_i, optional) are in m3/s, volume stage (V_i) is in m3, and area
stage (A_i) is in m2. The stage increments can be unevenly spaced but must be increasing from h_1
to h_N. Area and volume both must be monotonically increasing with increasing stage. For numerical
stability, it is expected that changes in volume with stage increments are approximately equal to the area
times the change in stage (i.e., a useful test is to compare ∆V to A∆h).

Evaporation from the reservoir surface are obtained from the HRU referenced by HRUID (this is the only
purpose for this; a special HRU for the reservoir is not strictly required, though o�en appropriate if the
reservoir is relatively large). If no HRU ID is provided, evaporation from the reservoir is presumed neg-
ligible. The reservoir volume, outflow, and net precipitation to the reservoir surface are obtained by in-
terpolating their value from the specified stage-dischargeQ(h), stage-areaA(h), and stage-volume V (h)
relations, defined here by N points along the rating curves. The underflow relation Qu(h) is optional,
and is assumed to be zero if omi�ed; if included, the total flow from the reservoir will be Q(h) +Qu(h).
Note that the minimum stage supplied in the :StageRelations should be the minimum expected
stage (usually the bo�om of the reservoir), and the maximum should be above the expected maximum

160

stage. See figure 4.1b for additional clarification of terms. Note that multiple operational constraints upon
stage and flow for reservoirs may be specified as time series in the .rvt file using commands such as the
:ReservoirMaxStage command. The optional :MaxCapacity item the maximum storage capac-
ity of the reservoir in m3, but is only used to inform the :ReservoirDemandAllocation operation;
it does not constrain the stage or outflow from the reservoir – this should be handled via maximum stage
constraints or via the stage-discharge curve of the reservoir.

Groundwater seepage parameters K_seep (m3/s/m) and h_ref (m) can be used to represent ground-
water seepage from the reservoir, where the losses are calculated as Qloss = Kseep · (h − href). If the
reference groundwater head (href) is larger than the reservoir stage, the reservoir gains water, otherwise
it loses water. By default, Kseep is zero, and no groundwater losses/gains are considered.

Lake-like reservoir
:Reservoir [name]
:SubBasinID [SBID]
:HRUID [HRUID]
:WeirCoefficient [C]
:CrestWidth [width [m]]
:MaxDepth [depth [m]]
:LakeArea [area [m2]]
:AbsoluteCrestHeight [elevation [masl]] {optional}

:EndReservoir

This command creates a lake-like reservoir at the outlet of the subbasin referenced by SBID, and is the
preferred option for natural reservoirs. Evaporation from the reservoir surface are obtained from the HRU
referenced by HRUID, as with the above :Reservoir command. Here, the discharge-stage, volume-
stage, and area-stage relations are generated using the following overflow weir formulae for a prismatic
lake:

Q(h) =
2

3

√
2gC · L · s3/2

A(h) = A

V (h) = A · (s+D)

where s is the stage measured with reference to the crest height (which can be negative),D is the specified
maximum lake depth (:MaxDepth [m]), g is the gravitational constant [m/s2], C is the weir coe�icient
(:WeirCoefficient), A is the constant lake areas (:LakeArea), [m2], and L is the crest width
(:CrestWidth, [m]). See figure 4.1a for additional clarification of terms. Typically the weir coe�icient
is held fixed at a value of about 0.6, and the crest width is calibrated to represent the unknown crest
width and overflow resistance. :AbsoluteCrestHeight may be supplied to reference stages to real
lake stage; by default stage is with reference to the crest height, i.e., a zero stage would be just at the
crest. Note that when many reservoirs and lakes are supplied, they would usually be kept in one or
more separate files via the :RedirectToFile command. You can override the calculated area and
volume relationships using the :AreaStageRelation and :VolumeStageRelation commands,
respectively.

:MinStageConstraintDominant

Used within the :Reservoir-:EndReservoir block, this command is used to override the default or-
dering of outflow constraints for reservoirs. With this command, the minimum stage constraint (:ReservoirMinStage)
will override minimum flow, overrriden flow, and maximum flow constraints, changing the order of con-
straints indicated in section 4.3 but only in this reservoir. This will likewise override minimum demand

161

flow calculated from the use of the :ReservoirDownstreamDemand command, such that the reser-
voir will not meet downstream demands if the stage is at minimum.

:DemandMultiplier [value]

Used within the :Reservoir-:EndReservoir block, this command is used to modify the percentage
of downstream irrigation demand met by this reservoir. The :ReservoirDownstreamDemand com-
mand is used to allocate irrigation demand from downstream subbasins of a reservoir, thus increasing the
minimum flow from that reservoir. The calculated minimum flow is multiplied by this demand multiplier.
If set to 1.0, the reservoir completely respects the constraints from the downstream demand calculations.
If set to 0.0, the reservoir will not be constrained in any way by downstream irrigation demand. This
command may be used to help evaluate a range of water management strategies.

:DZTRResservoirModel
:MaximumStorage [Vmax]
:MaximumChannelDischarge [Qmax]
:MonthlyMaxStorage J F M A M J J A S O N D
:MonthlyNormalStorage J F M A M J J A S O N D
:MonthlyCriticalStorage J F M A M J J A S O N D
:MonthlyMaxDischarge J F M A M J J A S O N D
:MonthlyNormalDischarge J F M A M J J A S O N D
:MonthlyCriticalDischarge J F M A M J J A S O N D

:EndDZTRReservoirModel

Used within the:Reservoir-:EndReservoir block, this command overrides the default stage-discharge
relationship used to determine reservoir outflow with the time-variable volume-discharge relationship
that is defined in Yassin et al. (2019). Historical volume-storage observations can be used to estimate
these parameters to emulate historical (but unknown) reservoir outflow operational rules. All monthly
storages (e.g., :MonthlyMaxStorage) are in m3 and all flows (e.g., :MonthlyMaxDischarge) are
in m3/s; each row gets 12 monthly values. The order of the above commands must be respected and no
comments are allowed between commands in this block. The details of operation are to be found in the ?

paper. With this command, any stage-discharge curve indicated in the command structure is ignored.

:VolumeStageRelation
[number of points (N)]
h_1 V_1
h_2 V_2
...
h_N V_N

:EndVolumeStageRelation

Used within the :Reservoir-:EndReservoir block, this command is used to override Raven’s de-
fault calculation of the volume-stage relationship for a lake-like reservoir. The relationship is specified
using N (h_i,V_i) pairs, which don’t need to be evenly spaced. Stage is in units of meters, and volume
is in cubic metres. Volumes must monotonically increase with increasing stage.

:AreaStageRelation
[number of points (N)]
h_1 A_1
h_2 A_2

162

...
h_N A_N

:EndVolumeStageRelation

Used within the :Reservoir-:EndReservoir block, this command is used to override Raven’s de-
fault calculation of the surface area-stage relationship for a lake-like reservoir. The relationship is speci-
fied using N (h_i,V_i) pairs, which don’t need to be evenly spaced. Stage is in units of meters, and lake
surface area is in square metres. Areas must monotonically increase with increasing stage.

163

A.4 Time Series Input file (.rvt)

The time series input file is used to store time series of forcing functions (precipitation, temperature, etc.).
It also may include additional commands for handling irrigation and diversions (i.e., any control systems).
An .rvt file is structured as follows:

#--
Raven Time Series Input file
#--
:Gauge Stratford MOE (ID:6148105)

:Latitude 43.37250
:Longitude -80.55360
:Elevation 53
:RedirectToFile StratfordMOEData.rvt

:EndGauge
:Gauge WaterlooWeatherStation

:Latitude 43.37
:Longitude -80.55
:Elevation 57
:RedirectToFile WaterlooWeatherStationData.rvt

:EndGauge
:RedirectToFile UpstreamInflow.rvt
:RedirectToFile LandCoverChange.rvt
:RedirectToFile ObservedHydrograph.rvt

Note that standard practice is to have a single master modelname.rvt file that ’points to’ a number of
other .rvt files which contain unique data sets, i.e., an individual .rvt file for meteorological forcing data at
a single meteorological gauge, another for observed stream flow at a stream gauge, and another reporting
pumping from one reservoir. The ’pointing’ is done using the :RedirectToFile command as shown
in the above example file. All of the redirected files are treated as if their contents have been inserted into
the master .rvt file.

Please note that all of Raven’s inputs and internal calculations use the standard proleptic Gre-
gorian calendar with leap years included. Any data which ignores leap years, is referenced from
Jan 1, 1 AD, uses the Julian/Hebrew/Mayan calendar or is otherwise non-standard, will require
pre-processing.
All hourly data referenced to GMT (Greenwich Mean Time) will need to be shi�ed to the local time
zone to be consistent with the solar calculations, which assume solar noon is at 12:00PM.

A.4.1 Meteorological Gauge Data Commands

The entries in the .rvt file are predominantly meteorological gauge locations (either real or hypothetical)
that provide time series of needed precipitation, temperature and other atmospheric forcings used by the
model (see appendix A.4.6 for information about using gridded model inputs instead of gauges). This is
supplemented by information about other time series needed for simulation. Each gauge entry is specified
within a bracketed statement,

:Gauge [gaugename]
:Latitude [latitude]
:Longitude [longitude]

164

:Elevation [elevation]
[other gauge data and time series information here]

:EndGauge

and must contain the latitude/longitude (using the :Latitude, :Longitude commands) and typically
contain a number of time series. Two formats, :Data (for a single time series) and :MultiData (for
multiple time series), may be used to specify collections of forcing functions measured at the gauge. These
are o�en stored in their own individual file and accessed via the :RedirectToFile command.

:Data [forcing type] {units}
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
v_1
v_2
v_3
...
v_N

:EndData

where here, v_i are the ith time series values and the forcing_type term is one of the forcings listed
in table C.2 (e.g., PRECIP, TEMP_MIN. etc.). N is the total number of data points provided, evenly spaced
at the specified time interval. Note that this is the default format for most of the regularly spaced time
series commands in Raven.

It is assumed that the array of values specified are time-averaged values over the specified time interval.
All forcings are in period-starting format, so that if the start date is 2002-10-01 00:00:00 with a time in-
terval of 1.0 days, then the first data item represents the average forcing value on October 1st. Note that
the terms may be space-, comma-, or tab-delimited and would typically be entered as a single column.
Multiple data points may be included on a single line, though the single-column format makes this easier
to use in other program utilities. Also note that the time interval must be specified as a double, and cannot
be specified using a format of 00:00:00.

IMPORTANT: The default units of the forcing functions (as tabulated in C.2) must be respected.
Though non-intuitive to many hydrologists, precipitation intensity (in mm/d) must be specified
even for hourly data intervals, e.g., 1 cm of rain in an hour would be specified as a rainfall rate of
240 mm/d.

:MultiData
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
:Parameters PARAMETER_1 PARAMETER_2 ... PARAMETER_J
:Units units_tag_1 units_tag_2 ... units_tag_J
v_11, v_12, v_13
v_21, v_22, v_23
...
v_N1, v_N2, v_N3

:EndMultiData

This command is an alternate to the :Data approach, allowing multiple data to be included as a single
data table using the :MultiData command, with columns corresponding to individual data types. Here,
PARAMETER_i corresponds to the name of the input parameter (one of the forcing values in table C.2),
and the units tags should be consistent with the actual desired units in table C.2.

165

Again, note that the time interval must be specified as a double, and cannot be specified using a format of
00:00:00. Raven will not perform units conversions for you if alternate units are specified in the :Units
header.

Other additional terms may be associated with each gauge, contained between the :Gauge-:EndGauge
brackets:

:Elevation [elevation]

The elevation of the gauge, typically in meters above mean sea level. This is used both in interpolation and
in orographic correction of gauge data when mapped to HRUs at di�erent elevations. Must be between
the :Gauge-:EndGauge brackets

:Latitude [latitude]

The latitude of the gauge, in degrees. This is used in interpolation of gauged forcings.

:Longitude [longitude]

The longitude of the gauge, in degrees. This is used in interpolation of gauged forcings.

:MeasurementHeight [height]

The height of the gauge relative to the ground surface, in meters. This is particularly important for wind
velocity measurements to calculate (e.g.) atmospheric conductance and other parameters dependent upon
vertical wind speed distribution, but may typically be ignored in temperature-only gauges.

:RedirectToFile [filename]

This treats the contents of file “filename” as if they were simply inserted into the .rvt file at the location of
the :RedirectToFile command. This is useful for storing individual time series at a gauge in separate
files. If no path is specified, the filename must be reported relative to the working directory. Note that
this command can work within a :Gauge-:EndGauge structure, but not within other structures (e.g., a
:Multidata entry cannot be split into multiple files in this manner).

:RainCorrection [value]

A multiplier (hopefully near 1.0) applied to all reported rainfall rates at this gauge; o�en used as a correc-
tion factor for estimating proper rainfall volumes at gauges prone to undercatch or otherwise not expected
to be representative of local conditions. Must be between the :Gauge-:EndGauge brackets.

:SnowCorrection [value]

A multiplier (hopefully near 1.0) applied to all reported snowfall rates at this gauge; o�en used as a
correction factor for estimating proper snow volumes at gauges prone to undercatch or otherwise not
expected to be representative of local conditions. Must be between the :Gauge-:EndGauge brackets.

:MonthlyAveTemperature [J F M A M J J A S O N D]

A list of 12 representative monthly average temperatures at the gauge, from Jan to Dec, in ◦C. Must
be between the :Gauge-:EndGauge brackets. Predominantly used for the PET_FROMMONTHLY PET

166

estimation method, not otherwise needed.

:MonthlyMinTemperature [J F M A M J J A S O N D]
:MonthlyMaxTemperature [J F M A M J J A S O N D]

A list of 12 representative monthly minimum and maximum temperatures at the gauge, from Jan to Dec, in
◦C. Must be between the:Gauge-:EndGauge brackets. Predominantly used for thePET_HARGREAVES
PET estimation method, not otherwise needed.

:MonthlyAveEvaporation [J F M A M J J A S O N D]

A list of 12 representative monthly average potential evapotranspiration rates at the gauge, from Jan
to Dec, in mm/d. Must be between the :Gauge-:EndGauge brackets. Predominantly used for the
PET_FROMMONTHLY PET estimation method, not otherwise needed.

:MonthlyEvapFactor [J F M A M J J A S O N D]

A list of 12 monthly evaporation factors [mm/d/K]. This is used in the PET_MONTHLY_FACTOR estima-
tion routine, not otherwise needed. Must be between the :Gauge-:EndGauge brackets.

:CloudTempRanges [cloud_temp_min] [cloud_temp_max]

Temperature ranges (in ◦C) used for estimation of cloud cover using the UBCWM model approach (CLOUDCOV_UBCWM),
not otherwise needed. Must be between the :Gauge-:EndGauge brackets.

:EnsimTimeSeries [filename]

A table of time series (similar to the :MultiData command) may be specified using the Ensim .tb0
format. The input parameter names are the same which are provided in table C.2. This must be between
the :Gauge-:EndGauge brackets when providing gauge meteorological data. An example is provided
below:

###
:FileType tb0 ASCII EnSim 1.0
#--
:ColumnMetaData

:ColumnName TEMP_MAX TEMP_MIN PRECIP
:ColumnUnits DegC DegC mm/d
:ColumnType float float float

:EndColumnMetaData
#
:StartTime 1983/02/01 00:00:00.000
:DeltaT 24:00:00.000
#
:EndHeader
4.4 -0.6 0
5.0 -2.5 0.6
...
5.6 -3.0 0.3
4.4 -4.6 0.0
1.1 -4.4 0.0

167

Any individual time series can also be read from NetCDF files using a:ReadFromNetCDF-:EndReadFromNetCDF
block. This command works with ALL of the time series in format similar to the:Data-:EndData block,
and replaces the date/time/interval/data vector contents,e.g.,

:Data [forcing type] [unit]
:ReadFromNetCDF

:FileNameNC [path/filename of .nc file]
:VarNameNC [name of variable in .nc file]
:DimNamesNC [stations_name] [time_name] # (2-D) or
:DimNamesNC [time_name] (1-D)
:StationIdx [ID of station of interest (starts with 1)]
:TimeShift [time stamp shift in days] #optional
:LinearTransform [slope] [intercept] #optional

:EndReadFromNetCDF
:EndData

This optional internal contents of the :Data-:EndData block can be used to generate forcing time
series from NetCDF data. As indicated in documentation of the :Data command, the forcing_type
is chosen from the options in table C.2. The NetCDF variables need to be either one-dimensional (time)
or two-dimensional (time x stations or stations x time). If the data are two-dimensional, the user needs
to specify which station should be read in using :StationIdx.

The:ReadFromNetCDF block also allows for the specification of a time shi�:TimeShift in fractional
days. For example, a time shi�

:TimeShift -0.25

will shi� all data earlier by 6 hours. Hence, a data point that was read for 8:00 am will be handled as 2:00
am in the model. The time shi� only applies when the input data are sub-daily. Otherwise data can only
be shi�ed by whole days.

The data read can also be linearly transformed using :LinearTransform. The slope and intercept
specified will be applied to the data right a�er reading. The :LinearTransform can be used to apply
unit conversions of the data. For example, the linear transformation

:LinearTransform 1.0 -273.15

would convert temperature data that were read in Kelvin into Celsius.

Advice

The :LinearTransform command is very useful for converting precipitation data that is na-
tively in units of mm/data interval rather than mm/d, as Raven requires. If the NetCDF precipi-
tation data is accumulated data, the :Deaccumulate command may be added to the :Read-
FromNetCDF block, which will deaccumulate the data.

168

A.4.2 Observation Time Series

Time series of known flows and model parameters may also need to be specified to support the model.
These are not linked to a specific Gauge, and would therefore not be included in an:Gauge...:EndGauge
bracket. Most of these time series would be stored in a separate .rvt file and referred to in the main
.rvt file using the :RedirectToFile command. Note that all of the below time series may be read
from NetCDF by using the :ReadFromNetCDF-:EndReadFromNetCDF command from the previous
section.

:ObservationData [data_type] [basin_ID or HRU_ID] {units}
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
v_1
v_2
v_3
...
v_N

:EndObservationData

Similar to the :Data command above. This specifies a continuous time series of observations of type
data_type with units units located either at the outlet of the basin specified with basin_ID or
the HRU specified with HRU_ID. The data types correspond to state variables in the model, and the
data_type therefore must be taken from table C.1, unless the data is (1) a hydrograph, in which
case the HYDROGRAPH tag is used, (2) a reservoir stage, in which case the RESERVOIR_STAGE tag
is used, (3) a reservoir inflow (the RESERVOIR_INFLOW tag) or (4) a reservoir net inflow (runo�+P-E,
the RESERVOIR_NETINFLOW tag). For hydrographs, reservoir stage, and reservoir inflows, the basin
ID is specified. For all other variables, the HRU ID is specified. With the exception of the hydrograph
and inflow hydrographs, it is assumed that the observations correspond to instantaneous observations
in time rather than time-averaged quantities. This command defines a time series of regularly spaced
consecutive values. If the time series time interval doesn’t match the model time step then the time series
is re-sampled to match the model. For irregularly spaced observations, use the :IrregularObserva-
tions command.

Missing or unknown observations should be specified using the flag -1.2345. Note that the observation
time series does not have to overlap the model simulation duration. All data outside the supplied time
interval is treated as blank.

If an observed hydrograph is supplied, it will be output to the Hydrographs.csv file. Hydrographs
should be specified in period-starting format, i.e., for a time series of daily discharges starting on October
1, 2006, the start time would be 2006-10-01 00:00:00, at the start of the first data period provided.

:ObservationWeights [data type] [ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
wt_1
wt_2
wt_3
...
wt_N

:EndObservationWeights

This command is used apply weights to observation data for the calculation of diagnostics. The data
type, ID, and number of entries all need to match an existing :ObservationData time series. Not all

169

evaluation metrics can be weighted, in which case all weights are ignored except weights of zero.

:IrregularObservations [data type] [ID] [N] {(optional) units}
[date yyyy-mm-dd] [time hh:mm:ss.0] v_1
[date yyyy-mm-dd] [time hh:mm:ss.0] v_2
...
[date yyyy-mm-dd] [time hh:mm:ss.0] v_N

:EndIrregularObservations

This command is used for time series where observations are discontinuous or irregularly spaced. Values
in these time series are assumed to be instantaneous and modelled values are linearly interpolated to
match the observation times for comparison.

Missing or unknown observations should be specified using the flag -1.2345. Note that the observation
time series does not have to overlap the model simulation duration. All data outside the supplied time
interval is treated as blank.

:IrregularWeights [data type] [ID] [N]
[date yyyy-mm-dd] [time hh:mm:ss.0] wt_1
[date yyyy-mm-dd] [time hh:mm:ss.0] wt_2
...
[date yyyy-mm-dd] [time hh:mm:ss.0] wt_N

:EndIrregularWeights

This command is used apply weights to irregular observations, where wt_i is the weight for the ith irreg-
ular data point in a corresponding :IrregularObservations time series. Weights must be between
zero and one. If values in the time series are null or blank, the weights are automatically treated as zero.
The data type, ID, and number of entries all need to match an existing :IrregularObservations
time series.

A.4.3 Reservoir Control Time Series

The following time series commands deal with reservoir operational constraints.

:ReservoirExtraction [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
Q_1
Q_2
...
Q_N

:EndReservoirExtraction

where Q_i is the ith inflow in m3d−1. Discharges are positive for reservoir extraction and negative for
injection of water into the reservoir located at the outlet of the subbasin indicated by the basin ID. This
command is usually used to represent diversion flow for irrigation or similar.

:VariableWeirHeight [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
h_1
h_2
...

170

h_N
:EndVariableWeirHeight

where h_i is the ith height of the reservoir outflow weir in m. All weir heights should be positive and are
relative to the minimum crest height of the stage-discharge curve (i.e., weir heights are not with reference
to mean sea level). This minimum crest height is zero by default for a ’lake-like’ reservoir (those specified
using :WeirCoefficient and :CrestWidth parameters) and equivalent to the highest stage with
zero discharge in reservoirs defined using the :StageRelations command. This time series of weir
heights is only applied to the reservoir located at the outlet of the subbasin indicated by the basin ID.

:ReservoirMaxStage [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
h_1
h_2
...
h_N

:EndReservoirMaxStage

where h_i is the ith maximum stage of the reservoir in m (usually with sea level as the datum), and
Basin ID corresponds to the subbasin with the corresponding reservoir at its outlet. If the computed stage
exceeds this stage during operation, the outflow from the reservoir will be adjusted so as to keep the stage
at the specified maximum. This time series is o�en a constant value corresponding to the maximum flood
pool level of a reservoir.

:ReservoirMinStage [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
h_1
h_2
...
h_N

:EndReservoirMinStage

where h_i is the ith minimum stage of the reservoir in m (usually with sea level as the datum), and Basin
ID corresponds to the subbasin with the corresponding reservoir at its outlet. If the simulated stage is
below this stage during model operation, the outflow from the reservoir will be set to the minimum reser-
voir flow (as specified using the :ReservoirMinStageFlow command. This time series is typically
used to represent reservoir rule curves.

:ReservoirMinStageFlow [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
Q_1
Q_2
...
Q_N

:EndReservoirMinStageFlow

where Q_i is the ith specified minimum stage discharge from the reservoir in m3/s, and Basin ID corre-
sponds to the subbasin with the corresponding reservoir at its outlet. If the simulated stage is below the
stage specified by the :ReservoirMinStage command during model operation, the outflow from the
reservoir will be set to this flow, overriding the flow determined through stage-discharge relations. This

171

time series is typically used to represent reservoir rule curves.

:OverrideReservoirFlow [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
Q_1
Q_2
...
Q_N

:EndOverrideReservoirFlow

where Q_i is the ith overridden outflow rate from the reservoir in m3/s, separated by the given time
interval, and Basin ID corresponds to the subbasin with the corresponding reservoir at its outlet. Regard-
less of the stage-discharge relation for the reservoir, the flow will be overridden with this specified flow
time series unless the value for Q_i is Raven’s blank value of -1.2345, in which case the discharge will
be calculated as normally done using the stage-discharge curve. This command is useful for replacing
the calculated flow from a reservoir with observed flow during model calibration. It can also be used in
short-term reservoir operations for evaluating discharge scenarios. The only time during which this spec-
ified flow is disregarded is if the maximum stage constraint for the reservoir (e.g., as specified using the
:ReservoirMaxStage command) is exceeded.

:ReservoirTargetStage [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
h_1
h_2
...
h_N

:EndReservoirTargetStage

where h_i is the ith target stage of the reservoir in m (usually with sea level as the datum), and Basin
ID corresponds to the subbasin with the corresponding reservoir at its outlet. If the simulated stage is
above or below this stage during model operation, the outflow from the reservoir will be adjusted to
move towards this target stage subject to the constraint that the maximum increase rate of the discharge
(specified using the :ReservoirMaxQDelta command) is respected. This time series is typically used
to represent reservoir rule curves. This target stage must be between the minimum and maximum stages
specified using the :ReservoirMaxStage and :ReservoirMinStage commands. If the target
stage is given a blank value (-1.2345) for any time increment, the model will use the discharge as calculated
from the stage-discharge relation.

:ReservoirMinFlow [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
Q_1
Q_2
...
Q_N

:EndReservoirMinFlow

where Q_i is the ith minimum flow of the reservoir in m3/s, and Basin ID corresponds to the subbasin
with the corresponding reservoir at its outlet. If the simulated/calculated desired flow from the reservoir
is below this flow rate, the flow rate is corrected to this minimum flow value. If downstream reservoir
demands are included, they will increase the specified value of this minimum flow rate to also meet

172

downstream demand.

:ReservoirMaxFlow [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
Q_1
Q_2
...
Q_N

:EndReservoirMaxFlow

where Q_i is the ith maximum flow of the reservoir in m3/s, and Basin ID corresponds to the subbasin
with the corresponding reservoir at its outlet. If the simulated/calculated desired flow from the reservoir
is above this flow rate, the flow rate is corrected to this maximum flow value. Only the maximum stage
constraint associated with the :MaxReservoirStage command will override this maximum flow con-
straint (i.e., the outflow from the reservoir can exceed this max flow if the reservoir is full).

:ReservoirMaxQDelta [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
QD_1
QD_2
...
QD_N

:EndReservoirMaxQDelta

where QD_i is the ith maximum flow rate increase in m3/s/d, and Basin ID corresponds to the subbasin
with the corresponding reservoir at its outlet. If the simulated stage is above the target stage indicated by
the :ReservoirTargetStage command during model operation, the outflow from the reservoir will
be adjusted to move towards this target stage subject to the constraint that the maximum increase rate of
the discharge (specified using this command) is respected. This time series is typically used to represent
reservoir rule curves.

:ReservoirMaxQDecrease [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
QD_1
QD_2
...
QD_N

:EndReservoirMaxQDelta

where QD_i is the ith maximum flow rate decrease rate in m3/s/d, and Basin ID corresponds to the
subbasin with the corresponding reservoir at its outlet. If the simulated stage is above the target stage
indicated by the :ReservoirTargetStage command during model operation, the outflow from the
reservoir will be adjusted to move towards this target stage subject to the constraint that the maximum
decrease rate of the discharge (specified using this command) is respected. This time series is typically
used to represent reservoir rule curves.

173

A.4.4 Irrigation, demand, and diversions

:BasinInflowHydrograph [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
Q_1
Q_2
...
Q_N

:EndBasinInflowHydrograph

where Q_i is the ith inflow in m3/s. This command is typically used to (1) specify inflows coming from
an unmodeled portion of the domain; (2) override modeled inflow to a stream reach with observed in-
flows from a stream gauge, as might be done during calibration; or (3) add additional inflows to a stream
reach from human activities, e.g., a wastewater treatment plant inflow. The discharge is introduced at
the upstream end of a basin reach, therefore this should typically not be used in headwater basins (see
:BasinInflowHydrograph2.

:BasinInflowHydrograph2 [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
Q_1
Q_2
...
Q_N

:EndBasinInflowHydrograph2

where Q_i is the ith inflow in m3/s. This command is typically used to add (or subtract, if negative)
inflows to or outflows from a stream reach from human activities, e.g., a wastewater treatment plant
inflow or irrigation demand. The di�erence between this and :BasinInflowHydrograph is that it
extracts/injects water from the downstream end of the basin stream reach rather than the upstream end.
It may therefore be used in headwater basins.

:IrrigationDemand [SBID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
Qirr_1
Qirr_2
...
Qirr_N

:EndIrrigationDemand

This time series indicates the time history of irrigation demand, in m3/s, from a subbasin, drawn from
the outlet of the subbasin (downstream of the reservoir, if one is present). If there is su�icient water
available (i.e., enough to satisfy positive flow and/or the environmental minimum flow), the water will be
removed. This approach is preferred over using negative flows in a :BasinInflowHydrograph time
series, which will not respect these constraints.

:ReservoirDownstreamDemand [down_ID] [res_ID] [percent_met] {j1} {j2}

This command modifies the minimum outflow from a reservoir or set of reservoirs upstream of a sub-
basin with irrigation demand (supplied using the :IrrigationDemand time series command) in order
to satisfy some percentage of this downstream irrigation demand. Here, down_ID is the subbasin index

174

referring to a subbasin with an irrigation demand time series, the res_ID is the upstream subbasin in-
dex of a reservoir which releases su�icient water to satisfy this demand (i.e., it’s minimum flow rate is
modified to satisfy demand), and percent_met is the total percentage of the irrigation demand met
by this reservoir, from 0 to 1, with 1 indicating 100% of demand is met by the specified reservoir. If the
res_ID is _AUTO and percent_met is _AUTO, the method indicated by the :ReservoirDeman-
dAllocation command in the .rvi file will be used to identify all of the upstream reservoirs and split
the demand between them according to contributing area, maximum capacity, or other metrics. Note that
the percent met will be globally corrected by the global parameter RESERVOIR_DEMAND_MULT, so if
percent met=0.5 and RESERVOIR_DEMAND_MULT is 1.2, then 60% of the downstream demand will be
satisfied by the specified reservoir.

Optional terms j1 and j2 are the start and end Julian dates on which this constraint will be applied. Both
terms are integers ranging from 1 (Jan 1) to 365 (Dec 31 in a non-leap year). The date range is inclusive, i.e.,
using the range 233-235 would enable this demand constraint from August 21st to August 23rd inclusively
in a non-leap year or August 20th to August 22nd in a leap year.

:FlowDiversion [fromSBID] [toSBID] [pct] [Qmin] {start_day} {end_day}

:FlowDiversionLookupTable [fromSBID] [toSBID] {start_day} {end_day}
nPoints
{Qsource_i Qdivert_i} x nPoints

:EndFlowDiversionLookupTable

These commands provide rules for flow diversions to move water from the outlet of one subbasin to the
inlet of another subbasin. The amount of diversion can either be in the form of a percentage of source
water discharge (the :FlowDiversion command) or using a lookup table (the :FlowDiversion-
RatingCurve command. In both cases, the fromSBID and toSBID are the source and target subbasin
IDs; if the toSBID is -1, then the water is diverted outside of the model. The optional start_day and
end_day command elements are the Julian start date of diversion and Julian end date of diversion; if
these are omi�ed, it is assumed the diversion is year-round. In the case of the :FlowDiversion com-
mand, the diverted flow is a percentage of the discharge from the source subbasin at the start of each time
step which is diverted, where pct is the decimal percentage (0..1) of flow in exceedance of the minimum
flow Qmin (in m3/s) which is diverted, i.e.,

Qdivert = α ·max((Qsource −Qmin), 0)

In the case of the:FlowDiversionLookupTable command, the diverted flow is linearly interpolated
from a lookup table specified by nPoints pairs of flows, where Qsource is the source basin discharge
(in m3/s) at the start of the time step and Qdivert is the corresponding diversion flow (in m3/s). The
Qsource flows must be in ascending order where the first point is always a flow of zero. No negative
diversions are allowed, and the diversion flow should always be less than the source flow (hopefully for
obvious reasons!).

:EnvironmentalMinFlow [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
Q_1
Q_2
...
Q_N

:EndEnvironmentalMinFlow

175

where Q_i is the ith minimum flow constraint in m3s−1. This command is used in conjunction with
the :IrrigationDemand time series at the same basin, and constrains the irrigation-based extraction
such that the minimum flow is always respected. Note that modelled stream discharge can be less than
this environmental minimum flow, but that irrigation cannot extract water such that this constraint is
violated.

:UnusableFlowPercentage [Basin ID] [value]

This command is used to constrain the water available for irrigation demand, and would be used in con-
junction with the:IrrigationDemand time series at the same basin (and perhaps also an:EnvironmentalMinFlow
constraint). The value of this percentage (expressed as a fraction from 0.0 to 1.0) indicates the percentage
of flow above the environmental minimum flow which is available for irrigation. For instance, if the dis-
charge in a subbasin was 7 m3/s and the environmental minimum flow was 3m3/s and the unusable flow
percentage was 0.3 =30%, the maximum amount of water that could be used to satisfy irrigation demand
would be (1 − 0.3) · (7 − 3) =2.8 m3/s. Most commonly, this would be used when there are regulatory
constraints regarding allowable fractions of streamflow that may be used to satisfy water demand. The
unusable flow percentage for all subbasins is zero by default, i.e., irrigation can draw down flows to the
environmental minimum (or zero discharge, if the environmental minimum is not specified).

A.4.5 Special Commands

:AnnualCycle [J F M A M J J A S O N D]
for instance:
:ReservoirTargetStage [Basin ID]
:AnnualCycle 379 379 379 379 379 382 383 382 380 380 379 379

:EndReservoirTargetStage

This command may be used internal to any of the time series commands in this section (or any continuous
single-data time series with a similar format), by replacing the date/time/interval/N and data vector con-
tents between the :Data and :EndData (e.g.,) commands with the single :AnnualCycle command.
The monthly values here will be interpolated using the method specified in the :MonthlyInterpo-
lationMethod (section A.1.2) and used to populate a continuous cyclic time series.

:OverrideStreamflow [Basin ID]

This command overrides the discharge at the outlet of the basin defined with this ID. For this to work, there
must be a corresponding observation HYDROGRAPH data set provided using the :ObservationData
command, and there cannot be blank values in the data record during the course of the simulation. This
command is o�en used to replace modelled inflows with observed inflows during model calibration.

176

A.4.6 NetCDF Gridded Input Data

Raven supports gridded forcing inputs exclusively in NetCDF format (*.nc files). In case of gridded inputs,
the user needs to define some information about the variables and structure of the gridded NetCDF input
file; in addition, the mapping of grid cells to HRUs needs to be specified through a weighting table.

Example File: modelname.rvt

--
Example Raven Gridded Input file
--
:GriddedForcing PRECIPITATION

:ForcingType PRECIP
:FileNameNC gridded_precip.nc
:VarNameNC pre
:DimNamesNC lon lat ntime # must be in the order of (x,y,t)
:GridWeights

:NumberHRUs 3
:NumberGridCells 24
HRU GridCell Weight

1 15 0.4
1 16 0.6
2 14 1.0
3 14 0.2
3 15 0.3
3 13 0.5

:EndGridWeights
:EndGriddedForcing
#
:RedirectToFile UpstreamInflow.rvt
:RedirectToFile LandCoverChange.rvt
:RedirectToFile ObservedHydrograph.rvt

The forcing inputs like precipitation and temperature are traditionally given as time series per gauging
station (see appendix A.4.1). This becomes inconvenient if you have inputs available for multiple gauging
stations or you even have the forcings available on a grid covering your whole modeling domain. Hence,
Raven supports gridded input in NetCDF format. Instead of specifying a time series per gauge or grid cell
in the .rvt file, one can specify a single input grid inside a:GriddedForcing-:EndGriddedForcing
command structure:

:GriddedForcing [forcing name]
:ForcingType [type]
:FileNameNC [path/filename of .nc file]
:VarNameNC [name of variable in .nc file]
:DimNamesNC [long_name] [lat_name] [time_name]
:TimeShift [time stamp shift in days] #optional
:LinearTransform [slope] [intercept] #optional
:Deaccumulate #optional
:GridWeights

:NumberHRUs [total number of HRUs]

177

:NumberGridCells [total number of grid cells]
[HRU ID] [Cell ID] [weight]
...

:EndGridWeights
:EndGriddedForcing

One has to specify the type of the forcing input in the :ForcingType command, e.g. PRECIP or
TEMP_AVE (see Table C.2 for complete list). The name of the file containing the data has to be given
:FileNameNC. The file can contain more data than only this specific forcing; only the data of the speci-
fied variable:VarNameNCwill be read and used by Raven. Since the order of the dimensions in a NetCDF
file is not unique, one has to specify the dimension names starting with the x-dimension (usually longi-
tudes), y-dimension (usually latitudes) and at last the name of the time dimension. One can also specify
a time shi� :TimeShift to shi� the data. For example, when data given in UTC need to be shi�ed to
local time; positive time shi�s make the time stamp later, negative make it earlier. A linear transformation
can further be applied to the data. For example, when data are given in Kelvin but need to be provided
in Celsius for Raven. For instance, the following shi� could be used to convert Farenheit temperature
gridded data to Celsius for Raven:

:LinearTransform 0.555555 -17.77777

which is equivalent to TC = (TF − 32)/1.8. Note that the output is the desired raven units and the input
to the linear transform is in the NetCDF units. The :Deaccumulate command, if included will take
cumulative precipitation values stored in the NetCDF file (such as are output by some weather models)
and convert these to precipitation rates, in mm/d.

To obtain the information about variable name :VarNameNC and dimension names :DimNamesNC, one
can use the command line tool ncdump available with the NetCDF library. Running the command

> ncdump -h gridded_precip.nc

will display the header information of the NetCDF file gridded_precip.nc and provide all the nec-
essary information. The last required information is the :GridWeights block specifying how much
each grid cell is contributing to each HRUs. Only non-zero weights have to be given; missing pairs are
automatically assumed to be zero. The HRU ID has to correspond to the numbering in the :HRUs block
of the .rvh file. The numbering of the grid cells is linewise starting with zero in the upper le� corner of
the grid, i.e., the grid ID is CELLID = irow ∗ Ncol + icol, where irow and icol are the row and column
indices of the grid cell, and Ncol is the number of grid columns. The weights per HRU ID have to sum up
to 1.0 otherwise Raven raises an error message. The list of grid weights will get very long with large grids
and multiple HRUs. In such a case, the :GridWeights block would typically be stored in a separate
file then and the :RedirectFile functionality be used instead.

For NetCDF inputs that are not linked to a 2D grid, but rather store a vector of time series (e.g., from
meteorological stations), the following alternate to :GriddedForcing is available:

:StationForcing [forcing name]
:ForcingType [type]
:FileNameNC [path/filename of .nc file]
:VarNameNC [name of variable in .nc file]
:DimNamesNC [station_name] [time_name]
:TimeShift [time stamp shift in days] #optional
:LinearTransform [slope] [intercept] #optional

178

:Deaccumulate #optional
:GridWeights

:NumberHRUs [total number of HRUs]
:NumberStations [total number of stations]

[HRU ID] [station ID] [weight]
...

:EndGridWeights
:EndGriddedForcing

This di�ers only in the number of items in the:DimNamesNC command and the use of the:NumberStations
command in the grid weights portion; the remaining components of the command are identical to that
of :GriddedForcings, as defined above.

179

A.5 Initial Conditions Input file (.rvc)

The initial conditions input file is used to store the initial conditions for the model. By default, the initial
conditions for all model state variables is zero, and there are no required commands in this file (it could
even be completely empty).

Example File: modelname.rvc

--
Raven Initial Conditions Input file
--
:HRUStateVariableTable

:Attributes, SOIL[0], SNOW,
:Units , mm, mm,

1, 145, 33,
2, 150, 13,

...
:EndHRUStateVariableTable
:UniformInitialConditions SOIL[3] 300

:BasinInitialConditions
:Attributes, Q
:Units , m3/s

1 , 3.6
:EndBasinInitialConditions

A.5.1 Optional Commands

:HRUStateVariableTable
:Attributes, {SV_TAG_1, SV_TAG_2,...,SV_TAG_NSV}
:Units , {units_1, units_2,...,units_NSV}
{HRUID, SV_value_1,SV_value_2,...,SV_value_NSV} x nHRUs

:EndHRUStateVariableTable

Provides initial conditions for state variables in each HRU within the model. Here, NSV is the number of
state variables for which initial conditions are provided, and nHRUs is the number of HRUs in the model.
SV_TAG refers to the state variable tag, with the complete list of state variable tags in table C.1. Note that
initial conditions have to be provided for all HRUs in the model and initial conditions have to be entered
in the same order as in the :HRUs command in the .rvh file.

:BasinInitialConditions
:Attributes, Q
:Units , m3/s

{SBID, FLOWRATE} x nSubBasins
:EndBasinInitialConditions

A list of initial outflow rates from the subbasins, indexed by subbasin ID as specified within the :Sub-
Basins command of the .rvh file.

180

:UniformInitialConditions [SV_TAG] [value]

Applies a uniform initial condition (value) to the state variable corresponding to SV_TAG, with the com-
plete list of state variable tags in table C.1. If called a�er :HRUStateVariableTable, it will overwrite
the initial conditions previously specified.

:BasinStateVariables
:BasinIndex SBID, name

:ChannelStorage [val]
:RivuletStorage [val]
:Qout [nsegs] [aQout x nsegs] [aQoutLast]
:Qlat [nQlatHist] [aQlatHist x nQlatHist] [QlatLast]
:Qin [nQinHist] [aQinHist x nQinHist]
{reservoir variables}

:BasinIndex SBID, name
...

:EndBasinStateVariables

This command is usually generated only as part of the Raven solution file and would not typically be mod-
ified by the user. It fully describes the flow variables linked to the subbasin. Here, :ChannelStorage
[m3] is the volume of water in the channel, :RivuletStorage [m3] is the volume of water waiting
in catchment storage, Qout [m3/s] the array of outflows at each reach segment, Qlat [m3/s] is an ar-
ray storing the time history of outflows to the channel, Qin [m3/s] is the time history of inflows to the
uppermost segment of the reach.

:InitialReservoirStage [SBID] [stage]

Specifies initial reservoir stage for the reservoir located in the subbasin indicated by subbasin ID SBID,
in meters. Either initial stage or flow should be specified: if both are provided, only the last in the file is
used.

:TimeStamp [YYYY-mm-dd] [00:00:00.0]

Specifies time stamp linked to the initial conditions file. This is generated automatically by Raven when
it produces a snapshot of the state variables, such as when it generates the solution.rvc output file. The
time stamp should be consistent with the start time of the model.

181

A.6 Live file (.rvl)

The live file is intended for direct synchronous coupling of Raven with another model or so�ware tool
which would require regular information exchange with Raven during operation. Examples of such tools
include reservoir optimization tools, so�ware which represents dynamic land use or forestry practices,
hydraulic models, or glacier mass balance models. Typically used in conjunction with the :CallEx-
ternalScript command, the live file (*.rvl) is read if the :ReadLiveFile command is included in
the .rvi file. By default this file will be read every time step and enables external codes to dynamically
modify Raven state variables, simulated flows, parameters, and landscape classification.

An example .rvl file is shown below.

:LandUseChange 2402 URBAN
:LandUseChange 2417 URBAN
:LandUseChange 2483 URBAN

This file would change the land use of HRUs 2402, 2417, and 2483 from their previous land use to URBAN.
The URBAN land use parameters will now be used to represent the hydrologic response of these HRUs.

A.6.1 Commands

:VegetationChange [HRU_ID] [new vegetation class name]

Converts HRU indicated by HRU_ID from its previous vegetation class to the one specified. Useful for
representing agricultural management.

:LandUseChange [HRU_ID] [new land use class name]

Converts HRU indicated by HRU_ID from its previous land use class to the one specified.

:GroupLandUseChange [HRU_Group_Name] [new land use class name]

Converts all HRUs in the HRU group HRU_Group_Name from its previous land use class to the one
specified.

:SetStreamflow [SBID] [Q]

Changes the outflow from subbasin with subbasin index SBID to the discharge Q in m3/s.

:SetReservoirStage [SBID] [stage]

Changes the stage in the reservoir within subbasin SBID to the stage indicated (in m).

182

Appendix B

Output Files

B.1 Standard Output Files

By default, output files are in comma-delimited format, and can be readily opened up in Excel or R for
post-processing, visualization, and analysis. Available output files include:

• WatershedStorage.csv (created by default)
A comma-delimited file describing the total storage of water (in mm) in all water storage com-
partments for each time step of the simulation. Mass balance errors, cumulative input (precipita-
tion), and output (channel losses) are also included. Note that the precipitation rates in this file
are period-ending, i.e., this is the precipitation rate for the time step preceding the time stamp; all
water storage variables represent instantaneous reports of the storage at the time stamp indicate.
Created by default.

• Hydrographs.csv (created by default)
A comma-delimited file containing the outflow hydrographs (in m3/s) for all subbasins specified as
’gauged’ in the .rvh file. If the :SnapshotHydrograph command is used, this reports instan-
taneous flows at the end of each time step (plus the initial conditions at the start of the first time
step). Without, this reports period-ending time-averaged flows for the preceding time step, as is
consistent with most measured stream gauge data (again, the initial flow conditions at the start of
the first time step are included). If observed hydrographs are specified, they will be output adjacent
to the corresponding modelled hydrograph. Created by default.

• RavenErrors.txt (always created)
A text file outlining model input errors, warnings, and advisories for the user.

• ForcingFunctions.csv (optional)
A comma-delimited file containing the time series of all watershed-averaged system forcing func-
tions (e.g., rainfall, radiation, PET, etc.). The output is all period-ending, i.e., the values reported
correspond to the time-averaged forcings for the time step before the indicated time stamp. Cre-
ated if :WriteForcingFunctions command included in .rvi file.

• WatershedMassEnergyBalance.csv (optional)
A comma-delimited file describing the total cumulative fluxes of energy and water (in MJ/m2 or mm)
from all energy storage compartments for each time step of the simulation. Created if :WriteMass-
BalanceFile command included in .rvi file.

• Parameters.csv (optional)

183

A comma-delimited file containing the values for all static specified and auto-generated parame-
ters for all soil, vegetation, land use, and terrain classes. Created if :WriteParametersFile
command included in .rvi file.

• ReservoirStages.csv (optional)
A comma-delimited file reporting the instantaneous stage of all modeled reservoirs where the cor-
responding subbasin is specified as ’gauged’ in the .rvh file. Created automatically if reservoirs are
present in the model.

• Demands.csv (optional)
A comma-delimited file containing the time series of irrigation demand, environmental minimum
flow, actual flow, and unmet demand for all subbasins =specified as ’gauged’ in the .rvh file. The
output is all instantaneous, i.e., the reported values refer to snapshots in time. Created if :Writ-
eDemandFile command is included in .rvi file.

• {constituent}concentrations.csv (optional)
A comma-delimited file reporting the instantaneous watershed-averaged concentration of the trans-
port constituent in all water storage units. Created automatically if transport is included in the
model.

• {constituent}pollutograph.csv (optional)
A comma-delimited file reporting the instantaneous concentration of water flowing out from all
gauged subbasins. Created automatically if transport is included in the model.

• Diagnostics.csv (optional)
A comma-delimited file reporting the quality of fit between model and supplied observations. Cre-
ated if observations are present and the :EvaluationMetrics command is used.

If the :RunName parameter is specified in the .rvi file, this run name is pre-appended to the above file-
names.

B.2 Custom Outputs

A variety of custom outputs of any state variable or mass flux in the model may be generated using the
:CustomOutput command. See section A.1.5 for details. Note that for CONTINUOUS time aggregation,
these custom outputs report instantaneous fluxes/states, and the forcing function rates (e.g., rainfall)
will be period-ending, i.e., the average precipitation rate for the time step preceding the time stamp is
reported. If the aggregation is MONTHLY, YEARLY, or WYEARLY, the variables reported are calculated
over the entire corresponding period.

B.3 NetCDF Output Format

The .nc output hydrographs, reservoir stages, forcing functions, and custom output files are generated if
the :WriteNetcdfFormat command is used. Currently these are the only NetCDF-format outputs
available; other outputs will still be generated in .csv format.

The NetCDF files wri�en are compatiable with NetCDF version 4.0. The contain an unlimited dimension
for time. Depending upon the output file, other dimensions may include the number of sub-basins with
simulated outflow nbasin_sim or the number of basins with observed outflows nbasin_obs. All
floating-point variables are wri�en in double precision. Multiple a�ributes are available for each output
variable, such as units, long_name, _FillValue, and/or missing_value.

184

The header of an example Hydrographs.nc containing the results of a simulation with 2 sub-basins
and streamflow observations for one sub-basin starting at Oct 1st, 1991 looks like:

netcdf Hydrographs {
dimensions:

time = UNLIMITED ;
nbasin_sim = 2 ;
nbasin_obs = 1 ;

variables:
double time(time) ;

time:units = "days since 1991-10-01 00:00:00" ;
time:calendar = "gregorian" ;

double precip(time) ;
precip:units = "mm d**-1" ;
precip:long_name = "Precipitation" ;
precip:_FillValue = -9999. ;
precip:missing_value = -9999. ;

string basin_name_sim(nbasin_sim) ;
basin_name_sim:long_name = "ID of sub-basins with simulated outflows" ;

double q_sim(time, nbasin_sim) ;
q_sim:long_name = "Simulated outflows" ;
q_sim:units = "m**3 s**-1" ;
q_sim:_FillValue = -9999. ;
q_sim:missing_value = -9999. ;

string basin_name_obs(nbasin_obs) ;
basin_name_obs:long_name = "ID of sub-basins with observed outflows" ;

double q_obs(time, nbasin_obs) ;
q_obs:long_name = "Observed outflows" ;
q_obs:units = "m**3 s**-1" ;
q_obs:_FillValue = -9999. ;
q_obs:missing_value = -9999. ;

}

185

Appendix C

Reference Tables

186

Table C.1: All state variables currently available in Raven. This list of state variables is supported by the
:HydroProcesses commands and :CustomOutput commands, amongst others.

State Variable [units] Description

Required Water Storage Variables

SURFACE_WATER [mm] streams/rivulets - routed to outlet via in-catchment routing
ATMOSPHERE [mm] atmosphere : receives water only‼
ATMOS_PRECIP [mm] atmosphere : provides water only‼
PONDED_WATER [mm] water (melt & precip) waiting to infiltrate/runo�
Water Storage

SOIL [mm] shallow subsurface/vadose zone
GROUNDWATER [mm] deep groundwater
CANOPY [mm] liquid water on vegetation canopy
CANOPY_SNOW [mm] snow on canopy
TRUNK [mm] water stored in trunks of trees
ROOT [mm] water stored in roots
DEPRESSION [mm] depression/surface storage
WETLAND [mm] deep depression storage
LAKE_STORAGE [mm] lake storage
SNOW [mm] frozen snow depth (mm SWE : snow water equivalent)
SNOW_LIQ [mm] liquid snow cover
GLACIER [mm] glacier melt/reservoir storage
GLACIER_ICE [mm] glacier ice - typically assumed to be infinite reservoir.
Convolution storage

CONVOLUTION [mm] convolution storage - for conceptual models with convolution
CONV_STOR [mm] convolution sub-storage - internal water mass for convolution
Temperature / Energy Storage

SURFACE_WATER_TEMP [C] temperature of surface water
SNOW_TEMP [C] temperature of snow
COLD_CONTENT [C or MJ/m2] Cold content of snowpack
GLACIER_CC [C] cold content of glacier
SOIL_TEMP [C] temperature of soil
CANOPY_TEMP [C] temperature of canopy
Auxilliary Variables

SNOW_DEPTH [mm] snow depth - surrogate for density
PERMAFROST_DEPTH [mm] depth of permafrost
SNOW_COVER [0..1] fractional snow cover
SNOW_AGE [d] snow age, in days
SNOW_ALBEDO [-] snow surface albedo
CROP_HEAT_UNITS [-] cumulative crop heat units
Memory Variables

CUM_INFIL [mm] cumulative infiltration to topsoil
CUM_SNOWMELT [mm] cumulative snowmelt
Transport Variables

CONSTITUENT [mg/m2] chemical species or tracer
CONSTITUENT_SRC [mg/m2] chemical species or tracer cumulative source
CONSTITUENT_SW [mg/m2] chemical species dumped to surface water
CONSTITUENT_SINK [mg/m2] chemical species or tracer cumulative sink (e.g., decay)

187

Table C.2: All forcing functions currently available in Raven. This list of forcing functions is supported by
the :Data, :GriddedForcing, :MultiData, :CustomOutput, and :GaugeMultiData com-
mands, amongst others.

Forcing Name Definition

PRECIP rain/snow precipitaiton rate over time step /data interval [mm/d]
PRECIP_DAILY_AVE average rain/snow precipitaiton over day (0:00-24:00) [mm/d]
PRECIP_5DAY precipitation total from previous 5 days [mm]
SNOW_FRAC fraction of precip that is snow [0..1]
SNOWFALL snowfall rate over time step [mm/d]
RAINFALL rainfall rate over time step [mm/d]
RECHARGE groundwater recharge rate over time step [mm/d]

TEMP_AVE average air temp over time step/data interval [◦C]
TEMP_DAILY_AVE average air temp over day (0:00-24:00) [◦C]
TEMP_MIN/TEMP_DAILY_MIN minimum air temperature over day (0:00-24:00)[◦C]
TEMP_MAX/TEMP_DAILY_MAX maximum air temperature over day (0:00-24:00)[◦C]
TEMP_MONTH_MAX maximum air temp during month [◦C]
TEMP_MONTH_MIN minimum air temp during month [◦C]
TEMP_MONTH_AVE average air temp during month [◦C]
TEMP_AVE_UNC uncorrected daily average air temp [◦C]
TEMP_MAX_UNC uncorrected daily min air temp [◦C]
TEMP_MIN_UNC uncorrected daily max air temp [◦C]
AIR_DENS air density [kg/m3]
AIR_PRES air pressure [kPa]
REL_HUMIDITY relative humidity [0..1]

ET_RADIA uncorrected extraterrestrial shortwave radiation [MJ/m2/d]
SHORTWAVE/SW_RADIA Incoming shortwave radiation (uncorrected for albedo) [MJ/m2/d]
SW_RADIA_NET net shortwave radiation (albedo corrected) [MJ/m2/d]
LW_RADIA_NET net longwave radiation [MJ/m2/d]
LW_INCOMING incoming longwave radiation [MJ/m2/d]
CLOUD_COVER cloud cover [0..1]
DAY_LENGTH day length [d]
DAY_ANGLE day angle [0..2PI] (=0 for Jan 1, 2pi for Dec 31)

WIND_VEL wind velocity [m/s]
PET potential evapotranspiration [mm/d]
OW_PET open water potential evapotranspiration [mm/d]
PET_MONTH_AVE average PET during month [mm/d]

POTENTIAL_MELT potential snowmelt rate [mm/d]

SUBDAILY_CORR a subdaily correction factor to downscale daily average PET or snowmelt [-]

188

Table C.3: All subbasin parameters currently available in Raven. These parameters may be specified in
the :SubBasinProperties command in the .rvh file.

Parameter [units] Description

In-catchment Routing Parameters

TIME_TO_PEAK [d] The time to peak of the unit hydrograph
TIME_CONC [d] The time of concentration of the unit hydrograph
TIME_LAG [d] The time lage of the unit hydrograph
NUM_RESERVOIRS [-] The number of reservoirs used in the ROUTE_RESERVOIR_SERIES method
RES_CONSTANT [1/d] A linear reservor constant used to generate the unit hydrograph
In-channel Routing Parameters

Q_REFERENCE [m3/s] reference flow for the reach
MANNINGS_N [-] Manning’s coe�icient for the reach; overrides channel profile value
SLOPE [-] Slope for the reach; overrides channel profile value
Other Parameters

RAIN_CORR [0..1] rain correction factor for subbasin (multiplier)
SNOW_CORR [0..1] snow correction factor for subbasin (multiplier)

189

Appendix D

Template Files

The following section provides template .rvi files. Note that for these files and for custom model configu-
rations, the :CreateRVPTemplate command in the .rvi file (see section A.1.4) can be used to generate
an empty rvp file which can be populated with parameter values by the user.

To do (9)

D.1 UBCWM Emulation

--
Raven Template Input File
UBC Watershed Model v5 Emulation
--
:StartDate 1991-10-01 00:00:00
:Duration 365
:TimeStep 24:00:00
#
:Method ORDERED_SERIES
:Interpolation INTERP_NEAREST_NEIGHBOR

:Routing ROUTE_NONE
:CatchmentRoute ROUTE_DUMP

:Evaporation PET_MONTHLY_FACTOR
:OW_Evaporation PET_MONTHLY_FACTOR
:SWRadiationMethod SW_RAD_UBCWM
:SWCloudCorrect SW_CLOUD_CORR_UBCWM
:SWCanopyCorrect SW_CANOPY_CORR_UBCWM
:LWRadiationMethod LW_RAD_UBCWM
:WindspeedMethod WINDVEL_UBCWM
:RainSnowFraction RAINSNOW_UBCWM
:PotentialMeltMethod POTMELT_UBCWM
:OroTempCorrect OROCORR_UBCWM
:OroPrecipCorrect OROCORR_UBCWM2
:OroPETCorrect OROCORR_UBCWM
:CloudCoverMethod CLOUDCOV_UBCWM
:PrecipIceptFract PRECIP_ICEPT_USER
:MonthlyInterpolationMethod MONTHINT_LINEAR_21

190

:SoilModel SOIL_MULTILAYER 6
:SnapshotHydrograph

--Hydrologic Processes-------------------------
:Alias TOP_SOIL SOIL[0]
:Alias INT_SOIL SOIL[1]
:Alias SHALLOW_GW SOIL[2]
:Alias DEEP_GW SOIL[3]
:Alias INT_SOIL2 SOIL[4]
:Alias INT_SOIL3 SOIL[5]
:HydrologicProcesses

:SnowAlbedoEvolve SNOALB_UBCWM
:SnowBalance SNOBAL_UBCWM MULTIPLE MULTIPLE
moves snowmelt to fast runoff
:Flush RAVEN_DEFAULT PONDED_WATER INT_SOIL2

:-->Conditional HRU_TYPE IS GLACIER
:GlacierMelt GMELT_UBC GLACIER_ICE PONDED_WATER
:Precipitation PRECIP_RAVEN ATMOS_PRECIP MULTIPLE
:SoilEvaporation SOILEVAP_UBC MULTIPLE ATMOSPHERE
:Infiltration INF_UBC PONDED_WATER MULTIPLE
from infiltration to routing
:Flush RAVEN_DEFAULT SURFACE_WATER INT_SOIL2
:GlacierInfiltration GINFIL_UBCWM PONDED_WATER MULTIPLE
soils really used as routing stores
:Percolation PERC_LINEAR_ANALYTIC INT_SOIL INT_SOIL2
:Percolation PERC_LINEAR_ANALYTIC INT_SOIL2 INT_SOIL3
:Baseflow BASE_LINEAR INT_SOIL3 SURFACE_WATER
:Baseflow BASE_LINEAR SHALLOW_GW SURFACE_WATER
:Baseflow BASE_LINEAR DEEP_GW SURFACE_WATER
:GlacierRelease GRELEASE_LINEAR GLACIER SURFACE_WATER

:EndHydrologicProcesses

See the Aloue�e tutorial example for a template .rvp file for UBCWM emulation, indicating all required
parameters.

191

D.2 HBV-EC Emulation

--
Raven Input file
HBV-EC Emulation
--
--Simulation Details -------------------------
:StartDate 1991-10-01 00:00:00
:Duration 365
:TimeStep 1.0
#
--Model Details -------------------------------
:Method ORDERED_SERIES
:Interpolation INTERP_NEAREST_NEIGHBOR

:Routing ROUTE_NONE
:CatchmentRoute ROUTE_TRI_CONVOLUTION

:Evaporation PET_FROMMONTHLY
:OW_Evaporation PET_FROMMONTHLY
:SWRadiationMethod SW_RAD_DEFAULT
:SWCloudCorrect SW_CLOUD_CORR_NONE
:SWCanopyCorrect SW_CANOPY_CORR_NONE
:LWRadiationMethod LW_RAD_DEFAULT
:RainSnowFraction RAINSNOW_HBV
:PotentialMeltMethod POTMELT_HBV
:OroTempCorrect OROCORR_HBV
:OroPrecipCorrect OROCORR_HBV
:OroPETCorrect OROCORR_HBV
:CloudCoverMethod CLOUDCOV_NONE
:PrecipIceptFract PRECIP_ICEPT_USER
:MonthlyInterpolationMethod MONTHINT_LINEAR_21

:SoilModel SOIL_MULTILAYER 3

an oddity unique to HBV:
:LakeStorage SLOW_RESERVOIR

--Hydrologic Processes-------------------------
:Alias FAST_RESERVOIR SOIL[1]
:Alias SLOW_RESERVOIR SOIL[2]
:HydrologicProcesses

:SnowRefreeze FREEZE_DEGREE_DAY SNOW_LIQ SNOW
:Precipitation PRECIP_RAVEN ATMOS_PRECIP MULTIPLE
:CanopyEvaporation CANEVP_ALL CANOPY ATMOSPHERE
:CanopySnowEvap CANEVP_ALL CANOPY_SNOW ATMOSPHERE
:SnowBalance SNOBAL_SIMPLE_MELT SNOW SNOW_LIQ

:-->Overflow RAVEN_DEFAULT SNOW_LIQ PONDED_WATER
:Flush RAVEN_DEFAULT PONDED_WATER GLACIER

:-->Conditional HRU_TYPE IS GLACIER
:GlacierMelt GMELT_HBV GLACIER_ICE GLACIER
:GlacierRelease GRELEASE_HBV_EC GLACIER SURFACE_WATER
:Infiltration INF_HBV PONDED_WATER MULTIPLE
:Flush RAVEN_DEFAULT SURFACE_WATER FAST_RESERVOIR

192

:-->Conditional HRU_TYPE IS_NOT GLACIER
:SoilEvaporation SOILEVAP_HBV SOIL[0] ATMOSPHERE
:CapillaryRise RISE_HBV FAST_RESERVOIR SOIL[0]
:LakeEvaporation LAKE_EVAP_BASIC SLOW_RESERVOIR ATMOSPHERE
:Percolation PERC_CONSTANT FAST_RESERVOIR SLOW_RESERVOIR
:Baseflow BASE_POWER_LAW FAST_RESERVOIR SURFACE_WATER
:Baseflow BASE_LINEAR SLOW_RESERVOIR SURFACE_WATER

:EndHydrologicProcesses
#
:AggregatedVariable FAST_RESERVOIR AllHRUs
:AggregatedVariable SLOW_RESERVOIR AllHRUs

See the Aloue�e2 tutorial example for a template .rvp file for HBV-EC emulation, indicating all required
parameters.

193

D.3 GR4J Emulation

--
Raven Input file
GR4J Emulation
--
:StartDate 2000-01-01 00:00:00
:Duration 365
:TimeStep 1.0

:Method ORDERED_SERIES
:Interpolation INTERP_NEAREST_NEIGHBOR

:Routing ROUTE_NONE
:CatchmentRoute ROUTE_DUMP

:Evaporation PET_DATA
:RainSnowFraction RAINSNOW_DINGMAN
:PotentialMeltMethod POTMELT_DEGREE_DAY
:OroTempCorrect OROCORR_SIMPLELAPSE
:OroPrecipCorrect OROCORR_SIMPLELAPSE

:SoilModel SOIL_MULTILAYER 4

--Hydrologic Processes-------------------------
:Alias PRODUCT_STORE SOIL[0]
:Alias ROUTING_STORE SOIL[1]
:Alias TEMP_STORE SOIL[2]
:Alias GW_STORE SOIL[3]
:HydrologicProcesses
:Precipitation PRECIP_RAVEN ATMOS_PRECIP MULTIPLE
:SnowTempEvolve SNOTEMP_NEWTONS SNOW_TEMP
:SnowBalance SNOBAL_CEMA_NEIGE SNOW PONDED_WATER
:OpenWaterEvaporation OPEN_WATER_EVAP PONDED_WATER ATMOSPHERE
:Infiltration INF_GR4J PONDED_WATER MULTIPLE
:SoilEvaporation SOILEVAP_GR4J PRODUCT_STORE ATMOSPHERE
:Percolation PERC_GR4J PRODUCT_STORE TEMP_STORE
:Flush RAVEN_DEFAULT SURFACE_WATER TEMP_STORE
:Split RAVEN_DEFAULT TEMP_STORE CONVOLUTION[0]

CONVOLUTION[1] 0.9
:Convolve CONVOL_GR4J_1 CONVOLUTION[0] ROUTING_STORE
:Convolve CONVOL_GR4J_2 CONVOLUTION[1] TEMP_STORE
:Percolation PERC_GR4JEXCH ROUTING_STORE GW_STORE
:Percolation PERC_GR4JEXCH2 TEMP_STORE GW_STORE
:Flush RAVEN_DEFAULT TEMP_STORE SURFACE_WATER
:Baseflow BASE_GR4J ROUTING_STORE SURFACE_WATER

:EndHydrologicProcesses

See the Irondequoit tutorial example for a template .rvp file for GR4J emulation, indicating all required
parameters.

194

D.4 Canadian Shield Configuration

A useful configuration in Canadian shield basins characterised by shallow soils atop rock, with ample
exposed rock and lakes. Use the :CreateRVPTemplate command to generate the corresponding .rvp
template file and determine what parameters are needed.

:StartDate 2003-10-01 00:00:00
:Duration 2192
:TimeStep 1.0

:Method ORDERED_SERIES
:InterpolationMethod NEAREST_NEIGHBOR

:SoilModel SOIL_MULTILAYER 3

:Routing ROUTE_DIFFUSIVE_WAVE
:CatchmentRoute ROUTE_TRI_CONVOLUTION
:Evaporation PET_HARGREAVES_1985
:OW_Evaporation PET_HARGREAVES_1985
:SWCanopyCorrect SW_CANOPY_CORR_STATIC
:RainSnowFraction RAINSNOW_DINGMAN
:PotentialMeltMethod POTMELT_DEGREE_DAY
:PrecipIceptFract PRECIP_ICEPT_LAI

:MonthlyInterpolationMethod MONTHINT_LINEAR_MID

:LakeStorage LAKE_STORAGE

--Hydrologic Processes-------------------------
:Alias SOIL0 SOIL[0]
:Alias SOIL1 SOIL[1]
:Alias SOIL2 SOIL[2]
:HydrologicProcesses

:SnowRefreeze FREEZE_DEGREE_DAY SNOW_LIQ SNOW
:Precipitation PRECIP_RAVEN ATMOS_PRECIP MULTIPLE
:CanopyEvaporation CANEVP_MAXIMUM CANOPY ATMOSPHERE
:CanopySnowEvap CANEVP_MAXIMUM CANOPY_SNOW ATMOSPHERE
:SnowBalance SNOBAL_TWO_LAYER MULTIPLE MULTIPLE
:Abstraction ABST_FILL PONDED_WATER DEPRESSION
:OpenWaterEvaporation OPEN_WATER_EVAP DEPRESSION ATMOSPHERE
:Infiltration INF_HBV PONDED_WATER MULTIPLE
:LakeRelease LAKEREL_LINEAR LAKE_STORAGE SURFACE_WATER
:Baseflow BASE_POWER_LAW SOIL1 SURFACE_WATER
:Baseflow BASE_POWER_LAW SOIL2 SURFACE_WATER
:Interflow INTERFLOW_PRMS SOIL0 SURFACE_WATER
:Percolation PERC_GAWSER SOIL0 SOIL1
:Percolation PERC_GAWSER SOIL1 SOIL2
:SoilEvaporation SOILEVAP_ROOT SOIL0 ATMOSPHERE

:EndHydrologicProcesses

195

D.5 MOHYSE Configuration

A simple educational model developed at the Université du �ébec à Montréal (Fortin and Turco�e, 2006)
. Use the :CreateRVPTemplate command to generate the corresponding .rvp template file and de-
termine what parameters are needed.

:StartDate 1958-08-01 00:00:00
:EndDate 2003-09-30 00:00:00
:TimeStep 1.0
:Method ORDERED_SERIES

:Routing ROUTE_NONE
:CatchmentRoute ROUTE_GAMMA_CONVOLUTION

:PotentialMeltMethod POTMELT_DEGREE_DAY
:Evaporation PET_MOHYSE
:RainSnowFraction RAINSNOW_DATA
:DirectEvaporation

:SoilModel SOIL_TWO_LAYER

:HydrologicProcesses
:SoilEvaporation SOILEVAP_LINEAR SOIL[0] ATMOSPHERE
:SnowBalance SNOBAL_SIMPLE_MELT SNOW PONDED_WATER
:Precipitation RAVEN_DEFAULT ATMOS_PRECIP MULTIPLE
:Infiltration INF_HBV PONDED_WATER SOIL[0]
:Baseflow BASE_LINEAR SOIL[0] SURFACE_WATER
:Percolation PERC_LINEAR SOIL[0] SOIL[1]
:Baseflow BASE_LINEAR SOIL[1] SURFACE_WATER

:EndHydrologicProcesses

See the MOHYSE model example file distributed with the Raven tutorials for a template .rvp file for
MOHYSE emulation, indicating all required parameters.

196

D.6 HMETS Configuration

HMETS is a relatively simple model developed at the École de technologie supérieure (Martel et al., 2017).
You may use the :CreateRVPTemplate command to generate the corresponding .rvp template file
and determine what parameters are needed.

:StartDate 1953-01-01 00:00:00
:EndDate 2009-12-31 00:00:00
:TimeStep 24:00:00

:PotentialMeltMethod POTMELT_HMETS
:RainSnowFraction RAINSNOW_DATA
:Evaporation PET_OUDIN

:CatchmentRoute ROUTE_DUMP
:Routing ROUTE_NONE

:SoilModel SOIL_TWO_LAYER

:HydrologicProcesses
:SnowBalance SNOBAL_HMETS MULTIPLE MULTIPLE
:Precipitation RAVEN_DEFAULT ATMOS_PRECIP MULTIPLE
:Infiltration INF_HMETS PONDED_WATER MULTIPLE

:Overflow OVERFLOW_RAVEN SOIL[0] CONVOLUTION[1]
:Baseflow BASE_LINEAR SOIL[0] SURFACE_WATER #interflow
:Percolation PERC_LINEAR SOIL[0] SOIL[1] #recharge

:Overflow OVERFLOW_RAVEN SOIL[1] CONVOLUTION[1]
:SoilEvaporation SOILEVAP_ALL SOIL[0] ATMOSPHERE #AET
:Convolve CONVOL_GAMMA CONVOLUTION[0] SURFACE_WATER #surf. runoff
:Convolve CONVOL_GAMMA_2 CONVOLUTION[1] SURFACE_WATER #delay. runoff
:Baseflow BASE_LINEAR SOIL[1] SURFACE_WATER

:EndHydrologicProcesses

See the Salmon model example file distributed with the Raven tutorials for a template .rvp file for HMETS
emulation, indicating all required parameters.

197

D.7 HYPR Configuration

HYPR is a version of HBV revised to support simulation on the Canadian Prairies (Ahmed et al., 2020).
You may use the :CreateRVPTemplate command to generate the corresponding .rvp template file
and determine what parameters are needed.

:StartDate 2002-10-01 00:00:00
:EndDate 2015-08-31 00:00:00
:Duration 4718
:TimeStep 24:00:00

Model options
#--
:CatchmentRoute TRIANGULAR_UH

:Evaporation PET_FROMMONTHLY
:OW_Evaporation PET_FROMMONTHLY
:SWRadiationMethod SW_RAD_DEFAULT
:LWRadiationMethod LW_RAD_DEFAULT
:RainSnowFraction RAINSNOW_HBV
:PotentialMeltMethod POTMELT_HBV
:PrecipIceptFract PRECIP_ICEPT_USER
:MonthlyInterpolationMethod MONTHINT_LINEAR_21
:SoilModel SOIL_MULTILAYER 3

Soil Layer Alias Definitions
#--
:Alias FAST_RESERVOIR SOIL[1]
:Alias SLOW_RESERVOIR SOIL[2]

Hydrologic process order for HYPR Emulation
#--
:HydrologicProcesses

:SnowRefreeze FREEZE_DEGREE_DAY SNOW_LIQ SNOW
:Precipitation PRECIP_RAVEN ATMOS_PRECIP MULTIPLE
:CanopyEvaporation CANEVP_ALL CANOPY ATMOSPHERE
:CanopySnowEvap CANEVP_ALL CANOPY_SNOW ATMOSPHERE
:SnowBalance SNOBAL_SIMPLE_MELT SNOW PONDED_WATER
:Infiltration INF_HBV PONDED_WATER MULTIPLE
:Flush RAVEN_DEFAULT SURFACE_WATER PONDED_WATER
:Abstraction ABST_PDMROF PONDED_WATER DEPRESSION
:Flush RAVEN_DEFAULT SURFACE_WATER FAST_RESERVOIR
:SoilEvaporation SOILEVAP_HYPR MULTIPLE ATMOSPHERE
:Baseflow BASE_LINEAR FAST_RESERVOIR SURFACE_WATER
:Baseflow BASE_THRESH_STOR FAST_RESERVOIR SURFACE_WATER

:EndHydrologicProcesses

198

Bibliography

Ahmed, M.I., Elshorbagy, A., Pietroniro, A., 2020. Toward simple modeling practices in the complex cana-
dian prairie watersheds. Journal of Hydrologic Engineering 25, 04020024. doi:10.1061/(ASCE)HE.
1943-5584.0001922.

Allen, R.G., Trezza, R., Tasumi, M., 2006. Analytical integrated functions for daily solar radiation on slopes.
Agricultural and Forest Meteorology 139, 55–73.

Annandale, J., Jovanovic, N., Benadé, N., Allen, R., 2002. So�ware for missing data error analysis of
penman-monteith reference evapotranspiration. Irrigation Science 21, 57–67.

Baker, D., Ruschy, D.L., Wall, D., 1990. The albedo decay of prairie snows. J. Appl. Meteor. 29, 179–187.

Barry, D.A., Parlange, J.Y., Li, L., Jeng, D.S., Crappert, M., 2005. Green Ampt approximations. Advances in
Water Resources 28, 1003–1009.

Bergstrom, S., 1995. Computer models of watershed hydrology. Water Resources Publications, Highlands
Ranch, Colorado. chapter The HBV Model. pp. 443–476.

Beven, K.J., Kirkby, M.J., 1979. A physically based, variable contributing area model of basin hydrology.
Hydrol Sci. 24, 43–69.

Bicknell, B., Imho�, J., Ki�le, J., Donigian, A., Johanson, R., 1997. Hydrological Simulation Program–
Fortran, User’s manual for version 11. Technical Report EPA/600/R-97/080. U.S. Environmental Protec-
tion Agency, National Exposure Research Laboratory. Athens, GA. 755pp.

Brown, D.M., Bootsma, A., 1993. Crop Heat Units for Corn and Other Warm Season Crops in Ontario.
Technical Report Fact sheet 93-119. Ontario Ministry for Food and Rural A�airs.

Chow, V., Maidment, D., Mays, L., 1988. Applied Hydrology. McGraw-Hill.

Clark, M.P., Slater, A.G., Rupp, D.E., Woods, R.A., Vrugt, J.A., Gupta, H.V., Wagener, T., Hay, L.E., 2008.
Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose di�erences
between hydrological models. Water Resources Research 44. W00B02, doi:10.1029/2007WR006735.

U.S. Dept. of Commerce, O.o.T.S., 1956. Snow Hydrology. Washington, D.C.

Dingman, S., 2002. Physical Hydrology. Waveland Press Inc.

Fortin, V., Turco�e, R., 2006. Le modèle hydrologique MOHYSE. Technical Report. Université du �ébec
à Montréal. Note de cours pour SCA7420, Département des sciences de la terre et de l’atmosphere.

Granger, R.J., Gray, D.M., 1989. Evaporation from natural nonsaturated surfaces. Journal of Hydrology
111, 21–29.

199

http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0001922
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0001922

Green, W.H., Ampt, G.A., 1911. Studies on soil physics. The Journal of Agricultural Science
Doi:10.1017/S0021859600001441.

Gupta, H.V., Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the mean squared error and
nse performance criteria: Implications for improving hydrological modelling. Journal of Hydrology 377,
80–91.

Hamon, W., 1961. Estimating potential evapotranspiration. Journal of Hydraulics Division, Proceedings
of the ASCE 871, 107–120.

Harder, P., Pomeroy, J., 2013. Estimating precipitation phase using a psychrometric energy balance
method. Hyrdological Processes 27, 1901–1914.

Hargreaves, G., Samani, Z., 1982. Estimating potential evapotranspiration. Journal of the Irrigation and
Drainage Division, ASCE 108, 225–230.

Hargreaves, G., Samani, Z., 1985. Reference crop evapotranspiration from temperature. Applied Engi-
neering in Agriculture 1, 96–99.

Hedstrom, N.R., Pomeroy, J.W., 1998. Measurements and modelling of snow interception in the boreal
forest. Hydrological Processes 12, 1611–1625.

Kutchment, L., Gelfan, A.N., 1996. The determination of the snowmelt rate and the meltwater outflow
from a snowpack for modelling river runo� generation. Journal of Hydrology 179, 23–26.

Kuzmin, P.P., 1972. Melting of snow cover. Technical Report. Israel Progr. Sci. Translation. Jerusalem.

Leavesley, G., Lichty, R., Troutman, B., Saindon, L., 1983. Precipitation-Runo� Modeling System: User’s
manual. U.S. Geological Survey Water-Resources Investigations 83-4238, 207 p.

Leavesley, G., Stannard, L., 1995. Computer models of watershed hydrology. Water Resources Publications,
Highlands Ranch, Colorado. chapter The Precipitation-Runo� Modeling System - PRMS. pp. 281–310.

Linacre, E., 1977. A simple formula for estimating evaporation rates in various climates, using temperature
data alone. Agricultural Meteorology 18, 409–424.

Liu, J., Sun, G., McNulty, S.G., Amatya, D., 2005. A comparison of sic potential evapotranspiration methods
for regional use in the southeastern United States. Journal of the American Water Resources Association
41, 621–633.

Makkink, G.F., 1957. Testing the Penman formula by means of lysimeters. J. Inst. of Water Eng. 11,
277–288.

Marks, D., Dozier, J., 1992. Climate and energy exchange at the snow surface in the alpine region of the
Sierra Nevada: 2. Snow cover energy balance. Water Resources Research 28, 3043–3054.

Martel, J., Demeester, K., Brisse�e, F., Poulin, A., Arsenault, R., 2017. HMETS - a simple and e�icient
hydrology model for teaching hydrological modelling, flow forecasting and climate change impacts to
civil engineering students. International Journal of Engineering Education 34, 1307–1316.

Mekonnen, M.A., Wheater, H.S., Ireson, A., Spence, C., Davison, B., Pietroniro, A., 2014. Towards an
improved land surface scheme for prairie landscapes. Journal of Hydrology 511, 105–116.

Monteith, J., 1965. The state and movement of water in living organisms. Academic Press Inc., New York.
volume 17. chapter Evaporation and environment. pp. 205–234.

200

Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil, F., Loumagne, C., 2005. Which
potential evapotranspiration input for a lumped rainfall-runo� model?: Part 2-Towards a simple and
e�icient potential evapotranspiration model for rainfall-runo� modelling. Journal of Hydrology 303,
290–306.

Penman, H., 1948. Natural evaporation from open water, bare soil and grass. Royal Society of London
Proceedings, Series A 193, 120–145.

Perrin, C., Michel, C., Andréassian, V., 2003. Improvement of a parsimonious model for streamflow simu-
lation. Journal of Hydrology 279, 275–289.

Pomeroy, J.W., Gray, D.M., Brown, T., Hedstrom, N.R., �inton, W.L., Granger, R., Carey, S., 2007. The
cold regions hydrological model: A platform for basing process representation and model structure on
physical evidence. Hydrological Processes , 2650–2667.

Priestley, C., Taylor, R., 1972. On the assessment of surface heat flux and evaporation using large-scale
parameters. Monthly Weather Review , 81–92.

�ick, M., 1995. Computer models of watershed hydrology. Water Resources Publications, Highlands
Ranch, Colorado. chapter The UBC Watershed Model. pp. 233–280.

�ick, M., 2003. UBC Watershed Model Documentation. Technical Report. University of British Columbia.

Ru�er, A., Kershaw, K., Robins, P., Morton, A., 1971. A predictive model of rainfall interception in forests,
1. Derivation of the model from observations in a plantation of Corsican pine. Agricultural Meteorology
9, 367–384.

Schroeter, H., 1989. GAWSER Training Guide and Reference Manual. Grand River Conservation Authority
(GRCA). Waterloo, ON.

Soil Conservation Service, 1986. Urban Hydrology for Small Watersheds, 2nd ed. Technical Report Tech.
Release No. 55 (NTIS PB87-101580). U.S. Department of Agriculture. Washington, D.C.

Turc, L., 1961. Evaluation de besoins en eau d’irrigation, ET potentielle. Ann. Agron. 12, 13–49.

U.S. Army Corps of Engineers, 1998. Engineering and Design: Runo� from Snowmelt. Technical Report.
Washington, D.C.

Williams, J., 1969. Flood routing with variable travel time or variable storage coe�icients. Trans. ASAE 12,
100–103.

Wood, E., Le�enmaier, D., Zartarian, V., 1992. A land-surface hydrology parameterization with subgrid
variability for general circulation models. Journal of Geophysical Research 97, 2717–2728.

Yassin, F., Razavi, S., Elshamy, M., Davison, B., Sapriza-Azuri, G., Wheater, H., 2019. Representation and
improved parameterization of reservoir operation in hydrological and land-surface models. Hydrology
and Earth System Sciences 23, 3735–3764.

Yin, X., 1997. Optical air mass: Daily integration and its applications. Meteorology and Atmospheric
Physics 63, 227–233. Doi:10.1007/BF01027387.

201

To do. . .

� 1 (p. 37): Add PERC ASPEN routine / parameter

� 2 (p. 63): Add unit hydrograph intercomparison figure

� 3 (p. 65): find RobertsonEtAl1995 reference

� 4 (p. 66): Muskingum citations

� 5 (p. 78): Sub-daily temperature orographic and lapsing temp ranges not yet described

� 6 (p. 98): SUBDAILY_UBC description

� 7 (p. 114): Forcing estimator code development section

� 8 (p. 133): Create a table for ’Required Parameters for Hydrologic Processes Options’

� 9 (p. 189): Report default Raven "vanilla" configuration

202

	Introduction
	Model Abstraction
	Global Numerical Algorithm
	The HRU Mass/Energy Balance
	Routing

	Watershed Conceptual Model
	Citing Raven

	Running Raven
	Installation
	Input Files
	Running the Model
	Output Files
	Alternative .tb0 (Ensim) Output Format
	Alternative .nc (NetCDF) Output Format

	Building a Model
	Calibration, Visualization, and Uncertainty Analysis
	Common Run Approaches
	Troubleshooting Raven
	Version Notes
	Major Changes from v3.0.1 to v3.0.4 (Feb 2021)
	Major Changes from v3.0 to v3.0.1 (Oct 2020)
	Major Changes from v2.9.1 to v3.0 (May 2020)
	Major Changes from v2.9 to v2.9.1 (May 2019)
	Major Changes from v2.8.1 to v2.9 (Feb 2019)
	Major Changes from v2.8 to v2.8.1 (Jul 2018)
	Major Changes from v2.7 to v2.8
	Major Changes from v2.6 to v2.7 (May 2017)
	Major Changes from v2.5 to v2.6 (May 2016)

	The Hydrologic Process Library
	Precipitation Partitioning
	Canopy Interception Algorithms

	Infiltration
	Baseflow
	Percolation
	Interflow
	Soil Evaporation
	Capillary Rise
	Canopy Evaporation
	Canopy Drip
	Abstraction
	Depression/Wetland Storage Overflow
	Seepage from Depressions/Wetlands
	Lake Release
	Snow Balance
	Snow Sublimation
	Snow Refreeze
	Snow Albedo Evolution
	Glacier Melt
	Glacier Release
	Crop Heat Unit Evolution
	Special Processes

	Routing
	In-Catchment Routing
	Overview
	Algorithms

	In-Channel Routing
	Overview
	Algorithms

	Lake and Reservoir Routing
	Overview

	Water Demand and Flow Diversions
	Overview
	Reservoir Demand Allocation

	Forcing Functions
	Spatial Interpolation
	Interpolation for Gridded Data

	Temperature
	Orographic Temperature Effects

	Precipitation
	Snow-Rain Partitioning
	Orographic Precipitation Effects

	Potential Evapotranspiration (PET)
	PET Estimation
	PET Orographic Effects

	Shortwave Radiation
	Extraterrestrial Shortwave Generation
	Clear Sky Radiation
	Cloud Cover Corrections
	Canopy Cover Corrections

	Longwave Radiation
	Cloud Cover
	Energy
	Potential Melt

	Atmospheric Variables
	Wind Speed
	Relative Humidity
	Air Pressure

	Sub-daily Corrections
	Monthly Interpolation

	Forecasting and Assimilation
	Streamflow Assimilation
	Deltares FEWS support

	Tracer and Contaminant Transport
	Constituent Sources
	Catchment Routing
	In-channel Routing
	In-reservoir Routing

	Model Diagnostics
	Pointwise vs. Pulsewise comparison
	Diagnostic Algorithms

	Raven Code Organization*
	Classes
	CModel class
	CGauge class
	CSubBasin class
	CHydroUnit class
	CHydroProcessABC class
	Hydrologic Processes

	Contributing to the Raven Framework*
	How to Add a New Process Algorithm
	How to Add a New State Variable
	How to Add a New Parameter

	Input Files
	Primary Input file (.rvi)
	Required Commands
	Model Operational Options
	Required Parameters for Model Operation Options
	Optional Input/Output Control Commands
	Custom Output
	Hydrologic Processes
	Transport Commands
	Other Control Commands

	Classed Parameter Input file (.rvp)
	Required Commands
	Optional Classes and Objects
	Parameter Specification

	HRU / Basin Definition file (.rvh)
	Required Commands
	Optional Commands
	Reservoirs and Lakes

	Time Series Input file (.rvt)
	Meteorological Gauge Data Commands
	Observation Time Series
	Reservoir Control Time Series
	Irrigation, demand, and diversions
	Special Commands
	NetCDF Gridded Input Data

	Initial Conditions Input file (.rvc)
	Optional Commands

	Live file (.rvl)
	Commands

	Output Files
	Standard Output Files
	Custom Outputs
	NetCDF Output Format

	Reference Tables
	Template Files
	UBCWM Emulation
	HBV-EC Emulation
	GR4J Emulation
	Canadian Shield Configuration
	MOHYSE Configuration
	HMETS Configuration
	HYPR Configuration

