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Chapter 1

Introduction

This document describes the design and operation of the Raven hydrologic modelling framework, a soft-
ware package for watershed simulation. The document is meant for both users of the software who wish
to run the program and understand the multitude of model options and by new developers of the Raven
software who wish to understand, customize, and/or upgrade the code (chapters and sections for devel-
opers are marked with an asterisk∗).

Raven is a mixed lumped/semi-distributed model that can be used to understand the hydrologic behavior
of awatershed and assess the potential impacts of land use, climate, and other environmental change upon
watershed properties such as flood potential, soil water availability, or groundwater recharge. The model
can be used to investigate individual storm events or develop long-term water, mass, and energy balances
for resource management and water quality assessment. Raven’s uniqueness primarily comes from its
flexibility; Raven is able to use a wide variety of algorithms to represent each individual component of
the water cycle and has a quite general treatment of every possible model option, from output access
to numerical simulation algorithm. Because of its modular design, users have access to a number of
different methods of interpolating meteorological forcing data, routing water downstream, representing
evaporation, and any number of other model options. With this flexibility, a modeler can examine the
wide range of possible outcomes that result from our uncertainty about a watershed model, and test
hypotheses about watershed function.

In addition, Raven’s flexibility and large library of user-customizable subroutines allow it to precisely
emulate (and augment) a number of existing hydrologic models - also known as model mimicry Jansen
et al. (2021). Raven has achieved level 1 (near-perfect) emulation of the UBC Watershed Model (Quick,
1995), Environment Canada’s version of the HBV model (Lindström et al., 1997; Hamilton et al., 2000),
HBV-Light Seibert, HMETS (Martel et al., 2017), MOHYSE (Fortin and Turcotte, 2006), SAC-SMA (Bur-
nash et al., 1973), HYMOD (Moore, 2007; Wagener et al., 2001), and GR4J (Perrin et al., 2003). Level 2
(conceptual) emulation is available for various algorithms used which are comparable to those found in
(e.g.,) Brook90, SWAT, VIC, PRMS, and/or described within various hydrology texts, such as Dingman’s
Physical Hydrology (Dingman, 2002).

1.1 Model Abstraction

While much of Raven’s operations are generic and flexible, they are all built up from critical assumptions
about the organization and operation of a watershed. These collectively form the core structure of any
Raven model, which is depicted in figure 1.1. A watershed is here assumed to be assembled from a num-
ber of subbasins, which in turn are assembled from a number of contiguous or non-contiguous hydrologic
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response units (HRUs), defined as areas with hydrologically unique responses to precipitation events.
Each HRU is defined by a single combination of land use/land type (LU/LT), vegetation cover, and terrain
type and is underlain by a defined soil profile and stratified aquifer. Membership in these classification
schemes, or property classes, is used to determine all or part of the physically-based properties of the
response unit, such as soil conductivity or leaf area index. Each HRU is composed of a finite number of
storage compartments, such as the soil, canopy, and snowpack, in which water and energy are stored (see
table 1.1). Given some set of user-specified controlling hydrologic processes (see table 1.2), Raven builds
and solves the resultant zero- and 1-dimensional water and energy balance problem for each HRU, redis-
tributing water within the HRU in response to precipitation and other atmospheric forcings. Some of this
water is redistributed to surface water channels associated with the subbasin, where it is routed down-
stream from subbasin to subbasin. During this simulation process, diagnostics about water/mass/energy
storage distribution, cumulative flux, and instantaneous fluxes may be tracked.

Figure 1.1: Land surface partitioning in Raven

Each HRU is wholly defined by its geometric properties (area, latitude, longitude, parent subbasin), topo-
graphic properties (slope, aspect), subterranean soil profile, and its property class membership (land use,
vegetation, terrain). Each soil horizon in the soil profile and the aquifer in turn belong to a soil property
class. All individual HRU properties are assigned based upon membership in these classes, i.e., most of the
properties belong to the class, not the HRU, enabling the solution of a finely discretized model (>10,000
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surface(ponded water) surface(lakes and streams) atmospheric
shallow soil deep soil groundwater aquifer
snow liquid water in snowpack canopy
glacial ice glacial melt wetlands

Table 1.1: Common storage compartments that correspond to state variables in hydrologic models - each
compartment can store both water and energy (a non-comprehensive list)

precipitation runoff evaporation transpiration
drip seepage canopy drainage interflow
throughfall infiltration recharge capillary rise
snowmelt sublimation abstraction glacial melt

Table 1.2: Common hydrologic processes that may be included in a Raven model

HRUs) without generating an equally large number of unknown parameters.

As a generalization of standard methods used to represent shallow soils in hydrologic models, the shallow
subsurface may be represented by one or many discrete layers, which is generated from the specified soil
profile, as shown in figure 1.2. The soil profile, specified for each HRU, describes the thickness and soil
type of each constituent horizon. Soil parameters for theM -layer soil model (e.g., hydraulic conductivity)
are then determined based upon soil class membership of each soil horizon, aggregated or disaggregated
depending upon desired vertical model resolution. Alternatively, the soil layers may correspond to concep-
tual soil moisture stores not explicitly linked to physical soil horizon, as is done inmany lumpedwatershed
models.

Figure 1.2: Translation of soil profiles to soil models. Properties are aggregated or disaggregated depending
upon specified vertical resolution of soil model

Subbasins are similarly succinctly characterized by their channel characteristics, their topology with re-
spect to other subbasins (i.e., their outlet basin) and their cross-sectional profile. Again, properties are
linked to channel and profile types, so finely discretized distributed models may still be parsimonious in
terms of parameters.

With Raven, unlike other models, the modeler determines the degree of model complexity. At the sim-
plest, a watershed can be treated as a single lumped HRU/subbasin where only daily precipitation and
temperature are needed to provide predictions of streamflow. In the other extreme, the model could be
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composed of thousands of HRUs consisting of dozens of individual storage compartments and forced
using measured hourly radiation, wind velocity, and relative humidity. The complexity of the model is
limited by the user or (even more sensibly) the availability of data.

While the various components of the HRU water balance are user-specified, an example schematic of the
flow of water in a single HRU can be seen in figure 1.3.

Figure 1.3: Example flowchart of the water balance in a Raven model. Note that individual processes and
storage compartments may be added or subtracted from this schematic.

8



1.2 Global Numerical Algorithm

The operation of Raven is fundamentally simple. Starting from some initial state of the watershed, the
model moves forward in time, updating the distribution of water, mass and energy both within and be-
tween HRUs in response to physical forcings such as precipitation, and laterally routing water and energy
downstream to the watershed outlet. The entire system is simulated one timestep at a time. During each
timestep, the following sequence of events occur:

1. The forcing functions are updated, i.e., the representative values of rain and snow precipitation,
temperature, and perhaps wind velocity, longwave radiation, etc. are generated or extracted from
user-specified time series at a (relatively small) number of gauge stations, then interpolated to every
HRU in the model. Alternatively, these functions may be specified as a gridded model input from a
regional climate or weather model.

2. All of themodel parameters which change in response to the current state of the system are updated
in each HRU (for example, canopy leaf area index may be updated with the seasons)

3. Using these updated forcing functions and parameters, the state of the system at the end of the
timestep is determined from the state of the system at the start of the timestep by rigorously solv-
ing the coupled mass and energy balance equations in each HRU in the model. These mass and
energy balances are assembled from the relevant hydrologic processes occurring in the HRU, which
individually redistribute water and energy between different compartments (e.g., the evaporation
process may move ponded water to the atmosphere).

4. If needed, advective and dispersive mass transport of constituents (contaminants/tracers/enthalpy)
is simulated using the water fluxes over the time step.

5. Runoff from the HRUs (and mass/energy associated with this runoff) is routed into the surface
water network in each subbasin, and concurrently routed downstream.

6. Mass/Energy balance checks are performed

7. Output is written to a number of continuous output files

The process is repeated until the simulation has been run for the specified duration.

1.2.1 The HRU Mass/Energy Balance

The problem being solved by Raven within each HRU is fundamentally that of a coupled system of or-
dinary and partial differential equations (ODEs and PDEs). These ODEs and PDEs individually describe
either (1) the accumulation of mass or energy within a given storage compartment or continuum (i.e., a
mass or energy balance) or (2) the temporal change in some auxiliary system property (e.g., snow density
or albedo).

Here, each state variable in an HRU is subject to the influence of a number of hydrologic processes.
Increases or decreases in a primary state variable are simply the additive combination of influx or outflux
terms (i.e., the ODE or PDE corresponding to a primary state variable is built up from mass or energy
balance considerations). Increases or decreases in auxiliary variables are likewise assumed to be written
as the additive combination of terms. We can therefore write an individual differential equation for the
change in the jth state variable, ϕj , as:

∂ϕj
∂t

=
NP∑
k=1

NS∑
i=1

Mk
ij(ϕ⃗, P⃗, F⃗ ) (1.1)

9



whereMk
ij is the change in state variable j due to process k (ofNP processes), which is linked to another

state variable i. This linkage typically communicates flow direction, e.g., a process Mk
ij moves mass or

energy from storage compartment i to compartment j. A processMk
ii (i.e., i = j) represents an indepen-

dent rate of change for an auxiliary variable, and does not connotate exchange of mass or energy between
compartments. The fluxes or rates-of-change returned by each process are a function of the current vector
of state variables (ϕ⃗), system parameters (P⃗ ), and forcing functions F⃗ . For example, the mass balance for
ponded water on the land surface (depression storage, DS) may be given as:

∂ϕDS
∂t

= P − E − I −R (1.2)

where P is the precipitation input, E is the evaporation rate, I is the infiltration rate into the soil be-
neath, and R is the overflow rate of the depression. Each of these processes (Mk) may be a function of a
number of forcings (e.g., precipitation and temperature), current state variables (e.g., ponding depth and
soil saturation), and parameters (e.g., maximum depression storage and soil hydraulic conductivity).

The full system of equations describing the influence of all processes in an HRU can be written in matrix
form:

∂ϕ⃗

∂t
= MG(ϕ⃗, P⃗, F⃗ ){1} (1.3)

where ϕ⃗ is the complete vector of state variables,MG is aNSxNS global symmetric matrix of composite
rate-of-change functions, where NS is the number of state variables, and {1} is a column vector filled
with ones. The global process matrix is the sum of contributions from each individual symmetric process
matrix, i.e.,MG =

∑
Mk.

The above mathematical formulation enables the complete separation of individual hydrologic process
algorithms, which may individually be very simple or quite complicated. It also enables the use of a
variety of methods for solving the global system of equations defined by 1.3. Because of the approach
used to solve this system, mass balance errors are typically on the order of machine precision.

1.2.2 Routing

Raven separately handles in-catchment routing (from the HRU to the major reach in the subbasin) and
in-channel routing (in and between subbasin stream reaches). The concept is depicted in figure 1.4.

In-catchment routing to the primary basin channel is generally handled using a convolution or unit
hydrograph (UH) approach, where the UH for each catchment is either user-specified or generated from
basin characteristics. The immediate history of quickflow, interflow, and baseflow output to surface water
is stored in memory as an array of time step-averaged outflow rates to off-channel tributaries, Q⃗lat; the
duration of this history is determined by the subbasins time of concentration, tc. To transfer this water to
either the channel segments within the subbasin or directly to the subbasin outflow, the pulse hydrograph
is convolved with the unit hydrograph, represented as a piecewise linear function. Water and energy is
transferred to the downstream ends of channel segments within the reach.

In-channel routing, for each time step, is assumed to be completely characterized by a finite history of
upstream inflow (stored as a vector of flow values at fixed time intervals of ∆t, Q⃗in), and the outflow at
the start of the time step; the duration of this history is determined by the minimum flood celerity and the
length of the reach segment. During each time step, moving from upstream to downstream at both the
watershed level (basin to basin) and subbasin level (reach segment to reach segment), a routing algorithm
is used to generate the outflow from each reach based upon the time history of upstream inflows, i.e.,

Qn+1
out = Froute(Q

n
out, Q⃗

in, P⃗s) (1.4)

10



Figure 1.4: The general routing model of Raven

where Froute is the routing algorithm, P⃗s is a vector of channel parameters, typically a number of stored
channel rating curves, primary channel and bank roughness, and, if applicable, weir or reservoir relation-
ships. This formalization supports both common lumped and distributed flow routingmethods depending
upon the form ofFroute(), includingMuskingum-Cunge, lag-and-route, transfer function/unit hydrograph
convolution, and, if desired, a more complex kinematic wave or diffusive wave approach (not currently
implemented). Notably, sub-time-stepping for routing is also enabled with this formulation.

Reservoir/lake routing. At the outlet of each subbasin, the option exists to specify a managed reservoir
or natural lake which mediates the outflow from the subbasin channel. This reservoir is characterized
using specified volume-stage and surface area-stage relationship, and level-pool outflow from the reser-
voir may be calculated using a variety of methods, including simple weir formulae to complex reservoir
management rules. The mass balance within the reservoir is calculated as

dV (h)

dt
= Qin(t)−Qout(t, h)− ET (A(h)) + P (A(h)) (1.5)

where V (h) is the stage (h) dependent volume of the reservoir,Qin is the inflow to the reservoir,Qout(t, h)
is the outflow from the reservoir (a function of stage), and ET and P are the evapotranspiration from
and precipitation to the reservoir surface, both functions of surface area.

Irrigation demand, diversions, and plant discharges Man-made extractions and injections of water
are incorporated directly into themass balance formulations at reach inflows, reach outflows, or reservoirs
in the form of user-specified time series of discharge and/or rule curves. These can be constrained by
environmental minimum flows.

1.3 Watershed Conceptual Model

The critical feature of Raven is that it does not make any assumptions about the functioning of the wa-
tershed. That is the modeler’s job. There is no single system conceptualization that is forced upon the
modeler, other than those imposed by the Subbasin-HRU model framework. Rather, the modeler deter-
mines what processes to use, how to parameterize the watershed, how to discretize the watershed. All
the while, Raven makes this posisble by providing reasonable defaults, an intuitive file interface, and a
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large library of hydrologic and algorithmic options. In addition, it allows users to assess the utility and
appropriateness of their conceptual model and revise it as needed.

1.4 Citing Raven

The preferred citation for the Raven hydrological modelling framework in a research manuscript or tech-
nical report is the following paper in Environmental Modelling and Software:

Craig, J.R., G. Brown, R. Chlumsky, W. Jenkinson, G. Jost, K. Lee, J. Mai, M.Serrer, M. Shafii, N. Sgro,
A. Snowdon, and B.A. Tolson, Flexible watershed simulation with the Raven hydrological modelling
framework, Environmental Modelling and Software, 129, 104728, doi:10.1016/j.envsoft.2020.104728,
July 2020

To cite Raven technical details for technical reports, this manual may be cited as:

Craig, J.R., and the Raven Development Team, Raven user’s and developer’s manual (Version 4.0),
URL: https://raven.uwaterloo.ca/ (Accessed xxx, 2025).

If you are using a model emulation housed within Raven, then that model configuration should be ex-
plicitly cited to give credit where credit is due. For instance, if you use the unmodified UBC watershed
model configuration from appendix F, the preferred citation format would be (e.g.,) "we used the UBCWa-
tershed Model (Quick, 1995) as implemented in the Raven hydrologic modelling framework v4.0 (Craig
et al., 2020)". If the base conceptual model was significantly revised and/or merged with other tools, then
it may be acceptable to refer to the model as (e.g.,) UBCWM∗ or UBCWM-Raven. In all cases, it is rec-
ommended to provide the model version number and input files in supplementary material so the details
and attribution of the model components may be identified.
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Chapter 2

Running Raven

Much energy has been expended to ensure that the operation and use of Raven is as simple, convenient,
intuitive, and user-friendly as possible. Input commands and file formats are in plain English, error mes-
sages are reasonably concise and explanatory, unnecessary restrictions or requirements are not forced on
the user, and model input and output files can be read and understood with a minimal learning curve.
Theremay be, however, a learning curve in familiarizing oneself with the large variety ofmodelling options
and how they differ.

2.1 Installation

2.1.1 Microsoft Windows

OnWindows, there is no formal installation package for Raven unless you wish to use NetCDF-formatted
input or output, and no special programs are libraries are required to operate Raven. Simply download the
Windows executable Raven.exe and unzip to a local drive. If you require NetCDF support (for instance,
if you are using NetCDF-format gridded climate data), instructions for installing the NetCDF libraries are
below.

NOTE: just clicking on Raven.exe to test it will lead to a briefly appearing command window which
closes immediately. This is expected behaviour. Raven is a command-line executable and requires
command line arguments.

(Optional, but recommended) If you wish to configure Raven to run from a single executable anywhere
on your system, follow the steps below. Note that you will require administrative permissions to modify
files under Program Files and to edit Environment Variables.

1. unzip the Raven executable, and save it to a folder you wish to keep it in (such as
C:\Program Files\Raven)

2. (Optional) if you wish to run the water management optimization capabilities in Raven, save the
lpsolve.dll file to the same folder as the Raven executable (Raven.exe)

3. Open the Environment Variables menu by clicking the Windows button, and searching for ‘edit
environment variables’.

4. Under User variables at the top of the menu, click on the Path variable and click Edit
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5. Add a new location that is the folder where the Raven executable is saved, e.g.,
C:\Program Files\Raven\, and click ok.

6. Test that Raven.exemay now be called from anywhere by running Raven.exe from Command
Prompt in a folder with no such executable. if you see the Raven_errors.txt file created, this
was successful!

7. If you need to update or change the version of Raven, you can simply replace the executable in your
stored location. There is no need to change or re-define the Path environment variable once set.

Only if you are using the Raven version with NetCDF support (i.e., for supporting gridded forcing
data such as that generated in regional climate forecasts):
Install the NetCDF 4 Library (without DAP) from
https://www.unidata.ucar.edu/software/netcdf/docs/winbin.html.
You then must ensure that the directory path of the installed NetCDF.dll file is in your PATH
environment variable, similar to the steps above for the Raven executable.

2.1.2 MacOS and Unix/Linux

MacOS users are encouraged to re-compile the Raven source code for their machine. Assuming you have
g++ installed on your machine, you may follow the sequence below:

1. (Optional) if using with NetCDF or lp_solve support, see below information box first. Specific in-
structions are included in the makefile for compiling with NetCDF support and/or compiling with
support for water management optimization using the lp_solve library.

2. unzip the Raven source code, obtained from the website or github to a directory of your choice

3. open the terminal and move to the directory of the source code/makefile

4. enter the following command: make clean (this cleans up previous build output, and is only
necessary if compiling a second time)

5. enter the following command: make (this creates the executable)

6. move the executable Raven.exe to your working directory

7. enter the command chmod 774 Raven.exe. This sets the permissions so you can execute the
code.

8. test run Raven by running the following command: ./Raven.exe modelname -o ./output/

If you are using the Raven version with NetCDF support (i.e., for supporting gridded forc-
ing data such as that generated in regional climate forecasts). MacOS and linux users, use
the brew command $ brew install netcdf from your terminal (https://formulae.
brew.sh/formula/netcdf) prior to compiling Raven using the makefile. You will have to
adjust the makefile where indicated in the comments to ensure Raven is linked to the NetCDF
libraries.

(Optional) To configure Raven to be run from anywhere on your MacOS system (similar instructions will
apply for Linux/Unix systems), follow these steps:

1. compile the Raven executable as per the previous steps for MacOS
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2. Open Terminal (can be found in the /Applications/Utilities folder or via a Spotlight
search with Cmd + Space)

3. Enter the command nano ~/.zshrc to edit the zsh configuration file in the nano text editor.

4. Use the down arrow key to navigate to the bottom of the file.

5. Add two lines to the file where your/path/to/raven is replaced with your path to the Raven.exe ex-
ecutable:
export RAVEN_HOME=‘‘your/path/to/raven’’
export PATH=‘‘RAVEN_HOME:\$PATH’’

6. Press Ctrl + 0 together to save, then Enter to confirm. Finally Ctrl + X to exit the text editor.

7. Quit Terminal (using Cmd + Q or right clicking the app icon in the Taskbar and choosingQuit)

8. Test that Raven.exe may now be called from anywhere by running Raven.exe from Terminal
in a folder with no such executable. if you see the Raven_errors.txt file created, this was
successful!

9. If you need to update or change the version of Raven, you can simply replace the executable in your
stored location. There is no need to change or re-define the Path environment variable once set.

Linux/Unix users may also have to compile from source code using the makefile provided. Alternately,
they may use the flatpak utility, running the following command from the terminal:

flatpak install flathub ca.uwaterloo.Raven

which should install Raven with NetCDF. If flatpak is used, then all executable calls to Raven.exe in
2.3 must be replaced with calls to flatpak run ca.uwaterloo.Raven. This assumes users have
flatpak installed on their system.

2.1.3 International Users

For all users outside of North America - you may have to temporarily change your number settings
for Raven to operate correctly; Raven assumes numerical formats of 1,000.00 (i.e., comma as the
thousands separator, and a period as the decimal separator)

2.1.4 Developers

For developers modifying the code, the source code can be compiled using the provided makefile (in g++),
CMakeList.txt file (using CMake), or Visual Studio Community Edition 2022 solution file (in windows).
Raven has been tested on several platforms and compilers, but if you run into errors which impede com-
pilation, please reach out to the development team.
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2.2 Input Files

In order to perform a simulation using Raven, the following five input files are required (where ‘modelname’
is the placeholder for the model name, often named after the watershed outlet, e.g., NicolaRiver):

• modelname.rvi - the primary model input file
This is where the primary functioning of the Raven model is specified. This includes all of the
numerical algorithm options (simulation duration, start time, time step, routing method, etc.) and
model structure (primarily, how the soil column is represented). Critically, the list of hydrologic
processes that redistributewater and energy between storage compartments is specified here, which
define both the conceptual model of the system, the specific state variables simulated, and the
parameters needed. Lastly, various options for output generation are specified.

• modelname.rvh - the HRU / basin definition file
The file that specifies the number and properties of subbasins and HRUs, as well as the connectiv-
ity between subbasins and HRUs. Importantly, land use/land type, vegetation class, aquifer class,
and soil classes are specified for each HRU in order to generate appropriate model parameters to
represent the properties of each HRU.

• modelname.rvt - the time series/forcing function file
This file specifies the temperature, precipitation, and possibly other environmental forcing functions
at a set of observation points (“gauges”) within the model domain. This information is interpolated
to each HRU within the watershed based upon spatial location. The .rvt file typically “points” to a
set of files storing information for each gauge or forcing type. If gridded forcing data is used, the
details about the corresponding NetCDF gridded data file and connections between the grid and
landscape are specified here.

• modelname.rvp - the class parameters file
This is wheremost of themodel parameters are specified, grouped into classes. EachHRUbelongs to
a single vegetation class, single land use, single aquifer class, and has a unique soil profile defined
by a collection of soil horizons each of a single soil class. All model parameters, on a class by
class basis, are specified here. The class formalism aids in the calibration process. Note that the
:CreateRVPTemplate command can be used to generate an empty .rvp file given the model
configuration specified in the .rvi file (see appendix A.1.3 for details).

• modelname.rvc - the initial conditions file
This is where the initial conditions for all state variables in all HRUs and subbasins are specified.
This may be generated from the output of a previousmodel run. If a blank file is provided, all storage
initial conditions are assumed to be zero (i.e., no snow, dry soil, etc.) and a run-up period will be
warranted.

Each of these files are described in detail in appendix A. While the .rvi (setup), .rvh (watershed geometry),
.rvc (initial conditions) and .rvt(forcing data) files are typically unique to a particular model, the .rvp
(properties) file may ideally be ported from one model to another. Figure 2.1 depicts the base input used
by and output generated from Raven, where the default/mandatory files for all simulations are indicated
in light blue.

To prepare the input files, it is recommended to first familiarize yourself with the format and various input
options. A number of pre-processors have been or are being developed to generate the .rvt file(s) from
alternative formats. For instance, Environment Canada stream gauge and meteorological data may be
imported with utilities in the RavenR package. The .rvh file is likely best prepared with the assistance of a
GIS database which can be used to determine unique class combination and the topology of the watershed
subbasins, or using the BasinMaker python library. Note that, if the size of .rvt or .rvh files becomes
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Figure 2.1: Standard input/output configuration of Raven. Light blue input files are required, light blue
output files are the default output (which may be suppressed if desirable). The light red input files are
files referred to by the primary input files, and are kept separate mostly for organization. The light red
output files are generated only if specifically requested by the user in the .rvi file.

unwieldy, the :RedirectToFile command can be used to redirect the input from an ’extra’ input file,
so a model could, for instance, have a single master .rvt file that points to a number of meteorological
forcing files (e.g., one or more .rvt file per gauge). A similar approach also enables the testing of multiple
climate scenarios without having to overwrite data files.

2.3 Running the Model

Once all of the necessary components of the above files have been created, the model may be called from
the command line, e.g., in the windows command prompt,

> C:\Program Files\Raven\Raven.exe C:\Temp\model_dir\modelname

or, if the active directory is C:\Temp\model_dir\:

> C:\Program Files\Raven\Raven.exe modelname

where ‘modelname’ is the default predecessor to the .rvi, .rvh, .rvt, .rvp (and optional .rvl/.rve) extensions.
There are no special flags needed, just the name of the model.

Note that if you have configured Raven to be run from anywhere on your system, and your active directory
is the same location as your model file directory, you can simply call Raven as:

> Raven.exe modelname

The command line also supports the following argument flags:
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• -o {output directory} : specifies the directory for generated model output

• -p {rvp_filename.rvp} : specifies the rvp file location

• -t {rvt_filename.rvt} : specifies the rvt file location

• -c {rvc_filename.rvc} : specifies the rvc file location

• -h {rvh_filename.rvh} : specifies the rvh file location

• -l {rvl_filename.rvl} : specifies the rvl file location

• -e {rve_filename.rve} : specifies the rve file location

• -r {runname} : specifies the run name for the simulation

• -m {mode character} : specifies the run mode character

• -n : run in ‘noisy mode’

• -s : run in ‘silent mode’

• -tt {shift} : shift start time/endtime/assimilation time by shift hours

• -we {runname} : specifies warm start ensemble run name for EnKF

• -template: generates a template .rvp file given only an .rvi file, and does not run a simulation
(equivalent to including the :CreateRVPTemplate command in the .rvi file).

Alternatively, the :OutputDirectory command in the .rvi file may be used to specify file output
location and the :rv*_Filename command may be used to specify the corresponding files (see the
details in appendix A.1). Use of the -o flag is recommended, however. File paths and filenames with
spaces are NOT supported from the command line.

A useful application of the output directory flag is to specify an output directory in the folder directly
beneath the working directory, for instance:

> C:\Program Files\Raven\Raven.exe modelname -o .\output\

Raven will create this specified output folder if it does not exist.

Note that while it is allowed that the input files from multiple models exist in a single folder, it is recom-
mended that each model get its own output directory to avoid overwriting of outputs.

For MacOS or Linux users, note that the Raven.exe, despite its .exe extension, runs like any other
command line tool. This can be run by opening the terminal application. The only difference
then is the use of forward slashes rather than backward slashes, e.g.,:

machine:~ username$ Raven.exe modelname -o ./output/

2.4 Output Files

Raven generates a number of customizable outputs which contain simulation diagnostics. By default,
Raven generates the following files:
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• Hydrographs.csv - the hydrograph output file
Contains the flow rates,Q(t) [m3/s], at the outlets of specified subbasins in the watersheds (usually
corresponding to those with stream gauges). Which subbasin hydrographs are reported is specified
in the .rvh file.

• WatershedStorage.csv - the watershed storage file
Contains watershed-averaged water storage in all of the simulated compartments over the duration
of the simulation. Also reports watershed-wide water mass balance diagnostics.

• solution.rvc - the solution file
Stores the complete state of the system at the end of the simulation. This file can be used as initial
conditions for a later model run. This file may also be generated at user-specified intervals dur-
ing simulation as a defense against computer breakdown for massive computationally-demanding
models.

• RavenErrors.txt - the errors file
Includes all of the warnings and errors for a particular model run, including when the model may
be making choices on behalf of the modeler (i.e., parameter autogeneration) or when model input
is flawed.

The formats of these files are described in appendix B, and may be pre-appended with the runname if the
:RunName command is used, generating (for example), Alouette41_Hydrographs.csv if the run
name is Alouette41. RavenErrors.txt is never given a prefix.

In addition to the above, the following output files may be created on request:

• WatershedMassEnergyBalance.csv - the watershed flux diagnostics file
Contains watershed-averaged water and energy fluxes from each hydrologic process over time.
(enabled using the :WriteMassBalanceFile command.)

• ForcingFunctions.csv - the forcing functions file
Stores the complete time series of all watershed-averaged forcing functions over the domain (i.e.,
rainfall, snowfall, incoming radiation, etc.) (enabled using the:WriteForcingFunctions com-
mand)

• Diagnostics.csv - model quality diagnostics
Reports metrics characterising of fit between the model results and any user-specified observations.
This output is enabled using the :EvaluationMetrics command, and requires at least one set
of observation data (:ObservationData in the .rvt file) to be generated.

• ReservoirStages.csv - reservoir stage history file
Stores the time history of reservoir stages for all simulated reservoirs. Requires at least one reservoir
in the model and is automatically generated if reservoirs are present.

• ReservoirMassBalance.csv - reservoir mass balance history file
Stores the time history of reservoir inflows and outflows for all simulated reservoirs. Requires at
least one reservoir in the model.

• Demands.csv - irrigation demands file
Stores the time history of irrigation, environmental flow constraints, and unmet demand (enabled
using the :WriteDemandFile command)

• WaterLevels.csv - water levels file
Stores the time history of stream/river water levels at the outlet of each gauged basin.
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• ExhaustiveMB.csv - exhaustive mass balance file
Stores all state variables in all HRUs over time. Given the potential size of this file, this option
should be used sparingly (enabled using the :WriteExhaustiveMB command.)

• State (.rvc) files - model intermediate state files
Similar to solution.rvc, except output at intermediate times specified using the :OutputDump or
:MajorOutputInterval commands. The files are named using the output time stamp, e.g.,
RunName_state_2001-10-01.rvc, and may be used as initial conditions for later simulation
runs.

Lastly, the extremely flexible:CustomOutput command can be used to indicate that Raven should track
and store in .csv, NetCDF, or .tb0 flat files any user-specified parameter, state variable, or mass/energy
flux in the model over time. This data may be aggregated either temporally or spatially, so that the user
may generate files containing, e.g., basin-averaged hydraulic conductivity of the top soil layer at the daily
timescale, or monthly averaged evaporation from the canopy in the 23rd HRU. The details of this custom
output are in the discussion of the :CustomOutput command in the .rvi file (appendix A.1.4). Other
special outputs are detailed in appendix B.

Additional output files generated by the transport and stream temperature simulation routines are dis-
cussed in chapter 7.

2.4.1 Alternative .nc (NetCDF) Output Format

For compatibility with software based on NetCDF files (e.g., the Deltares FEWS forecasting system) it is
also possible to write outputs in that format. The :WriteNetCDFFormat command should be present
in the .rvi file (prior to any :CustomOutput commands) if the NetCDF output should be written instead
of .csv files. Details are documented in appendix B.3.

2.4.2 Alternative .tb0 (Ensim) Output Format

For compatibility with the Green Kenue™ software interface, the option is also available to generate
output in .tb0 (Green Kenue™ tabular) format. Custom output will be written to a .tb0 table output file if
the :WriteEnsimFormat command is present in the .rvi file. Note that not all outputs are generated
in .tb0 format, and .tb0 support may be deprecated in future versions of Raven.

2.5 Building a Model

Base model: rvi and rvp files

It is recommended that users initially start with an existing model template such as the UBCWM, HBV-
EC, HMETS, MOHYSE, or Canadian Shield model configurations reported in appendix F. Once you get
more experienced with Raven, you may have existing model configurations that you have found work
well on similar landscapes to those you have simulated previously.

Template .rvp files can be generated by running the .rvi template file (and only the .rvi file) with the-
template command line argument, which builds a hollow .rvp file with all of the parameters necessary
for simulation using the particularmodel configuration specified in the .rvi file. Only the .rvi file is required
for this. Reasonable initial parameter value ranges are reported in appendix A.2, but manual calibration
will be required in pretty much all cases.

Landscape discretization: rvh files

The best approach for generating the subbasin delineation and HRU delineation (i.e., the .rvh file) is to
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use a GIS program such as ArcMap, SAGA, TauDEM or GRASS; or using the BasinMaker python li-
brary developed at the University of Waterloo. The latter is embedded in the Magpie google collab utility
downloadable from the Raven website. These tools enable the generation of basin geometry from a hy-
drologically conditioned DEM and additionally enable the overlay of map layers to determine HRU areas.
Basin outlets should at the very least correspond to locations of known streamgauges, but would also
be added at the outlets of hydrologically important lakes and reservoirs, at major stream junctions, or
at locations which divide the network into hydrologically similar landscapes (e.g., separating mountains
from foothills). HRUs are commonly generated by reclassification of raster- or vector-based land usemaps
overlain with subbasin boundaries, though thesemay be additionally overlain with soil maps and/or eleva-
tion bands, where appropriate, using a union operation. Slope, aspect, elevation, latitude, longitude, and
subbasin membership for each unique vegetation/land use/soil profile parcel would then be determined
by spatial averaging and geometric operations within the GIS. Note that HRUs do not have to be spatially
contiguous. The mechanics on how this is done vary from application to application. If the resultant HRU
map is in vector format, its data table may be exported to a text file then rearranged using any number
of text editing, spreadsheet, or scripting tools to be converted to .rvh format. Likely the hardest part to
automate here is the specification of subbasin connectivity (i.e., the downstream subbasin ID for each
subbasin), which typically would be done by eye.

Initial conditions: rvc file

The simplest initial conditions file can be empty. This can be modified later, but most storage compart-
ments in the model when run in continuous (rather than event or forecasting) mode have a spin-up period
that can compensate for an initially dry watershed. Groundwater storage and initial reservoir stage are
two notable exceptions that may have to be carefully initialized, as they are slow to run up.

Meteorological inputs and observations: rvt files

The populating of the time series (.rvt) file is generally a problem of finding appropriate and available
data and converting it to the .rvt format, which is relatively straightforward. Of course, there are many
complications arising in infilling missing forcing data, interpreting what data is useful, and determining
how to interpolate spatial data. Users can start with a single meteorological gauge initially and readily
add or remove meteorological gauges in a minimally invasive manner.

The RavenR R library provides a number of utilities for directly downloading Canadian meteorological
and stream gauge data and converting them to .rvt format. These RavenR tools are also embedded in the
Magpie workflow tool available from the Raven website.

Iterative improvement

Once you get a base model created and running, then you can start swapping out individual processes,
moving towards a landscape-appropriate model with complexity justified by the amount of data avail-
able at the site. A large amount of meteorological data and hydrograph data can justify a quite complex
model with finely discretized landscape and more complicated model configuration. Modifying model
configuration should be assessed one step a time, confirming each process addition or swapout of forcing
function representation lead to a more appropriate or otherwise more effective representation of water-
shed hydrology. Note that modifying and iteratively evaluating model structure in this way can be a
time consuming and arduous process, so many users will choose to stick with a fairly standard model
configuration with a few minor tweaks.

2.6 Calibration, Visualization, and Uncertainty Analysis

Unlike many hydrologic modeling tools, the Raven software package intentionally does not include any
methods for calibration, uncertainty analysis, plotting, or complex statistical analysis. All of these tools
are best addressed using flexible and generic pre-and post-processing tools. Some recommendations:
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• RavenView
An online map-based visualization tool for viewing Raven model input and output.
https://raven.uwaterloo.ca/RavenView/RavenView.html

• RavenR
A set of R utilities available from the Raven website. Requires the R open-source software environ-
ment.
https://raven.uwaterloo.ca/RavenR.html

• RavenPy
A set of Python utilities available on github. Developed by Ouranos to support the PAVICS-Hydro
online hydrological modelling environment.

• BasinMaker
A python library for manipulating basin discretization files available for download across North
America.
http://hydrology.uwaterloo.ca/basinmaker/index.html

• Ostrich
Amodel-independent multi-algorithm optimization and parameter estimation tool. Ostrich can be
used to calibrate Raven models, generate Monte Carlo simulations, and much, much more...
https://www.civil.uwaterloo.ca/envmodelling/Ostrich.html

• R
An open-source software environment for statistical computing and scientific graphics. Available
at https://cran.r-project.org/

Note that the model quality diagnostics generated using the :EvaluationMetrics command may
be utilised to support the calibration process.

2.7 Common Run Approaches

The following section describes suggested methods for running Raven in a mode other than straightfor-
ward simulation of a single model with a single set of inputs.

Automated Calibration

Multiple tools are provided within Raven for supporting automatic calibration by other software pack-
ages. It is encouraged to use the algorithms within the Ostrich software package, and an example Os-
trich-Raven configuration is provided with the Raven documentation. To constrain the calibration, it is
recommended to allow Raven to generate the diagnostics used to build the objective function using one
or more of the diagnostics described in section 8.2, which supports the provision of observation weights to
(1) include a spinup period (2) represent a calibration period (3) represent a validation period (4) discount
seasonal (e.g., winter) data during diagnostic calculation.

Other useful commands for calibration support include the ability to suppress all output but the diag-
nostics file (:SuppressOutput) and suppress all console output (:SilentMode). This maximizes the
speed of repeated model application (output generation can be more than 90 percent of computational
cost). Users also have the ability to override historical stream and reservoir flows and replace simulated hy-
drographswith observed hydrographs at locationswithin the streamnetwork (:OverrideReservoirFlow
for reservoirs and :OverrideStreamflow for stream gauges). Lastly, portions of the model may be
calibrated independently by disabling the remainder of the model using the :DisableHRUGroup com-
mand.
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Large Models

For larger models with considerable data inputs and outputs, it is suggested to lean on the power of the
:RedirectToFile command to organize the data. For instance, in a large basin model, it is useful
to have folders to store the observation data, meteorological gauge data, reservoir, and channel data and
keep it separate from the main body of Raven model files. A sample file structure might look like:

model folder/
./channels/
./observations/
./output/

./run1/

./run2/

./run3/
./metdata/
./reservoirs/
modelname.rvi
modelname.rvt
modelname.rvh
modelname.rvp
modelname.rvc

Multiple Climate Scenarios

For running multiple climate scenarios using a single model, it is recommended to fix the .rvc, .rvp, and
.rvh files. Different .rvt files should be generated for the specific climate scenarios. Individual runs would
be generated by modifying the rvt filename (using the :rvtFilename command in the .rvi file) and the
run name (using the :RunName command in the .rvi file).

Multiple Parameter Sets

It is common to run a model using multiple parameter sets in order to assess the uncertainty or sensitivity
of its predictions to changes in input (as done in, e.g., Markov Chain Monte Carlo). For such an approach,
it is recommended (if not using software such as Ostrich), to generate multiple .rvp files, keeping the
remainder of the data files fixed. Individual runs would be generated by modifying the rvp filename
(using the :rvpFilename command in the .rvi file) and the run name (using the :RunName command
in the .rvi file).

Forecasting

For forecasting, standard practice would be to hindcast / spin-up the model for a period of time, often
prior to winter to properly account for snow depths. The state of the model would be saved at the current
date and used as a ’warm start’ .rvc file for short-term forecasts fueled by weather forecasts, rather than
meteorological gauge data, thus only the .rvt files and .rvc files are changed when moving from spinup to
forecast, plus the start date and end date in the .rvi file. The initial state of the model (for instance snow
depth, soil moisture, or upstream flows) could be corrected if real-time data are available to compensate
for model errors by revising the .rvc state file. Operational choices can be evaluated, for instance, using
the :OverrideReservoirFlow time series to control reservoir flows.

Subdomain simulation

Sometimes for computational expediency it is worthwhile to only simulate a subset of the watershed.
Raven supports the ability to simulate part of a larger watershed model by disabling subbasins (and their
constituent HRUs) using the :DisableSubBasinGroup command. This readily handles simulation
of only headwater basins (attached to the rest of the model only downstream) or parallel basins (not
attached). For basins in the middle of the model, the watershed subset may be appropriately simulated if
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all inflows to the basin are user-specified via the :BasinInflowHydrograph command.

2.8 Troubleshooting Raven

While Raven will generally try to tell you when a mistake in the input files will cause problems, there are
times when the interface will “hang” or input will be noticeably erroneous without providing a warning or
error in RavenErrors.txt (note that Raven is designed to produce significant errors when something
goes wrong rather than subtle undetectable errors). These unchecked errors are most commonly due to
missing or erroneous input forcing or parameter data, though it may occasionally be due to a genuine bug
in the Raven code.

Always Check the RavenErrors.txt file in the output directory first. Often, the error messages
and warnings will contain sufficient information to diagnose and repair the problem. This is always
the best first step.

Use the Forum Posting questions and answers to the online Raven forum at
(https://www.civil.uwaterloo.ca/raven_forum/)
ensures the whole community can learn. (Note: the forum has been mostly defunct since 2021
after spambots forced us to change the registration process, however, there are still hundreds of
public answers to Raven modelling questions there.)

The following steps may be taken to diagnose and repair issues with Raven.

1. If the model ‘hangs’ prior to the beginning of simulation.

Add the command :NoisyMode to the .rvi file. This must be after any call to :SilentMode
(these commands toggle the same internal switch), but ideally at the top of the input .rvi file. Run-
ning the code in noisy mode generates detailed narrative output to the command prompt window,
and is best for diagnosing errors in input parsing. By looking at where the code “hangs”, the prob-
lematic input command can often be found. See if the model runs with the problematic command
commented out. If it does, there may be (a) improper command syntax or (b) a missing input param-
eter for the chosen method/algorithm or (c) erroneous input data linked to this method/algorithm
that Raven is not currently able to detect.

2. If the model runs to completion but generates clearly erroneous output (i.e., NaN or -#inf in
the output)
This type of error is likely due to (a) an error in input which Raven did not detect (e.g, a parameter
outside reasonable bounds like a porosity of 3.8); (b) a missing model parameter which Raven did
not detect; or (c) an error in the Raven modelling library.

(a) Step 1: Open the ForcingFiles.csv output file and look for non-sensible numerical val-
ues (e.g., negative PET or NaN radiation). These errors in Forcing Functions will propagate
through the model and generate hydrograph errors. Comment out or modify the correspond-
ing forcing function commands (catalogued in section A.1.2 of the appendix) until the faulty
forcing output not generated. For instance, if the PET is consistently negative, replace the
PET estimation or PET orographic correction algorithm with another method. If the errors are
fixed, then this may be due to poor parameters which drive this method. If the errors remain,
then data which is used to drive PET estimation may be faulty OR one of the other forcing
functions which drives PET (such as shortwave radiation, temperature, etc.) is faulty. The
latter would also be obvious from a cursory inspection of the ForcingFiles.csv output.
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(b) Step 2: If the forcing functions are not the culprit, then examine the WatershedStorage.csv
file and check for clearly erroneous estimates of watershed-averaged water storage. If, for
example, glacial storage looks faulty but everything else is OK, comment out the algorithms
which operate on glacial storage in the :HydrologicProcesses block in the .rvi file and
re-run until the glacial storage results are feasible (perhaps monotonically growing or shrink-
ing, but not NaN or hugely negative). This narrows us down to the problematic process algo-
rithm. Check the documentation to make sure that the proper parameters are provided for
this algorithm in the .rvp file for all glacier HRUs. If you still cannot diagnose the problem,
first ask questions on the Raven forum (http://www.civil.uwaterloo.ca/raven_
forum/), then (if needed) send the problematic input files with a short description to jr-
craig@uwaterloo.ca.

3. If the model is providing odd/unexpected output.

Sometimes generated hydrographs are not completely broken, but are at odds with our expecta-
tions. For example, outflows are 10 times larger or smaller than they should be when compared
to the observed hydrographs. These issues are much thornier, as they can arise from individu-
ally reasonable (but collectively unreasonable) combinations of parameter inputs. They are also
quite possible if you are building a model from scratch with Raven, and have done so improperly
(e.g., Raven technically allows you the flexibility to have two evapotranspiration processes, but it is
physical nonsense to implement this). There are some general approaches you may take towards
debugging this kind of model issue.

(a) Look at the WatershedStorage.csv file for clues. Most watersheds should have a quasi-
steady state behaviour from year to year; there may be wet years and dry years, but storage in
general oscillates and repeats a relatively consistent water balance from month to month. If
your model is a continuous model of three or more years, you should expect this type of oscil-
latory behavior. If you find that one storage compartment is steadily increasing or decreasing
in storage, it may be worthwhile to investigate the cause. In many cases, the inflow/outflow
processes are not properly matched, e.g., a middle soil storage unit may be filled due to perco-
lation at a much faster rate than it depletes due to baseflow losses, even at the annual scale.
Another possible symptom that may be seen in the WatershedStorage.csv file is a stor-
age compartment which always fills but never drains (or the opposite). Some storage units are
intended to have this behavior, such as ATMOS_PRECIP (which is always a water source, and
is a proxy for cumulative precipitation) and ATMOSPHERE (which is always a water sink, and
is a proxy for cumulative evapotranspiration losses). Others, such as deep GROUNDWATER,
may be used to represent external losses from the system. However, any other storage unit
should have means of decreasing and increasing in storage, as determined by the hydrologic
process list (each storage unit should act as a “To” and “From” storage unit), and the parameter
lists.

(b) Look at the ForcingFunctions.csv file for clues. Again, poor parameter choices can lead to
significant underestimates or overestimates of system forcings, which propagate through to
hydrographs and other model outputs. Look for reasonable values for radiative, precipitation,
and temperature forcings to the watershed. What constitutes “reasonable” is specific to the
climate and landscape, and is up to you to define.

(c) Check your stream network topology. The surface water network is fully defined by the list
of DOWNSTREAM_IDs in the :SubBasins command. If this is improperly constructed, or if
the entirety of an upstream watershed is not included in the model, you may need to either
correct the stream network or add user-specified inflows to account for upstream parts of the
watershed not explicitly included in the model.

25

http://www.civil.uwaterloo.ca/raven_forum/
http://www.civil.uwaterloo.ca/raven_forum/


(d) Check your cumulative watershed area. The area of each subbasin, and therefore also the total
drainage area of each subbasin, is dependent upon the areas of its constituent HRUs. If these
areas are incorrect, or if certain HRUs are not included in the model, this can lead to mass
balance errors.

(e) Check the units of your forcing functions. A common mistake for subdaily flow information
is to supply precipitation in mm rather than as a precipitation intensity in mm/d, leading you
to be off by a factor of 24.

4. Turn on :NoisyMode

If the issue is prior to simulation, or if the RavenErrors.txt warnings and errors are difficult to com-
prehend, adding the :NoisyMode and :EndPause command to the top of the .rvi file writes an
extensive stream of information to the command prompt/console. Occasionally, this can direct you
to a bad input command.

2.9 Version Notes

2.9.1 Major Changes from v3.8 to v4.0 (Feb 2025)

The following features have been added:

1. Water management optimization supported with the open-source lp_solve library. Support
for complex operating-regime-specific management goals and constraints, looped commands, de-
mand/delivery/return/diversion calculations subject to environmental flow constraints. Manage-
ment goals can be expressed in terms of user-specified lookup tables, named constants, workflow
variables, or time series. This functionality allows the user to codify general operating protocols
enforced via solution of a linear programming problem in each time step. Operates at daily and
hourly (or intermediate) time steps. This significant v4.0 upgrade is documented in section 4.5 and
appendix A.6.

2. Support for frozen wetlands which can accumulate snow.

3. Support for WATER-type HRUs via special soil profile. These water HRUs, intended to represent
stream reaches or other small water bodies, support canopy processes and use sub-canopy incoming
longwave radiation (unlike LAKE type HRUs) while still disabling subsurface processes.

4. Transport simulation in models with :Convolution is now supported. This was the only remain-
ing process which did not previously support transport.

5. Provision of time series as repeating patterns using :AnnualPattern command.

6. Support for netCDF output of stream temperature model results.

7. NewdiagnosticsABSERR_RUN (running average absolute error), KGE_PRIME (revised Kling-Gupta
which uses COV instead of standard deviation), and FUZZY_NASH (Nash Sutcliffe Efficiency which
only penalizes errors greater than a fixed percentage of observed flow). Lake area can now be pro-
vided as observation type; New diagnostic variable TOTAL_SWE for tracking sum of multilayer
SNOW and SNOW_LIQ.

8. New command line support for writing RVP template file with the -template command line
argument.

9. New command :AllowSoilOverfill to better support :Overflow process in conceptual/-
compartment soil models. New command :WriteNetReservoirInflows which adds net in-
flow reporting to Hydrographs.csv output.
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10. Support for nested :RedirectToFile commands, allowing this command to be used not only
in the primary model rvt, rvp, and rvm files, but also files referenced from the primary model files.

11. Can now support subbasin and HRU IDs longer than 9 digits.

12. Major bug fixes: Issue with:LandUseChange command introduced in v3.8 fixed; failure of stream
temperature model with zero-length streams; multiple minor bug fixes.

Minor backward compatibility issues:

1. :BasinInflowHydrograph2 is no longer subject to in-catchment routing; will lead to peakier
outflow hydrographs. Diversion are now removed upstream of the reporting point (rather than from
thewater passed to the next reach). Thismeans hydrographs.csv now reports post-diversion/demand
delivery basin outflows.

2. UPSTREAM_OF option for :PopulateSBGroup now is inclusive of most downstream subbasin.
May lead to different simulation results when subbasin groups are used for parameterization or
conditional process application.

2.9.2 Major Changes from v3.7 to v3.8 (Jan 2024)

The following features have been added:

1. Support for Basic Model Interface (BMI) interoperability and compilation as linked library (major
structural changes thanks to Andre Della Libera Zanchetta at the University of Manitoba)

2. Representation of simple lake freezing and snow on lakes with :LakeFreeze command

3. Support for:LWIncomingMethod and newmethodsLW_INC_SKYVIEW andLW_INC_DINGMAN

4. New PET estimation method PET_VAPDEFICIT for estimating above-stream evaporation

5. New parameters RELHUM_CORR and WIND_VEL_CORR for locally adjusting relative humidity and
wind speed; formerly hard-coded parameters CAP_LAI_RATIO and SNOCAP_LAI_RATIO now
exposed for adjusting relationship between canopy storage capacity and LAI. ParameterREFERENCE_FLOW_MULT
now exposed for estimating system-wide reference discharges.

6. New methods RAINSNOW_WANG and RAINSNOW_SNTHERM89 for rain-snow partitioning

7. Emulation of HYMOD2model (Roy et al., 2017); addition of SOILEVAP_HYMOD2 evaporation rou-
tine.

8. Support for sensible heat transfer and groundwater mixing during in-catchment routing

9. New model diagnostic DIAG_SPEARMAN for calculating the Spearman ranked correlation coeffi-
cient

10. Improved support for Ensemble Kalman filter in FEWS environment, including perturbation of tem-
perature

11. Improved handling of orographic corrections using gridded data with supplied cell elevations

12. New command:WriteLocalFlows towrite local contribution to hydrograph in hydrographs.csv.

13. Addition of :TemperatureCorrection for gridded or gauged temperature forcing bias correc-
tion

14. Writing of Reservoir mass balance file in NetCDF format in addition to .csv format.

15. Ported entirely over to GitHub (thanks to Trevor James Smith at Ouranos)
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16. Improved CMake compilation setup

17. major/minor bug fixes: repair of UBCWM subdaily snow balance, lake evaporation issues when
LAKE_PET_CORR parameter was not specified or when :HRUID not specified for reservoir; all PET
routines which should use daily temperature inputs no longer using time-step averaged tempera-
tures (backwards incompatibility issue); proper handling of rainfall on reservoir when:LakeStorage
is something other than SURFACE_WATER; repair of under-tested reservoir stage assimilation; cor-
rection of error in LW_RAD_DEFAULT (backwards compatibility issue)

2.9.3 Major Changes from v3.6 to v3.7 (May 2023)

The following features have been added:

1. Reconfiguration of and improvements to the EnKF assimilation implementation; ensemblemember-
specific inputs; timestamp-specific random seeds; support for RESERVOIR_STAGE as assimilation
data. Previous EnKF implementation workflows will require updating.

2. Improved support for orographic correction of gridded data

3. Additional tools for defining HRU and SubBasin groups via intersection and merging

4. DAILY_KGE diagnostic metrics available for sub-daily time steps

5. Added RUNOFF diagnostic variable which can be reported as custom output

6. Support for grouped vegetation change and HRU type change from live file

7. Support for mixing gauged temperatures and gridded precipitation

8. Checks for missing/fill values in all NetCDF inputs

9. Updated CMake makefile

10. major/minor bug fixes: repaired issues with sub-daily NetCDF inputs being incorrectly read; mem-
ory error leading to issues when reservoirs dry out completely; NetCDF data gaps upon buffered
read

2.9.4 Major Changes from v3.5 to v3.6 (Jan 2023)

The following features have been added:

1. simulation of basic geochemistry of transported constituents, including decay, transformation, equi-
librium, and sorption; simulation of non-advecting constituents

2. improved support for distributed loading sources of constituents/pollutants

3. simulation of full in-lake energy balance described in section 7.5

4. new :AnnualEvents time series command for pulse events such as nutrient loadings

5. EnKF data assimilation

6. support for more rigorous thermal simulation of lakes and reservoirs, with energy balance reporting

7. full emulation of the Australian Water Balance Model (AWBM)

8. addition of new process algorithms: PRECIP_ICEPT_STICKY, and AWBM processes.

9. support for sewer conduits and circular channel/conduit cross-sections

10. reporting of water levels at catchment outlets
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11. :AggregateDiagnostic command to report (e.g.) median NSE across multiple hydrographs

12. addition to :EvaluationPeriod command to only calculate diagnostics on high or low flows

13. new AGG_CUMULSUM custom output aggregation statistic (for, e.g., calculating monthly total pre-
cipitation)

14. new diagnostic DIAG_YEARS_OF_RECORD

15. new :TrapezoidalChannel command for simply characterizing channels

16. support for zero-area subbasins

17. support for wind speed, relative humidity, and net shortwave radiation as gridded inputs

18. writing of MassLoadings.csv output file using :WriteMassLoadings command

19. AET from reservoirs now reported in custom output

20. major bug fixes: support for southern hemisphere calculations, correct calculation of celerity when
specifying subbasin-specificManning’sn via:SubBasinProperties or:SBGroupMultiplier
commands. Fixed bug in :TargetBasin usage within control structures. Fixed bug in sublima-
tion calculations leading to zero sublimation in all routines (present since v3.5). Fixed bug in reading
elevations from NetCDF file. Potential melt now subjected to sub-daily corrections, where appro-
priate.

2.9.5 Major Changes from v3.0.4 to v3.5 (Jan 2022)

The following features have been added:

1. simulation of stream temperature via an unconditionally stable semi-analytical Lagrangian ap-
proach

2. general support for multiple reservoir control structures with complex operating regime rules

3. full Deltares-FEWS adaptor-free support (see appendix C)

4. level 1 (full) emulation of SAC-SMA, HYMOD, and HBV-Light, plus the corresponding hydrologic
process algorithms (including SOILEVAP_PDM, INF_PDM, and SOILBAL_SACSMA)

5. support for conditional statements in all input using:RunMode and:IfModeEquals-:EndIfModeEquals
commands.

6. Specified concentration/temperature time series, specifiedmass inflow time series (via new:MassLoading
command), can now link sources to HRU groups

7. data assimilation of lake levels using :AssimilateReservoirStage command, improved sup-
port for direct insertion streamflow assimilation

8. support for WITHIN_SBGROUP option in :PopulateHRUGroup command

9. support for routing using external scripts and live file with ROUTE_EXTERNAL option

10. newdiagnostics: R4MS4E,RTRMSE,RABSERR,PERSINDEX,NSE4, KLING_GUPTA_DEVIATION

11. support for overriding specific HRU gauge index using :SpecifyGaugeForHRU command

12. new potential melt algorithm POTMELT_RILEY (Riley et al., 1972)

13. minor bug fixes and QA/QC improvement; universal in-line commenting
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14. minor modifications to source to support Borland C++ compiller

The reservoir mass balance has been changed to handle precipitation differently. Reported reservoir in-
flow in the Hydrographs.csv file used include both precipitation on the lake/reservoir, plus inflow. Now
only inflow from upstream is included in this term and precipitation is reported separately in the Reser-
voirMassBalance.csv output file. In addition, precipitation on lakes is no longer processed through the
in-catchment routing routine and instantaneously impacts reservoir levels.

Backward compatibility issues:

• a bug was fixed in the calculation of outflow from a lake-type reservoir. The :WeirCoefficient
was hard-coded at 0.666 and unaffected by inputs. Any earlier models with lake-type reservoirs will
need to be re-calibrated.

• Net shortwave radiation now discriminates between above and below canopy conditions. This im-
pacts energy-balance based snowmelt calculations in forested regions using the POTMELT_EB,
POTMELT_RESTRICTED, and POTMELT_CRHM_EBSM snowmelt algorithms

2.9.6 Major Changes from v3.0.1 to v3.0.4 (Feb 2021)

The following features have been added:

1. optimization for reading small windows of very large NetCDF files; support for incomplete NetCDF
coverage over disabled HRUs

2. fixed :SBGroupPropertyMultiplier for MANNINGS_N

3. support for in-stream specified concentration sources

4. competitive ET supported by :OpenWaterEvaporation routines

5. improved sublimation routines, added vertical wind profile options

6. minor bug fixes and QA/QC improvement

2.9.7 Major Changes from v3.0 to v3.0.1 (Oct 2020)

The following features have been added:

1. addition of subbasin groups and subbasin group property specification

2. improved support for gridded PET and open water PET

3. minor bug fixes and QA/QC improvement

2.9.8 Major Changes from v2.9.1 to v3.0 (May 2020)

The following features have been added:

1. addition of SW_CLOUD_CORR_ANNANDALE algorithm for shortwave cloud cover correction

2. competitive ET now supported by all ET algorithms (can suppress for backward compatibility with
:SuppressCompetitiveET command. AET magnitudes are now directly accessible as state
variable in custom outputs. Additional option :SnowSuppressesPET can be used to suppress
ET when snow is on the ground. New PET_LINACRE algorithm for PET estimation.

3. support for simple insertion data assimilation of streamflow with :AssimilateStreamflow
command
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4. new reservoir regulatory support:

• :ReservoirMinFlow

• :ReservoirMaxFlow

• :ReservoirDownstreamFlow

• :ReservoirMaxQDecrease

• :ReservoirOverflowMode

5. support for irrigation demand and flow diversions:

• :IrrigationDemand

• :ReservoirDownstreamDemand

• :FlowDiversion

• :FlowDiversionLookupTable

• :DemandMultiplier

• :UnusableFlowPercentage

6. support for stage-volume and stage-area curves for lake-type reservoirs and groundwater seepage
from reservoirs

7. the :LatFlush command now supports inter-basin lateral water transfer

8. support for period-ending NetCDF inputs using :PeriodEndingNC command and proper han-
dling of NetCDF time zones, offset, and scale attributes

9. support for reference elevations for gridded forcings

10. improved and optimized support for massive stream/lake networks

11. writing of interpolation weights to external file using :WriteInterpolationWeights com-
mand

12. major bug fixes: correct handling of diffusive wave hydrograph for basins with very small travel
times; using open water ET for reservoir mass balance; glitch in the determination of day-switching
which impacts some sub-daily models using daily min/max temperature for estimation of melt en-
ergy/PET

13. minor bug fixes; improved QA/QC of inputs

The following backwards compatibility issues were introduced:

1. None

2.9.9 Major Changes from v2.9 to v2.9.1 (May 2019)

The following features have been added:

1. support of user-specified NetCDF attributes

2. support for non-standard calendars

3. support for non-midnight start time with NetCDF forcing

4. minor bug fixes; improved QA/QC of inputs
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2.9.10 Major Changes from v2.8.1 to v2.9 (Feb 2019)

The following features have been added:

1. Support for level 1 (exact) emulation of the MOHYSE model (Fortin and Turcotte, 2006); multiple
processes added.

2. Support for level 1 emulation of the HMETS model (Martel et al., 2017); multiple processes added.

3. Support for the PAVICs platform

4. Added PET_OUDIN PET estimation method and :DirectEvaporation support.

5. Added :AnnualCycle method for inputting cyclical time series.

6. Integrated multiple algorithms from the Cold Regions Hydrological Model (CRHM) (Pomeroy et al.,
2007), including the PET approach of Granger and Gray (1989), the rain snow partitioning approach
of Harder and Pomeroy (2013), two snow albedo evolution algorithms, a energy balance potential
melt routine and a simple snow balance approach.

7. Support for model simulation start times other than midnight

The following backwards compatibility issues were introduced:

1. Due to a bug in the calculation of UTM zone from HRU latitudes and longitudes, the interpolation
schemes for large models with multiple meteorologic gauges had an anisotropic bias (e.g., long,
thin nearest-neighbor zones). This has been fixed, leading to a discrepancy between old and new
model precipitation and temperature interpolation. This will not impact Raven models using single
gauges, NetCDF gridded inputs, or user-specified gauge weights, only those using inverse distance
or nearest neighbor interpolation.

2.9.11 Major Changes from v2.8 to v2.8.1 (Jul 2018)

The following features have been added:

1. FEWS-compliant NetCDF custom and standard output (Hydrographs.nc andWatershedStorage.nc)

2. support of deaccumulation of NetCDF input data

3. RAINSNOW_HARDER Rain/snow discrimination

4. fixes to relative file path handling, :VegetationChange/:LandUseChange/lake crest height/target
stage bugs introduced in v2.8,

The following backwards compatibility issues were introduced:

1. relative file paths are now (correctly and consistently) with reference to the file specified rather than
the model working directory

2.9.12 Major Changes from v2.7 to v2.8

The following features have been added:

1. Documentation improvements/Bug fixes/Improved QA/QC on model inputs

2. Significant speed improvements, particularly with NetCDF processing

3. Wetlands - new wetland HRU type; support for lateral flow to and from geographically-isolated and
riparian wetlands; new depression flow and seepage routines for wetland depression storage
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4. Lakes andReservoirs - lake-type reservoirs for natural (unmanaged) run-of-river lakes; time-dependent
weir control and rule curves (maximum,minimum, and target stages); spillway and underflow stage-
discharge curve specification; advective transport of constituents and tracers through reservoirs;
reservoir inflow and net inflow diagnostics; reservoir outflow override; reservoir mass balance re-
porting;

5. Inter-HRU Flow and Transport - generalized lateral flow support of water between HRUs and lateral
advective transport of constituents;

6. Shortwave radiation on sloping surfaces - the default method now uses the robust analytical calcu-
lation approach of Allen et al. (2006) for estimating clear sky solar radiation

7. Improved Input/Output - custom flux reporting between/to/from any state variable, mixed gauge
interpolation support (i.e., when temperature and precipitation reported at different gauges)

8. Other - HRU/subbasin disabling (only model a subset of the model); subbasin-specific Manning’s n
and slope; automated HRU group population; optimization and speed improvements (particularly
for NetCDF input); running average NSE diagnostics; basin inflow hydrographs at downstream end
of subbasin; vegetation-based PET correction; support of date-based net shortwave radiation input
forcings;

The following backwards compatibility issues were introduced:

1. None

2.9.13 Major Changes from v2.6 to v2.7 (May 2017)

The following features have been added:

1. Documentation improvements/Bug fixes/Improved QA/QC on model inputs

2. Significantly improved support for flexible reservoir simulation and calibration - time-varying reser-
voir curves, unevenly spaced reservoir curves,

3. Support for gridded data in NetCDF format (see appendix A.4.7)

4. Improved place- and time-specific control over application of processes using the:->Conditional
command, :LandUseChange command, and :VegetationChange command.

5. :CreateRVPTemplate command can be used to generate a template .rvp file from specified .rvi
model configuration

6. Added a number of new diagnostics (LOG_NASH, NASH_DERIV, KLING_GUPTA)

7. Addition of the GAWSER-style snow balance and consolidation routine

8. Addition of US Army Corps snowmelt model

9. RunName can be specified from the command line

The following backwards compatibility issues were introduced:

1. None

2.9.14 Major Changes from v2.5 to v2.6 (May 2016)

The following features have been added:

1. Significant improvements to the Raven Documentation
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2. Support for additional model quality diagnostic (R2)

3. Improved support for sub-daily emulation of the UBC watershed model

4. New elevation-based gauge interpolation algorithm (INTERP_INVERSE_DISTANCE_ELEVATION)

5. New two-layer snow melt model (SNOBAL_TWO_LAYER)

6. Improved support for blank observation values and non-zero observation weights in model diag-
nostics

The following backwards compatibility issues were introduced:

1. The hydrograph observations file is now written in period-starting (rather than period-ending) for-
mat, meaning that the single time step correction to the start date of a continuous observation
hydrograph time series is no longer needed. ACTION: Existing observation .rvt files will have to be
amended with a simple date shift.

2. For models with more than one subbasin where the reference or initial stream discharges were
not user-specified, the algorithm used to estimate basin initial and reference flows has been sig-
nificantly modified. Automatic estimation of network flows now requires the specification of the
:AnnualAvgRunoff command in the .rvp file. ACTION: Recalibration of existing models will likely
be required if Q_REFERENCEwas not user-specified for all basins and a celerity-dependent routing
algorithm was used (e.g., a Muskingum variant, plug flow, or diffusive wave).

3. For models with more than one gauge and gauge-specific :SnowCorrection and :RainCor-
rection parameters, the interpolation algorithm has been modified to more appropriately han-
dle the spatial handling of these corrections. ACTION: Recalibration of existing models may be
required.
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Chapter 3

The Hydrologic Process Library

The following chapter outlines the many process algorithms available for modelling the water cycle in
Raven.

3.1 Precipitation Partitioning

The precipitation partitioning process moves water, in the form of snow and rain, to the appropriate
storage compartment. The order of application is depicted in figure 3.1. The specific distribution of rainfall
and snowfall to the canopy, and ground surface (in the form of ponded water) depends upon the existence
of particular storage compartments and a number of model parameters.

Figure 3.1: Partitioning of rainfall/snowfall to the appropriate surface storage compartments

The partitioning of precipitation proceeds as follows (for non-lake HRUs):

1. The amount of rain and snow captured by the vegetation canopy is controlled by the precipitation
interception rate (calculated as described below) and the storage capacity of the canopy. If the
canopy exists as a storage state variable (i.e., CANOPY or CANOPY_SNOW) are present in the model,
these storage compartments are filled at the calculated interception rate until full. The remain-
der (if any) is allowed to proceed onward, with a correction included for the percent forest cover,
(land use parameter FOREST_COVER). If canopy water/snow storage is not explicitly simulated,
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the amount of available canopy storage is not considered and the amount of snow and rain that
would be captured by the canopy is “evaporated” to the atmosphere.

2. If there is a snow state variable in the model (determined usually by the presence of some kind of
snow balance or snow melt algorithm), the snow as SWE is increased by an amount corresponding
to snowfall. If rain hits the snowpack, it fills the unripe pores in the snowpack and is allowed to
proceed onward. If required by the model, cold content, and snow density may also be updated.
Some of the snow balance algorithms override the details of this process, insteadmoving all snowfall
to NEW_SNOW and all rainfall to PONDED_WATERwhere it waits to be handled by the snow balance
algorithm.

The water in the PONDED_WATER storage compartment, which typically also includes meltwater from
snow melt, waits to be distributed to the shallow subsurface or surface water storage through the subse-
quent application of an infiltration or abstraction algorithm.

Special HRU types for open water, exposed rock, glaciers, and wetlands (determined by WATER,
ROCK, GLACIER, and WETLAND prefixes on HRU soil profiles) are treated a bit differently than the
default land HRU. In these HRUs, top soil is not active; therefore precipitation partitioning works
a bit differently and (e.g.,) infiltration and soil evaporation routines are inactive.

For lake HRUs, all snow and rain is converted to liquid water and added directly to the SURFACE_WATER
store ready to be routed downstream via in-catchment routing. Alternately, water can be sent to the
LAKE_STORAGE store (if specified using the :LakeStorage command), where water release is delayed
to the surface water network as controlled using (e.g.,) the :LakeRelease process (section 3.14). This
latter approach is likely preferred for systems dominated by small lake features. Lake HRUs are defined
as those with a zero-layer soil profile whose name begins with LAKE.

For glacier HRUs, glacier processes are enabled (they will not be applied in any non-glacier HRU). No soil
processes (e.g., infiltration or percolation) are simulated beneath glaciers. Glacier HRUs are defined as
those with a zero-layer soil profile whose name begins with GLACIER.

For wetlandHRUs, all rain is converted to liquidwater and added directly to theDEPRESSION store. Wet-
land HRUs are defined as those with a soil profile whose name begins with WETLAND. Snowwhich falls on
a wetland is allowed to accumulate, assuming that the wetland is frozen. When it melts, it turns to ponded
water andmust be flushed to depression storage via proper commands in the:HydrologicProcesses
block within the .rvi file.

For exposed rock HRUs, all throughfall and snowmelt is stored as PONDED_WATER. Since infiltration
schemes don’t function with rock-type HRUs, the user must provide an alternate mechanism to reach
SURFACE_WATER (usually via a conditional :Flush process).

Example usage in the .rvi file:

:Precipitation RAVEN_DEFAULT ATMOS_PRECIP MULTIPLE

3.1.1 Canopy Interception Algorithms

The canopy interception algorithms, specified by the model command :PrecipIceptFract are used
to determine the percent rain or snow captured by a full forest/crop canopy. In all cases, the maximum
interception rates are given as

Rint = θrain ·R
Sint = θsnow · S
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whereR andS are snowfall rates, in [mm/d],Rint andSint are interception rates, inmm/d, and θrain/θsnow
are the interception percentages (values between 0 and 1). These maximum interception rates may be lim-
ited (as mentioned above) by the current amount of water stored in the canopy. Many of these rates are
controlled by leaf area index, LAI, and stem area index, SAI, calculated as follows:

LAI = (1− s) · LAImax · fLAI(m) (3.1)

SAI = (1− s) · β · hveg

where s is the land use parameter FOREST_SPARSENESS, LAImax is the maximum LAI (vegetation pa-
rameterMAX_LAI, fLAI(m) is the relative LAI correction bymonthm, specified by the:SeasonalCanopyLAI
command for each vegetation type, andβ is the vegetation parameterSAI_HT_RATIO. Note thatFOREST_COVERAGE
should be interpreted as the percentage of land covered in representative vegetation, andFOREST_SPARSENESS
should be interpreted as a land use-based correction factor for vegetation density. The height of vegeta-
tion, hveg is calculated as

hveg = hmax · fveg(m)

where hmax is the maximum vegetation height (vegetation parameter MAX_HEIGHT) and fveg(m) is the
relative vegetation height correction bymonthm, specified using the :SeasonalCanopyHeight com-
mand in the .rvp file. In all cases, canopy interception of both snow and rain is limited by the capacity of
the vegetation, determined by vegetation propertiesMAX_CAPACITY [mm] andMAX_SNOW_CAPACITY
[mm]. The capacity at any given time varies with LAI:

C = Cmax ·
LAI

LAImax

whereC is the current capacity,Cmax is themaximum capacity (e.g., MAX_CAPACITY). The total amount
of intercepted snow or rain is not allowed to exceed this capacity for any of the interception algorithms.

Example usage in the .rvi file (above the verb|:HydrologicProcesses| block:

:PrecipIceptFract PRECIP_ICEPT_USER

The following algorithms are used to determine the percentages of rain and snow that will be intercepted
by the vegetative canopy:

User-specified throughfall fraction (PRECIP_ICEPT_USER)

The default method used in Raven. The interception percentages are directly specified by the user,
where θrain is the vegetation parameter RAIN_ICEPT_PCT and θsnow is the vegetation parameter
SNOW_ICEPT_PCT.

Linear LAI-based method (PRECIP_ICEPT_LAI)

From Dingman (2002), the interception percentages are given as a linear function of the LAI:

θrain = αrain · (LAI + SAI)

θsnow = αsnow · (LAI + SAI)

whereαrain andαsnow are the vegetation parametersRAIN_ICEPT_FACT andSNOW_ICEPT_FACT,
respectively. The leaf area index LAI and stem area index SAI are calculated as indicated above.
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Exponential LAI-based method (PRECIP_ICEPT_EXPLAI)

The interception percentages are given as:

θrain = 1− exp(−0.5(LAI + SAI))

θsnow = 1− exp(−0.5(LAI + SAI))

Hedstrom-Pomeroy method for snow (PRECIP_ICEPT_HEDSTROM)

If this method is chosen, the rain interception is the same as for PRECIP_ICEPT_EXPLAI, but
the snow interception is handled as documented in Hedstrom and Pomeroy (1998).

No interception (PRECIP_ICEPT_NONE)

Interception does not occur/is not represented.
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3.2 Infiltration / Runoff partitioning

Infiltration refers to the partitioning of ponded water (the residual rainfall and/or snowmelt) between the
shallow surface soil (infiltrated water) and surface water (runoff). Infiltration is typically controlled by
the saturation of the soil and its hydraulic properties (e.g., hydraulic conductivity, infiltration capacity).

Infiltration always moves water from PONDED_WATER to SOIL[0] (the top soil layer), and depending
upon the soil structure model specified by the :SoilModel command, may additionally push water to
lower soil moisture stores. The remaining uninfiltrated water is typically treated as runoff and moved to
SURFACE_WATER.

Infiltration is limited by the availability of soil storage. Many of the following algorithms use the quantities
of maximum soil storage (ϕmax [mm]), maximum tension storage (ϕtens [mm]), and field capacity storage
(ϕfc [mm]) in a layer, always calculated as:

ϕmax = Hn(1− SF ) (3.2)

ϕtens = ϕmax(Sfc − Swilt)

ϕfc = ϕmaxSfc

where H is the soil layer thickness [mm], n is the porosity (soil property POROSITY), SF is the stone
fraction (soil property STONE_FRAC, typically zero), Sfc is the saturation at field capacity (soil parameter
FIELD_CAPACITY), and Swilt is the saturation at the wilting point (soil parameter SAT_WILT). These
parameters may be user-specified or generated from percent sand/silt/clay.

Example usage in the .rvi file (within the :HydrologicProcesses command block):

:Infiltration INF_GREEN_AMPT PONDED_WATER MULTIPLE

Infiltration/Runoff Algorithms

Rational method (INF_RATIONAL)

A simple linear relationship between precipitation and runoff (e.g., Chow et al. (1988)), characterized
by:

Minf = R · (1− Pc)

whereMinf is the infiltration rate [mm/d],R is the rainfall/snowmelt rate [mm/d] (alternately, the
current amount of ponded water divided by the model timestep), and Pc is the partition coefficient,
specified as the land use parameter PARTITION_COEFF. The remainder of rainfall is routed to
surface water.

SCS method (INF_SCS)

The standard Soil Conservation Society (SCS) method (Soil Conservation Service, 1986), where in-
filtration is a function of the local curve number:

Minf = R ·
(
1− (R− 0.2S)2

R+ 0.8S

)
where Minf is the infiltration rate [mm/d], R is the rainfall/snowmelt rate [mm/d] (alternately,
the current amount of ponded water divided by the model timestep), and S [mm] is the retention
parameter

S = 25400/CN − 254

39



where CN is the SCS curve number (land use parameter SCS_CN. The curve number for moderate
antecedent moisture content (condition II) is user-specified with land use parameter SCS_CN and
corrected for dry or wet conditions based upon 5-day precipitation history and whether or not it is
growing season. The SCS method should only be used for daily simulations.

Explicit Green Ampt method (INF_GREEN_AMPT)

The explicit calculation of Green-Ampt cumulative (Green and Ampt, 1911) infiltration

Minf = min

(
R, ksat

(
1 +

|ψf |(ϕmax − ϕsoil)

F

))
where R is the rainfall/snowmelt rate [mm/d], F uses the nth recursive approximation of the Lam-
bertW−1 function (Barry et al., 2005). The variables ψf [-mm], ϕmax [mm], and ϕsoil [mm], are the
Green-Ampt wetting front suction (soil parameter WETTING_FRONT_PSI), maximum soil mois-
ture content (defined in equation 3.2), and soil moisture at the start of the time step, a state variable.
ksat is the saturated conductivity of the soil [mm/d], soil parameter HYDRAUL_COND. All param-
eters used are those associated with the top soil.

Simple Green Ampt method (INF_GA_SIMPLE)

The quick-and-dirty version of the Green-Ampt (Green and Ampt, 1911) analytical solution for dis-
crete time-stepping schemes:

Minf = min

(
R, ksat

(
1 +

|ψf |(ϕmax − ϕsoil)

F

))
where R is the rainfall/snowmelt rate [mm/d]. F [mm], the cumulative infiltration, is accumu-
lated as a state variable during simulation, and reverts to zero after prolonged periods without
precipitation. The variables ψf [-mm], ϕmax [mm], and ϕsoil [mm], are the Green-Ampt wetting
front suction (soil parameter WETTING_FRONT_PSI), maximum soil moisture content (defined in
equation 3.2), and soil moisture at the start of the time step. ksat is the saturated conductivity of
the soil [mm/d], soil parameter HYDRAUL_COND. All parameters used are those associated with
the top soil.

VIC method (INF_VIC)

From the variable infiltration capacity model (Wood et al., 1992):

Minf = R ·K1

(
γαzmax + zmin −

ϕsoil
ϕmax

)γ
where R is the rainfall/snowmelt rate [mm/d], ϕsoil [mm] is the soil moisture content, ϕmax is the
maximum soil storage capacity as defined using equation 3.2, α is the soil parameter VIC_ALPHA,
zmin and zmax are the soil parameters VIC_ZMIN and VIC_ZMAX, andK1 is given by:

K1 = ((zmax − zmin)αγ)
−γ

VIC/ARNO method (INF_VIC_ARNO)

The VIC/ARNO model as interpreted by (Clark et al., 2008).

Minf = R ·

(
1−

(
1− ϕsoil

ϕmax

)b)
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where R is the rainfall/snowmelt rate [mm/d], b is the soil parameter B_EXP, ϕsoil is the top soil
layer water content [mm], and ϕmax is the maximum topsoil storage [mm] calculated using equa-
tion 3.2.

HBV method (INF_HBV)

The standard HBV model approach (Bergstrom, 1995; Lindström et al., 1997).

Minf = R ·

(
1−

(
ϕsoil
ϕmax

)β)

where β is the soil parameter HBV_BETA, ϕsoil is the soil layer water content [mm], and ϕmax is
the maximum soil storage [mm] calculated using equation 3.2.

PRMS method (INF_PRMS)

The PRMS model (Leavesley and Stannard, 1995) as interpreted by Clark et al. (2008):

Minf = R ·
(
1− Fmaxsat min

(
ϕsoil
ϕtens

, 1

))
where ϕsoil is the soil layer water content [mm], ϕtens is the maximum tension storage [mm] cal-
culated using equation 3.2, and Fmaxsat is the maximum saturated area fraction (land use parameter
MAX_SAT_AREA_FRAC).

UBCWatershed Model method (INF_UBC)

As documented in Quick (2003), the UBCWM infiltration algorithm partitions ponded water to
surface water, interflow, and two groundwater stores. The infiltration rate into the shallow soil is
calculated as

Minf = R · (1− b2)

whereMinf is limited by the soil storage deficit and b2, the effective impermeable area percentage,
is calculated using a deficit-based estimate corrected with a special term for flash floods (corre-
sponding to higher rainfall/melt rates):

b2 = b1 + (1− b1) · FF

here b1, the unmodified effective impermeable area percentage, calculated as

b1 = Fimp · 10
(
−ϕmax−ϕsoil

P0AGEN

)

where ϕsoil and ϕmax are as defined in equation 3.2 and FF , the flash factor (which is constrained
to vary between 0 and 1) is calculated as:

FF = ·
(
1 + log

(
ϕpond

V0FLAX

)
/ log

(
V0FLAX
1800

))
here,Fimp [-] is the land use parameterIMPERMEABLE_FRAC, V0FLAX [mm] is the global ponding
parameterUBC_FLASH_PONDING, and P0AGEN [mm] is the soil propertyUBC_INFIL_SOIL_DEF,
the reference soil deficit used at which 10 percent of the soil surface generates runoff.
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The remaining rainfall/snowmelt is distributed to groundwater (at rate Mperc), interflow (at rate
Mint, and runoffMrun using the following expressions

Mperc = min (Mperc
max, R−Minf ) · (1− b2)

Mint = (R−Minf −Mperc) · (1− b2)

Mrun = b2 ·R

To summarize, a percentage b2 of the rainfall/snowmelt runs off directly. The remainder first infil-
trates into the shallow soil, until the deficit is filled. Any remaining water then percolates into the
groundwater at a maximum rateMperc

max [mm/d], specified using the MAX_PERC_RATE parameter
of the groundwater soil layers. This component will be partitioned such that a certain percentage,
UBC_GW_SPLIT, a global parameter specified using the :UBCGroundwaterSplit command,
goes to the lower groundwater storage, whereas the remainder goes to upper groundwater storage
The final remaining water (if any) goes to interflow storage, where it will be routed to the surface
water network.

GR4J infiltration method (INF_GR4J)

From the GR4J model (Perrin et al., 2003):

Minf = ϕmax ·

α · (1−
(
ϕsoil
ϕmax

)2
1 + αϕsoil

ϕmax


where α = tanh(ϕpond/ϕmax), ϕpond [mm] is the ponded water storage after rainfall/snowmelt,
ϕsoil is the top soil layer water content [mm], and ϕmax is the maximum topsoil storage [mm]
calculated using equation 3.2.

HMETS infiltration method (INF_HMETS)

From the HMETS model (Martel et al., 2017):

Minf = R ·
(
1− α · ϕsoil

ϕmaxsoil

)
whereR is the rainfall/snowmelt rate [mm/d],α is the unitless land use parameterHMETS_RUNOFF_COEFF,
ϕsoil is the top soil layer water content [mm], and ϕmax is the maximum soil storage [mm] calcu-
lated using equation 3.2.

AWBM infiltration method (INF_AWBM)

From the Australian Water Balance Model (AWBM) (Boughton, 2004). Not very compatible with
other model structures. The surface is divided into three zones of different storage capacity (defined
by the thickness and porosity of SOIL[0], SOIL[1], and SOIL[2]). The zones have an areal
percentage coverage of a1 (land surface parameter AWBM_AREAFRAC1 [0..1]), a2 (land surface
parameter AWBM_AREAFRAC2 [0..1]), and a3 = 1− a1− a2. Each zone is filled to capacity (i.e., all
water will infiltrate) until filled, in which case each zone releases excess water, which is partitioned
into direct runoff and groundwater storage (where SOIL[3] represents this long term storage).

Mexcess = max(a1R−max(a1ϕ
max
1 − ϕ1, 0)/∆t, 0) +

max(a2R−max(a2ϕ
max
2 − ϕ2, 0)/∆t, 0) +

max(a3R−max(a3ϕ
max
3 − ϕ3, 0)/∆t, 0)

Minf = R−Mexcess
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Mrunoff = (1− BFI) ·Mexcess

MtoGW = (BFI) ·Mexcess
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3.3 Baseflow

Baseflow refers to the flow of water from an aquifer or deeper soil horizon to surface water, typically
due to a head gradient between fully saturated soil and stream. It may be considered the sum of the
contribution of deep groundwater exchange with a river and delayed storage in the streambank.

Baseflow moves water from either SOIL[m] or AQUIFER state variables, depending upon the soil struc-
ture model specified by the :SoilModel command. The water is always moved to SURFACE_WATER.
Baseflow is rate-limited by the availability of soil/aquifer storage. Example usage in the .rvi file (within
the :HydrologicProcesses command block):

:Baseflow BASE_LINEAR SOIL[4] SURFACE_WATER

Available Algorithms

Constant baseflow (BASE_CONSTANT)

A constant, specified rate of baseflow:

Mbase =Mmax

whereMmax [mm/d] is the maximum baseflow rate, soil parameter MAX_BASEFLOW_RATE.

Linear storage (BASE_LINEAR or BASE_LINEAR_ANALYTIC)

A very common approach used in a variety of conceptual models. The baseflow rate is linearly
proportional to storage:

Mbase = kϕsoil

where k [1/d] is the baseflow coefficient (soil parameter BASEFLOW_COEFF), and ϕsoil is the water
storage [mm] in the soil or aquifer layer. An alternate version, BASE_LINEAR_ANALYTIC may
be used to simulate the same condition, except using a closed-form expression for integrated flux
over the time step (∆t):

Mbase = ϕsoil · (1− exp(−k∆t))/∆t

The two methods are effectively equivalent for sufficiently small time steps, but the second is pre-
ferred for larger values of k (k ·∆t > 0.1).

Non-linear storage (BASE_POWER_LAW)

A very common approach used in a variety of conceptual models, including HBV Bergstrom (1995);
Lindström et al. (1997). Here, the baseflow rate is non-linearly proportional to storage:

Mbase = kϕnsoil

where k [1/d] is the baseflow coefficient (soil parameter BASEFLOW_COEFF), and ϕsoil is the water
storage [mm] in the soil or aquifer layer, and n is the user-specified soil parameter BASEFLOW_N.

VIC baseflow method (BASE_VIC)

From the VIC model Wood et al. (1992) as interpreted by (Clark et al., 2008):

Mbase =Mmax

(
ϕsoil
ϕmax

)n
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whereMmax [mm/d] is themaximumbaseflow rate at saturation (soil parameterMAX_BASEFLOW_RATE),
ϕsoil is the water storage [mm] in the soil or aquifer layer, ϕmax is the maximum soil storage ca-
pacity , and n is the user-specified soil parameter BASEFLOW_N.

GR4J baseflow method (BASE_GR4J)

From the GR4J model Perrin et al. (2003):

Mbase =
ϕsoil
∆t

·

1−

(
1 +

(
ϕsoil
ϕref

)4
) 1

4


where ϕref [mm] is the reference soil storage, the user-specified soil parameter GR4J_X3, which
can be interpreted as a baseflow reference storage, ϕsoil is the water storage [mm] in the soil or
aquifer layer.

Topmodel baseflow method (BASE_TOPMODEL)

From TOPMODEL (Beven and Kirkby, 1979) as interpreted by (Clark et al., 2008):

Mbase =Mmax ·
ϕmax
n

· 1

λn
·
(
ϕsoil
ϕmax

)n
whereMmax [mm/d] is themaximumbaseflow rate at saturation (soil parameterMAX_BASEFLOW_RATE),
ϕsoil is the water storage [mm] in the soil layer, ϕmax is the maximum soil storage capacity, λ is the
mean of the power-transformed topographic index [m] (terrain parameter TOPMODEL_LAMBDA),
and n is the user-specified soil parameter BASEFLOW_N.

Threshold-based baseflow method (BASE_THRESH_POWER)

Here, baseflow doesn’t commence until a threshold saturation of the soil layer is met. Above the
threshold, the outflow rate is controlled by saturation up to a maximum rate.

Mbase =Mmax ·

(
ϕsoil
ϕmax

− Sth

1− Sth

)n
whereSth [-] is the threshold saturation atwhich baseflow begins (soil parameterBASEFLOW_THRESH),
Mmax is the soil parameter MAX_BASEFLOW_RATE [mm/d], and the power law coefficient n is
the soil parameter BASEFLOW_N.

Threshold-based baseflow method (storage) (BASE_THRESH_STOR)

Here, baseflow doesn’t commence until a threshold storage amount of the soil layer is met. Above
the threshold, the outflow rate is linearly related to storage excess above the threshold.

Mbase = K2 ·max (ϕsoil − ϕthresh, 0)

whereϕth [mm] is the threshold soil storage atwhich baseflow begins (soil parameterSTORAGE_THRESHOLD),
K2 is the soil parameter BASEFLOW_COEFF2 [1/d].
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3.4 Percolation

Percolation refers to the net downward flow of water from one soil/aquifer unit to another. This process
is physically driven by a moisture gradient, but this is often simplified in conceptual percolation models.

Percolation moves water between SOIL[m] or AQUIFER units, depending upon the soil structure model
specified by the:SoilModel command. The user typically has to specify both the ’from’ and ’to’ storage
compartments. Percolation is rate-limited by the availability of soil/aquifer storage and by the capacity
of the receptor ’to’ compartment. Example usage in the .rvi file Example usage in the .rvi file (within the
:HydrologicProcesses command block):

:Percolation PERC_LINEAR SOIL[0] SOIL[1]
:Percolation PERC_LINEAR SOIL[1] SOIL[2]

Available Algorithms

Constant percolation (PERC_CONSTANT)

A constant, specified rate of percolation from one soil layer to the next:

Mperc =Mmax

whereMmax is the soil parameter MAX_PERC_RATE of the ’from’ soil compartment.

Corrected linear percolation (PERC_GAWSER)

As used in the GAWSER hydrologic model, (Schroeter, 1989).

Mperc =Mmax

(
ϕsoil − ϕfc
ϕmax − ϕfc

)
where Mmax is the soil parameter MAX_PERC_RATE, ϕsoil [mm] is the moisture content of the
soil layer, and the other moisture contents are defined in equation 3.2. All parameters refer to that
of the ’from’ soil compartment.

Linear percolation (PERC_LINEAR)

Percolation is proportional to soil water content:

Mperc = kϕ̇soil

where k [1/d] is the soil parameter PERC_COEFF and ϕsoil [mm] is defined in equation 3.2. All
parameters refer to that of the ’from’ soil compartment.

Power law percolation (PERC_POWER_LAW)

Percolation is proportional to soil saturation to a power:

Mperc =Mmax

(
ϕsoil
ϕmax

)n
whereMmax [mm/d] is the soil parameter MAX_PERC_RATE, n is the soil parameter PERC_N and
ϕsoil [mm] and ϕmax [mm] are defined in equation 3.2. All parameters refer to that of the ’from’
soil compartment.
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PRMS percolation method (PERC_PRMS)

Percolation is proportional to drainable soil saturation to a power, as done in the PRMS model
(Leavesley and Stannard, 1995):

Mperc =Mmax

(
ϕsoil − ϕtens
ϕmax − ϕtens

)n
whereMmax [mm/d] is the soil parameter MAX_PERC_RATE, n is the soil parameter PERC_N and
ϕsoil, ϕtens, and ϕmax [mm] are defined in equation 3.2. All parameters refer to that of the ’from’
soil compartment.

Sacramento percolation method (PERC_SACRAMENTO)

Percolation is given by the following expression:

Mperc =M base
max

(
1 + α

(
1−

ϕtosoil
ϕtomax

)ψ)(
ϕsoil − ϕtens
ϕmax − ϕtens

)
whereM base

max is the saturated baseflow rate (soil parameter MAX_BASEFLOW_RATE), α is soil pa-
rameter SAC_PERC_ALPHA, γ is the soil parameter SAC_PERC_EXPON, and ϕsoil and ϕmax are
defined in equation 3.2. All parameters refer to that of the ’from’ soil compartment, unless they
have the to superscript.

GR4J percolation method (PERC_GR4JEXCH and PERC_GR4JEXCH2)

Percolation (really here exchange between a conceptual soil store and a groundwater store) is cal-
culated as consistent with the original GR4J model (Perrin et al., 2003):

Mperc = −x2 ∗ (min(ϕsoil/x3, 1.0))
3.5

where x2 is the soil parameter GR4J_X2 and x3 is the soil parameter GR4J_X3 (both properties
of the soil from which the water is percolating). In the case of PERC_GR4JEXCH2, the soil water
content ϕsoil refers to the topsoil storage (in SOIL[0]) rather than the soil from which percolation
is being taken.

47



3.5 Interflow

Interflow refers to subsurface flow moving laterally through a shallow unsaturated soil horizon until it
enters a stream channel.

Interflow moves water between SOIL and SURFACE_WATER units, and is typically used in conjunction
with a (slower) baseflow algorithm. The user typically has to specify the ’from’ storage compartment (i.e.
a specific soil layer); the ’to’ storage compartment is always SURFACE_WATER. Interflow is rate-limited
by the availability of soil/aquifer storage. Example usage in the .rvi file Example usage in the .rvi file
(within the :HydrologicProcesses command block):

:Interflow INTERFLOW_PRMS SOIL[1] SURFACE_WATER

Available Algorithms

PRMS interflow method (INTERFLOW_PRMS)

Interflow is proportional to drainable soil saturation, as done in the PRMS model (Leavesley and
Stannard, 1995):

Minter =Mmax ·
(
ϕsoil − ϕtens
ϕmax − ϕtens

)
whereMmax is the maximum interflow rate (soil parameter MAX_INTERFLOW_RATE), ϕsoil is the
moisture content (in mm) of the draining soil, and ϕtens, and ϕmax are defined in equation 3.2. All
parameters refer to that of the ’from’ soil compartment.
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3.6 Soil Evapotranspiration

Soil evapotranspiration involves converting water from the soil layers to water vapour in the atmosphere
via both evaporation and transpiration. The rate of evapotranspiration depends on soil moisture, plant
type, stage of plant development and weather conditions such as solar radiation, wind speed, humidity
and temperature.

Soil evaporation always moves water between SOIL[m] and ATMOSPHERE units. Which soil layers are
subjected to evapotranspiration depends on the soil structure model specified by the :SoilModel com-
mand and the particular evapotranspiration algorithm. It is rate-limited by the availability of soil/aquifer
storage and by the capacity of the atmosphere to absorb water vapour. All of these algorithms update
the total actual evapotranspiration (AET) from the HRU, and competitive ET is supported such that this
algorithm competes with canopy and open water evaporation - the PET rate is reduced by the AET after
application.

Example usage in the .rvi file (within the :HydrologicProcesses command block):

:SoilEvaporation SOILEVAP_HBV SOIL[0] ATMOSPHERE

In all notation below, PET refers to the potential evapotranspiration determined by one of the forc-
ing function estimators of section 5.4. In all cases, this PET may be modified by the soil parameter
PET_CORRECTION, which only modifies PET in these algorithms.

Available Algorithms

Uncorrected evaporation algorithm (SOILEVAP_ALL)

Water is removed from soil at the maximum rate until there is no water remaining:

Mevap = PET

where PET is the potential evapotranspiration rate [mm/d].

Linear evaporation-saturation (SOILEVAP_HBV or SOILEVAP_TOPMODEL)

Soil ET is at PET if storage exceeds the tension storage, then is linearly proportional to the soil
saturation:

Mevap = PET ·min

(
ϕsoil
ϕtens

, 1

)
where PET is the potential evapotranspiration rate [mm/d], and ϕsoil [mm] and ϕtens [mm] are
defined in equation 3.2. The HBV model uses an additional snow correction, such that ET is zero in
non-forested areas if snow depth is non-zero.

VIC soil evaporation algorithm (SOILEVAP_VIC)

Soil ET is proportional to the topsoil saturation to a power, as done in the VIC model (Wood et al.,
1992):

Mevap = PET ·
(
1−

(
1− ϕsoil

ϕmax

)γ)
wherePET is the potential evapotranspiration rate [mm/d], γ is the soil parameterVIC_EVAP_GAMMA,
and ϕsoil [mm] and ϕmax [mm] are defined in equation 3.2.
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Linear evaporation-storage (SOILEVAP_LINEAR)

Actual evapotranspiration is linearly proportional to topsoil storage, up to a maximum of PET:

Mevap = min (α · ϕsoil, PET)

where PET is the potential evapotranspiration rate [mm/d], and ϕsoil [mm] is defined in equation
3.2, and α [1/d] is the land use parameter AET_COEFF. This is used in the MOHYSE model Fortin
and Turcotte (2006).

Root-distributed 2-layer evaporation (SOILEVAP_ROOT)

Soil ET [mm/d] is linearly proportional to the soil saturation, but distributed by root fraction, ξm.
Soil ET is at ξm· PET if storage exceeds the tension storage.

MU
evap = PET · ξU ·min

(
ϕUsoil
ϕUtens

, 1
)

(3.3)

ML
evap = PET · ξL ·min

(
ϕLsoil
ϕLtens

, 1
)

(3.4)

where U and L refer to the upper and lower layers, respectively, and ϕsoil [mm] and ϕtens [mm]
are defined in equation 3.2. Currently, ξL and ξU are hardcoded as 0.3 and 0.7, respectively.

Sequential 2-layer evaporation (SOILEVAP_SEQUEN)

Daily soil ET [mm/d] is linearly proportional to the soil saturation; the top layer storage is exhausted
first, then ET can be withdrawn from the lower layer.

MU
evap = PET ·min

(
ϕUsoil
ϕUtens

, 1
)

(3.5)

ML
evap = (PET−MU

evap) ·min
(
ϕLsoil
ϕLtens

, 1
)

(3.6)

where U and L refer to the upper and lower layers, respectively, and ϕsoil [mm] and ϕtens [mm]
are defined in equation 3.2.

UBCWM approach (SOILEVAP_UBC)

Evaporation is controlled by the soilmoisture deficit, ϕmax−ϕsoil, whereϕmax is defined in equation
3.2, and is corrected for effective saturated area.

Mevap = PET · (1− βfast)10

(
−ϕmax−ϕsoil

γe

)

where γe is the soil parameter UBC_EVAP_SOIL_DEF (the soil deficit at which the actual ET
depletes to 0.1 PET), and βfast, a proxy for the effective impermeable fraction is calculated as

βfast = Fimp · 10
(
−ϕmax−ϕsoil

γa

)

where Fimp is the impermeable fraction (land use parameter IMPERMEABLE_FRAC) and γa is the
soil parameter UBC_INFIL_SOIL_DEF.
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GR4J soil evaporation method (SOILEVAP_GR4J)

From the GR4J model (Perrin et al., 2003):

Mevap = αϕsoil
2.0− ϕsoil

ϕmax

1.0 + α
(
1.0− ϕsoil

ϕmax

)
where α = tanh(PET′/ϕmax), PET′ is the PET remaining after ponded water storage is depleted,
ϕsoil is the water storage [mm] in the topsoil, ϕmax is the maximum storage in the top soil.

Ontario Crop Heat Unit Method (SOILEVAP_CHU)

From the Ontario crop heat unit method (Brown and Bootsma, 1993):

Mevap =
CHU

CHUmat
· PET

where CHU is the crop heat unit value (calculated using the CHU_ONTARIO hydrologic crop evo-
lution process), and CHUmat is the vegetation property CHU_MATURITY.

HYPR soil/wetland evaporation method (SOILEVAP_HYPR)

From the HYPR model for representing prairie landscapes (Ahmed et al., 2020), intended to be used
in conjunctionwith theABST_PDMROF abstraction routine, which represents depression storage as
a probability distribution on the landscape. This process algorithm is unique in that it handles both
evaporative losses from the soil and the losses from the depression storage. The soil evaporation
rate is calculated in the same manner as the HBV model, where soil ET is at PET if storage exceeds
the tension storage, then is linearly proportional to the soil saturation:

M∗
evap = PET ·min

(
ϕsoil
ϕtens

, 1

)
where PET is the potential evapotranspiration rate [mm/d], and ϕsoil [mm] and ϕtens [mm] are
defined in equation 3.2. The percentage of the landscape covered by depression storage is calculated
as in Mekonnen et al. (2014):

Fp = Fmax ·
(
ϕdep
ϕdmax

)n
whereFmax is the land use parameterMAX_DEP_AREA_FRAC,n is the land use parameterPONDED_EXP,
ϕdep is the depression storage in mm, and ϕdmax is the maximum depression storage on the land-
scape, DEP_MAX (mm).

Md
evap = (1− Fp) ·M∗

evap

M s
evap = Fp · PETOW

where PETOW is the open water evaporation rate determined from the :OW_Evaporation-
specified method. The first term is evaporation from the soil, the second term is evaporation from
depression storage.

AWBM evaporation method (SOILEVAP_AWBM)

From the Australian Water Balance Model (AWBM) (Boughton, 2004). Not very compatible with
other model structures. The surface is divided into three zones of different storage capacity (defined
by the thickness and porosity of SOIL[0], SOIL[1], and SOIL[2]). The zones have an areal
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percentage coverage of a1 (land surface parameter AWBM_AREAFRAC1 [0..1]), a2 (land surface
parameter AWBM_AREAFRAC2 [0..1]), and a3 = 1 − a1 − a2. Each zone is subject to evaporation
until it is emptied.

M1
evap = a1PET

M2
evap = a2PET

M3
evap = a3PET

HYMOD2 evaporation method (SOILEVAP_HYMOD2)

From the revised HYMOD2 model of Roy et al. (2017). Intended to be used in conjunction with
INF_PDM infiltration algorithm, also used by HYMOD2.

Mevap = K · PET (3.7)

where

K = Kmax ·
(
G+ (1−G) ·

(
c∗

cmax

)c)
(3.8)

and c∗ is calculated as done in the PDM method of Moore (2007):

c∗ = cmax ∗

(
1.0−

(
1.0− ϕ

ϕmax

)1.0/(b+1.0)
)

(3.9)

where b is the land use parameter PDM_B, c is the land use parameter HYMOD2_EXP, G is the
land use parameter HYMOD2_G between 0 and 1 determining the minimum resistance to ET, and
Kmax is the land use parameter HYMOD2_Kmax, an ET resistance parameter values between 0 and
1. Here, cmax is calculated as (b + 1)ϕmax and ϕ and ϕmax are the actual and maximum topsoil
storage, respectively.
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3.7 Capillary Rise

Capillary rise is the rise of groundwater above the water table due to surface tension. The capillary zone
extends up from the water table to the limit of capillary rise, and varies based on pore size and surface
tension. In conceptual watershed models, the capillary rise term often refers to a process that moves
water from lower to higher soil water stores, which may also implicitly include lateral groundwater flow
processes in a sloping domain.

Capillary rise occurs between SOIL units, depending upon the soil structure model specified by the
:SoilModel command. The user typically has to specify the ’to’ and ’from’ storage compartments.
Capillary rise is rate-limited by the availability of soil/aquifer storage and by the capacity of the recep-
tor ’to’ compartment. Example usage in the .rvi file (within the :HydrologicProcesses command
block):

:CapillaryRise CRISE_HBV SOIL[1] SOIL[0]

Available Algorithms

HBV model capillary rise (CRISE_HBV)

Capillary rise rate is linearly proportional to soil saturation of the recipient soil, as done in the HBV
model (Bergstrom, 1995; Lindström et al., 1997):

Mcrise =M cr
max

(
1− ϕsoil

ϕmax

)
where M cr

max is the maximum interflow rate (soil parameter MAX_CAP_RISE_RATE), and ϕsoil
and ϕmax are defined in equation 3.2. All parameters refer to that of the ’to’ soil compartment.
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3.8 Soil Balance

Some algorithms solve the entire subsurfacemass balance problem (infiltration/percolation/baseflow, etc.)
collectively, and these individual processes cannot be separated from the whole. The soil balance process
therefore represents the collective simulation of all of these processes redistributing water in the soils.

Soil balance will move water between multiple SOIL units, but may also simulate runoff (moving water to
SURFACE_WATER) and/or evaporation (movingwater toATMOSPHERE). The number of soils represented
is particular to the algorithm chosen. Example usage in the .rvi file (within the:HydrologicProcesses
command block):

:SoilBalance SOILBAL_SACSMA MULTIPLE MULTIPLE

Available Algorithms

Sacramento Soil Moisture Accounting (SOILBAL_SACSMA)

This algorithm collectively represents infiltration, redistribution of water between conceptual soil
units, and runoff/quickflow/baseflow release to the surface water, based upon the Sacramento
model Burnash et al. (1973). This is a near-exact emulation of the original SAC-SMA code, and
designed to be used in conjunction with the SOILEVAP_SACSMA soil evaporation algorithm. The
algorithm is rather complicated, and therefore only the basic functioning of the model is docu-
mented here. Users are referred to either the source code or https://www.nws.noaa.gov/
ohd/hrl/nwsrfs/users_manual/part2/_pdf/23sacsma.pdf for details.

The SOILBAL_SACSMAmodel only works with a 7 ’layer’ soil model. SOIL[0] and SOIL[1] represent
the upper zone tension and free storage compartments, respectively. SOIL[2], SOIL[3], andSOIL[4]
represent (respectively) the tension storage, primary free storage, and secondary free storage in the lower
zone of the SAC-SMA conceptual model. Lastly, SOIL[5] represents a special storage corresponding
to the saturated region of soil near a surface water body (referred to as ADIMC in the original SAC-
SMA documentation) and SOIL[6] represents deep groundwater storage, which is never released to the
surface.

The SAC-SMA algorithm requires 9 parameters. Land use parameters include MAX_SAT_AREA_FRAC,
which determines themaximumpercentage of groundwhich is regularly saturated, IMPERMEABLE_FRAC
which determines the degree of direct runoff (no infiltration occurs beneath impermeable cover), and
BF_LOSS_FRACTION, the percentage of baseflow redirected to deep groundwater. Soil parameters in-
clude three percolation coefficients associatedwithSOIL[1] (upper zone free storage): SAC_PERC_ALPHA,
SAC_PERC_EXPON, and SAC_PERC_PFREE (ZPERC, REXP, and PFREE in original SAC-SMA parlance).
Also used are three different linear baseflow coefficients (BASEFLOW_COEFF) associated with SOIL[1]
(UZK, quickflow from the upper zone), SOIL[3] (LZPK, baseflow from primary lower zone storage), and
SOIL[4] (LZSK, baseflow from secondary lower zone storage).

54

https://www.nws.noaa.gov/ohd/hrl/nwsrfs/users_manual/part2/_pdf/23sacsma.pdf
https://www.nws.noaa.gov/ohd/hrl/nwsrfs/users_manual/part2/_pdf/23sacsma.pdf


3.9 Canopy Evaporation

Canopy evaporation converts water from the vegetated canopy to water vapour in the atmosphere. The
rate of evaporation depends on plant type, stage of plant development and weather conditions such as
solar radiation, wind speed, humidity and temperature. Canopy evaporation always occurs between
CANOPY and ATMOSPHERE units. Canopy evaporation is rate-limited by the availability of canopy stor-
age. All of these algorithms update the total actual evapotranspiration (AET) from the HRU, and compet-
itive ET is supported such that this algorithm competes with soil and open water evaporation - the PET
rate is reduced by the AET after application.

Example usage in the .rvi file (within the :HydrologicProcesses command block):

:CanopyEvaporation CANEVP_RUTTER CANOPY ATMOSPHERE

Available Algorithms

Maximum canopy evaporation (CANEVP_MAXIMUM)

Moisture on the canopy evaporates at the potential ET rate, provided storage is available.

Mevap = PET · Fc · (1− fs)

where PET is the potential evapotranspiration rate, Fc is the forest cover of the HRU (land use
parameter FOREST_COVERAGE, and fs is the vegetation sparseness factor (land use parameter
FOREST_SPARSENESS.

Complete canopy evaporation (CANEVP_ALL)

All moisture on the canopy evaporates instantaneously, i.e., all intercepted precipitation is sent back
to the atmosphere. This is also the default behaviour if no canopy is present.

Rutter canopy evaporation (CANEVP_RUTTER)

From (Rutter et al., 1971):

Mevap = PET · Fc · (1− Ft)

(
ϕcan
ϕcap

)
where PET is the potential evapotranspiration rate, Fc is the forest cover of the HRU (land use pa-
rameterFOREST_COVERAGE),Ft is the trunk fraction (vegetation parameterTRUNK_FRACTION),
ϕcan [mm] is the storage in the canopy over the forested region, ϕcap [mm] is the storage capacity
of the canopy over the forested region.
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3.10 Canopy Drip

Canopy drip is the loss of liquid water from canopy to land surface, typically due to the impacts of wind.
Canopy drip always occurs between CANOPY and PONDED_WATER units and is rate-limited by the avail-
ability of canopy storage. Example usage in the .rvi file (within the:HydrologicProcesses command
block):

:CanopyDrip CANDRIP_RUTTER CANOPY PONDED_WATER

Available Algorithms

Rutter canopy drip (CANDRIP_RUTTER)

Moisture on the canopy which exceeds storage (given by vegetation parameter MAX_CAPACITY,
mm) falls instantaneously to the ground.

Slowdrain canopy drip (CANDRIP_SLOWDRAIN)

Moisture on the canopy which exceeds storage falls instantaneously to the ground, but the remain-
ing drip is proportional to storage:

Mdrip = α ·
(
ϕcan
ϕcap

)
where α is the vegetation parameter DRIP_PROPORTION, and ϕcan [mm] and ϕcap [mm] are
the canopy storage and capacity (vegetation parameter MAX_CAPACITY) in the forested region,
respectively. Drip only occurs in the forested region.
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3.11 Abstraction

Abstraction refers to the redirection of rainfall to surface impoundments, such as swales, ponds, and
puddles. In Raven, these are collectively referred to as DEPRESSION storage.

Abstraction always moves water from the PONDED_WATER state variable to the DEPRESSION storage
state variable, but in some cases may also generate runoff (e.g., the ABST_PDMROF algorithm. Example
usage in the .rvi file:

:Abstraction ABST_PERCENTAGE PONDED_WATER DEPRESSION
#or
:Abstraction ABST_PDMROF PONDED_WATER MULTIPLE

Available Algorithms

SCS method (ABST_SCS)

The abstraction rate is determined from the Soil Conservation Service method based upon SCS
curve number.

Mabst =
1

∆t
max

(
fSCS · 25.4

(
1000

CN
− 10

)
, ϕpond

)
Where CN is the curve number corrected for antecedent precipitation conditions, where the type II
(moderate wetness) curve number is given by the land use parameter SCS_CN. The fraction fSCS
is the land use parameter SCS_IA_FRACTION, and is 0.2 for the standard SCS approach (i.e.,
Ia = 0.2S)

Percentage method (ABST_PERCENTAGE)

The abstraction rate is a given fraction of the ponded water accumulation rate,

Mabst = αMpond

where α is the land use parameter ABST_PERCENT

Fill method (ABST_FILL)

In this approach, all ponded water (the cumulative contribution of rainfall and snowmelt) is redi-
rected to depression storage until it is filled, then the remainder is available for infiltration/runoff.
The maximum depression storage amount is given by land use parameter DEP_MAX

PDMROF method (ABST_PDMROF)

This approach, which has been shown to be successful in prairie and wetland systems, is docu-
mented in (Mekonnen et al., 2014), and assumes a probability distribution of storage capacity within
the HRU represented with the Pareto distribution parameter b (land use parameter PDMROF_B). A
maximum local depression storage capacity, cmax is calculated as

cmax = ϕmax · (b+ 1)

where ϕmax is the maximum total average depression storage in the HRU, land use parameter
DEP_MAX [mm]. From this, the current critical capacity c∗ may be calculated from the depression
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storage ϕdep:

c∗ = cmax

1−
(
1−

ϕdep
ϕmax

) 1
b+1


The total amount of abstraction during a time step may be determined from ϕpond, the available
ponded water ready to be abstracted:

Mabst =
ϕmax
∆t

[(
1− c∗

cmax

)b+1

−
(
1−

c∗ + ϕpond
cmax

)b+1
]

where the term c∗ + ϕpond in the square brackets is constrained to be less than cmax (correspond-
ing to the entire landscape shedding water). The amount of water not abstracted is moved to
SURFACE_WATER storage as runoff.

UWFS method (ABST_UWFS)

This approach (the ’Upscaled Wetland Fill and Spill’ approach) is another abstraction method shown to
be successful in prairie regions and accounts for lateral flow effects in runoff generation from contributing
area ofmultiple wetlands with characteristics described by a probability distribution. The heterogeneity of
depressions properties i.e., deficit depth and concentrating factor are defined by exponential distribution
function with the required land use parameters of minimum concentrating factor, UWFS_BETAMIN [-]
and shape factor, UWFS_B (b).

The amount of abstraction during each time step is controlled by the difference between minimum avail-
able water to each depressions and minimum deficit as:

Mabst = P − 1

< β >


ad
a+d(1− Pf )

[
dP ∗−1+e−dP∗

d2
+ aP ∗+1

a2

]
+ Pf

(
P ∗ + 1

a

)
for P ∗ > 0

ad
a+d

[
eaP

∗

a2

]
for P ∗ < 0

where P is the available runoff (after infiltration of precipitation and snowmelt) on the landscape, P ∗

is calculated based on land use parameter UWFS_BETAMIN (βmin) and precipitation and state variable
MIN_DEP_DEFICIT [mm], Pf is the percentage of full depressions which is calculated by the model,
a is b/P , < β >= (βmin + 1)/b, and d is deficit distribution shape factor which is calculated from land
use parameters of DEP_MAX [mm], MAX_DEP_AREA_FRAC [0..1] and the current amount of depression
storage [mm].

The minimum deficit in depressions is updated at each time step based on the generated runoff. If runoff
is generated from the basin, the new minimum deficit depth (Dmin) is zero. However, if there is no runoff
generated form the basin the new minimum deficit depth will be updated as:

Dnew
min = Dmin −min(βaveP,Dmin)

where βave = βmin + 1/b is the average concentrating factor in the HRU.
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3.12 Depression/Wetland Storage Overflow

Depression overflow refers to water lost from ponds and wetlands to the main surface water network. De-
pression overflowmoveswater from theDEPRESSION storage variable and is alwaysmoved toSURFACE_WATER.
Depression overflow is rate-limited by the availability of water in depression storage. Usage in .rvi file:

:DepressionOverflow DFLOW_THRESHPOW DEPRESSION SURFACE_WATER

Available Algorithms

Power-law threshold (DFLOW_THRESHPOW)

The overflow to surface water is controlled by the amount of water in depression storage past a
certain threshold:

Mdflow =Mmax ·
(
ϕdep − ϕth
ϕmax − ϕth

)n
where Mmax [mm/d] is the maximum overflow rate, land use parameter DEP_MAX_FLOW, ϕdep
is the current depression storage [mm], ϕth is the given threshold storage level [mm] (land use
parameter DEP_THRESHOLD, ϕmax is the maximum depression storage DEP_MAX [mm], and n is
the land use parameter DEP_N (unitless).

Linear depression overflow(DFLOW_LINEAR)

The overflow to surface water is controlled by the amount of water in depression storage past a
certain threshold:

Mdflow = kd · (ϕdep − ϕth)

where ϕdep is the current depression storage [mm], ϕth is the given threshold storage level [mm]
(land use parameter DEP_THRESHOLD), and kd is the linear storage coefficient [1/d] (land use
parameter DEP_K). If ϕdep < ϕth,Mdflow = 0.

Weir-like depression overflow(DFLOW_WEIR)

The overflow to surface water is controlled by the amount of water in depression storage past a
certain threshold:

Mdflow = 0.666 ∗ c ∗
√
2g ∗ pow(max(ϕdep − ϕth, 0.0), 1.5);

where ϕdep is the current depression storage [mm], ϕth is the given threshold storage level [mm]
(land use parameter DEP_THRESHOLD), and , and g is gravity. Here the crestwidth c is estimated
as:

c = rd

√
A

A

where rd is the ratio of the HRU area A to the length of the HRU boundary over which seepage occurs,
estimated as

√
A (land use parameter DEP_CRESTRATIO)
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3.13 Seepage from Depressions/Wetlands

Seepage overflow refers to water lost from ponds and wetlands to lower soil units, including groundwater.

Seepage moves water from the DEPRESSION storage variable and is always moved to one of the SOIL
units, subject to the availability of water in depression storage and remaining room in the soil. Seepage
is rate-limited by the availability of water in depression storage. Example usage in the .rvi file:

:Seepage SEEP_LINEAR DEPRESSION SOIL[1]

Available Algorithms

Linear seepage (SEEP_LINEAR)

The seepage to surface water is controlled by the amount of water in depression storage:

Mdflow = kseep · ϕdep

where ϕdep is the current depression storage [mm], and kseep is the linear seepage coefficient [1/d]
(land use parameter DEP_SEEP_K).
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3.14 Lake Release

Lake release refers to delayed release of water from lake storage, and is only usedwhen a specificLAKE_STORAGE
storage compartment is specified using the :LakeStorage command (alternately, all water falling on
LAKE-type HRUs will be directed directly to the surface water network after accounting for open water
evaporation, which may lead to a flashier-than-expected hydrograph). Lake storage is intended to repre-
sent lakes which are connected to the surface water network either directly or indirectly via groundwater.
Exchange can be bidirectional such that low lake levels may extract water from surface water storage.
Lake release is disabled for LAKE-type HRUs when they are linked to surface water reservoirs; for these
(usually larger) lakes, the delayed release from storage is completely controlled by the reservoir/lake out-
flow structure.

Lake release typically moves water from the LAKE_STORAGE storage variable to SURFACE_WATER;
Lake storage may go below zero, which corresponds to a disequilibrium with the surface water network
such that lakes will extract water. Lake release is not rate-limited except for when excess negative lake
storage will dry out the surface water. Example usage in the .rvi file:

:LakeRelease LAKEREL_LINEAR LAKE_STORAGE SURFACE_WATER

Available Algorithms

Linear release (LAKEREL_LINEAR)

The rate of release to/from surface water is controlled by the amount of water in lake storage:

Mlrel = klrel · ϕlake

where ϕlake is the current (positive or negative) net lake storage [mm], and klrel is the linear storage
coefficient [1/d] (land use parameter LAKE_REL_COEFF). Note that lake seepage can be negative
(increasing lake storage) if the net lake storage is negative.
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3.15 Open Water Evaporation

Openwater evaporationmoveswater fromDEPRESSION,SURFACE_WATER,PONDED_WATER, orLAKE_STORAGE
to the atmosphere. This calculation is independent of the evaporation from reservoirs, which is calculated
as equal to the open water PET determined by the :OW_Evaporation algorithm. All algorithms below
use the PET over open water, PETow, corrected by the land use parameter OW_PET_CORR, also using the
:OW_Evaporation algorithm. All of these algorithms update the total actual evapotranspiration (AET)
from the HRU, and competitive ET is supported such that this algorithm competes with soil and canopy
evaporation - the PET rate is reduced by the AET after application.

Example Usage in the .rvi file is:

:OpenWaterEvaporation OPEN_WATER_EVAP DEPRESSION ATMOSPHERE

The recipient ’to’ compartment is always ATMOSPHERE, but the user specifies the source (’from’) com-
partment.

Available Algorithms

Basic (OPEN_WATER_EVAP) (default)

The rate of loss is equal to the PETow, modified by the correction factor:

Mevap = C · PETow

where C is the land use parameter OW_PET_CORR.

Riparian (OPEN_WATER_RIPARIAN)

As used in the SAC-SMA model emulation. The rate of loss is equal to the PETow, modified by the
correction factor, and the percentage of land cover covered in streams/riparian landcover:

Mevap = C · fs · PETow

whereC is the land use parameterOW_PET_CORR and fs is the land use parameterSTREAM_FRACTION
[0..1].

Upscaled wetland fill and spill algorithm (OPEN_WATER_UWFS)

The UWFSmethod, a algorithm for simulating prairie pothole regions and other wetland-dominated land-
scapes, calculates the open water evaporation rate same as in the OPEN_WATER_EVAP method, but
adjusted byt the land use parameter MAX_DEP_AREA_FRAC [0..1] which represents the percentage of
landscape covered by depressions.

Mevap = C · fd · PETow
whereC is the land use parameterOW_PET_CORR and fd is the land use parameterMAX_DEP_AREA_FRAC
[0..1].

This algorithm should typically be used in UWFS model in conjunction with ABST_UWFS abstraction
method. Thismethod therefore also calculates changes in theminimumdeficit depth ofwetlands, MIN_DEP_DEFICIT.
The minimum deficit depth after evaporation is updated as:

Dnew
min = Dold

min +Mevap ·∆t
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3.16 Process Group

Process groups are used to configure so-called blended models, in which the flux resulting from a given
hydrologic process is determined by a weighted average of two or more process options.

This option requires that all process options within the blended group use the same ’to’ and ’from’ com-
partments, but can otherwise be applied to any type of hydrologic process. This approach was introduced
in the work by Mai et al. (2020). In Raven implementation, the process group is treated as a hydrologic
process, and can be used in combination with conditional or other commands in the .rvi file.

The weights corresponding to the N hydrologic processes within the process group can be specified in
one of two ways. The weights can either be specified directly for the process group, or withN−1weight-
generating parameters that are independent uniform numbers, and are used to calculate N weights that
sum to 1.0. This latter method of determining N weights from N − 1 uniform numbers is referred to as
the ’pie-sharing’ approach, and is described in Mai et al. (2022).

Example configuration of a blended infiltration process groupwith 3 process options,and specifyingweights
explicitly in the .rvi file:

:ProcessGroup
:Infiltration INF_HMETS PONDED_WATER MULTIPLE
:Infiltration INF_VIC_ARNO PONDED_WATER MULTIPLE
:Infiltration INF_HBV PONDED_WATER MULTIPLE

:EndProcessGroup 0.333 0.333 0.334

or, equivalently using only 2 weight-generating parameters and the CALCULATE_WTS command to cal-
culate a set of 3 weights:

:ProcessGroup
:Infiltration INF_HMETS PONDED_WATER MULTIPLE
:Infiltration INF_VIC_ARNO PONDED_WATER MULTIPLE
:Infiltration INF_HBV PONDED_WATER MULTIPLE

:EndProcessGroup CALCULATE_WTS 0.55556 0.5
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3.17 Snow Balance

Snow balance algorithms are used to simulate the strongly coupled mass and energy balance equations
controlling melting and refreezing of snow pack and the liquid phase in the snow pores.

Most snow balance algorithms consists of multiple coupled equations, and there are also many ’to’ and
’from’ compartments, depending on which algorithm is selected. ’From’ compartments include SNOW
(as SWE), SNOW_LIQ and SNOW_DEPTH. ’To’ compartments include SNOW, ATMOSPHERE, SNOW_LIQ,
SNOW_DEPTH and SURFACE_WATER. Snow balance is rate-limited by the storage in ’from’ and ’to’
compartments. Example usage in the .rvi file (note that most snow balance models are manipulating
multiple storage compartments):

:SnowBalance SNOBAL_SIMPLE_MELT SNOW PONDED_WATER

or

:SnowBalance SNOBAL_TWO_LAYER MULTIPLE MULTIPLE

Most of the snowmelt algorithms that explicitly simulate liquidwater contentwithin the snowpack use the
global parameter SNOW_SWI to determine the maximum possible liquid water storage of the snowpack:

ϕslmax = SWE · SWI

where ϕslmax [mm] is the maximum liquid water storage of the snowpack, SWE is the snow water equiv-
alent of the snowpack [mm], and SWI is the global parameter SNOW_SWI, which defaults to 0.05 if not
specified.

Available Algorithms

Simple melt (SNOBAL_SIMPLE_MELT)

The melt rate (in [mm/d]) is simply calculated by applying the potential melt rate to the snowpack
until it is gone.

Mmelt =M ′
melt

where the potential melt rate,M ′
melt [mm/d], is calculated using one of the methods described in

section 5.8.1. Themelt rate is constrained such that only available snowwill melt (i.e., the maximum
melt rate is SWE/∆t) . This is the same as using :SnowMelt MELT_POTENTIAL.

HBV snow balance (SNOBAL_HBV)

The HBV snow balance (Bergstrom, 1995; Lindström et al., 1997) represents both melt and liquid
water storage in the pore space of the snow. The melt rate is determined by the potential melt rate
algorithm (POTMELT_HBV for true HBV emulation), while refreeze is calculated using:

Mrefreeze = Ka ·max(Tf − T, 0)

whereKa is the land use parameter REFREEZE_FACTOR [mm/d/ ◦C], and Tf is the melt temper-
ature [ ◦C] (zero by default, but can be set with the land use parameter DD_MELT_TEMP).

Meltwater fills the snow pore space first (with the maximum fillable pore space determined by the
global parameter SNOW_SWI), then is allowed to overflow. All overflow percolates into SOIL[0]
by default, but may be redirected to PONDED_WATER using the :Redirect command if desired.
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UBCWM snow balance (SNOBAL_UBCWM)

As described in the UBCWatershed model documentation (Quick, 1995). Potential melt is typically
calculated using the POTMELT_UBCWM method described in section 5.8.1. If the land use/land
type parameter SNOWPATCH_LIMIT is zero, the method is relatively straightforward - SWE is
melted at a rate equivalent to the potential melt, with some of the water melted first filling up
the Liquid holding capacity of the snow, the remainder becoming ponded water. During melt of
ripened snowpack, the liquid water is released along with the corresponding SWEmelted. The user
is referred to the UBCWM documentation for the full description of the snowmelt algorithm with
snow patching.

Cema Neige snow balance (SNOBAL_CEMA_NEIGE)

Often used with the GR4J model configuration, the Cema Neige snow balance uses the potential
melt rate calculated using the methods of section 5.8.1, but corrected with a snow cover factor,

Mmelt =

(
0.1 + 0.9 ·min

(
ϕSWE

SAnn
, 1

))
·M ′

whereM ′ is the potential melt rate, ϕSWE is the snow amount as snow water equivalent, SAnn is
the average annual snow amount, specified as the global parameter AVG_ANNUAL_SNOW.

Two-layer snow balance (SNOBAL_TWO_LAYER)

A two-layer snowmelt model that simulates accumulation of cold content, changes in surface snow
temperature, and evolution both liquid and solid snow stores. Available energy (supplied as po-
tential melt) is first used to bring the temperature of the surface snowpack to freezing, then the
remainder is used to melt the frozen snow, which is allocated to liquid snow until the pack is ripe,
at which point it then drains into PONDED_WATER storage. Ripeness is controlled by the global
parameter SNOW_SWI, which represents the maximum liquid snow storage capacity as a fraction
of snowpack SWE. The second (bottom) layer is only applied when the snow as SWE exceeds the
global parameter MAX_SWE_SURFACE, in mm.

HMETS snow balance (SNOBAL_HMETS)

A snowmelt model documented in Martel et al. (2017). This is a simple single layer snowmelt model
with degree day freezing, which tracks liquid water content in the snowpack in addition to SWE.
The refreeze rate (constrained by water availability) is given by:

Mrf = Kf · (Trf − Tdi)
f

whereKf is the land use property REFREEZE_FACTOR, Trf is the degree day refreeze factor (land
use property DD_REFREEZE_TEMP, Tdi is the average of the average daily temperature and the
minimumdaily temperature, and f is the land use parameterREFREEZE_EXP. Thewater retention
capacity (upper limit of liquid water content in snow) varies over the course of the year based upon
cumulative snowmelt:

SWI = max (SWImin, SWImax · (1− α ·Mcumul))

where SWImin and SWImax are the land use parameters SNOW_SWI_MIN and SNOW_SWI_MAX,
α is the land use parameter SWI_REDUCT_COEFF, andMcumul is the cumulative melt since the
last period of zero snow depth (a state variable tracked by this algorithm).
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CRHM EBSM snow balance (SNOBAL_CRHM_EBSM)

A snowmelt model based upon that of Marks and Dozier (1992) as implemented within the CRHM
hydrological model Pomeroy et al. (2007). The single-layer energy-balance-based snowmodel tracks
liquid water content, SWE, and energy content of the snowpack.
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3.18 Snow Sublimation

Sublimation is the process of snow transforming to water vapour without passing through the interme-
diate liquid phase. It can be a significant part of the snow balance at high elevations, windy regions, and
when atmospheric water content is low.

Sublimation always occurs between SNOW and ATMOSPHERE units and is limited by the availability of
snow. When sublimation is negative, it behaves as deposition, enabling water vapor to solidify on the
snowpack.

Example usage in the .rvi file:

:Sublimation SUBLIM_KUZMIN SNOW ATMOSPHERE

Available Algorithms

Kuzmin (1972) method (SUBLIM_KUZMIN)

The sublimation rate (in [mm/d]) is calculated using the following empirical relationship (Kuzmin,
1972; Kutchment and Gelfan, 1996):

Msubl = (0.18 + 0.098 · vave) · (Psat − Pvap)

where vave [m/s] is the wind velocity at 10m, Psat and Pave [mb] are the saturated vapour pres-
sure and vapour pressure, respectively, where the vapour pressure is calculated from the relative
humidity and saturated vapour pressure is estimated from average daily air temperature.

Kuchment-Gelfan method (SUBLIM_KUCHMENT_GELFAN)

Identical to the SUBLIM_KUZMINmethod, but uses time step mean temperature rather than daily
mean temperature to estimate vapour pressures. Preferred for sub-daily models.

Central Sierra method (SUBLIM_CENTRAL_SIERRA)

The sublimation rate (in [mm/d]) is calculated using the following empirical relationship (U.S.
Dept. of Commerce, 1956):

Msubl = 0.0063 · (hw · hv)−
1
6 · (Psat − Pvap) · vave

where vave [m/s] is the wind velocity at reference height hw [ft], Psat and Pave [mb] are the sat-
urated vapour pressure and vapour pressure, respectively, and hv is the elevation of the vapour
pressure reference height [ft]. Wind velocity and vapour pressures are estimated by Raven from
the specified forcing algorithms for wind speed, temperature, and relative humidity.

Bulk Aerodynamic method (SUBLIM_BULK_AERO)

The latent heat flux is calculated using the following relationship Hock and Holmgren (2005):

Qe = ρaλs · CE · vave ∗
0.622(P snowsat − Pave)

Pa

where vave [m/s] is the wind velocity at reference height, Pa, P snowsat and Pave [kPa] are the air
pressure, saturated vapour pressure at the snow surface, and vapour pressure, respectively, λs is
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the latent heat of sublimation, and ρa is air density. The transfer coefficient, CE , is calculated as:

CE =
κ2

ln(zref/z0) ln(zref/z
e
0)

where zref is the reference height of 2m, z0 is the aerodynamic roughness length of snow, ze0 is the
aerodynamic roughness length for temperature, and κ is the von Karman constant (=0.42). Lastly,
sublimation rate is calculated as:

Msubl =
QE
λsρw

where ρw is the density of water [kg/m3]. This energy-budget-based methodology does not have
any free parameters.
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3.19 Snow Refreeze

Snow refreeze algorithms are used if the full :SnowBalance algorithms are not applied, and simply
convert SNOW_LIQ to SNOW

Snow refreeze always occurs between SNOW_LIQ and SNOW units. Snow refreeze is limited by the avail-
ability of liquid water in the snowpack. Refreeze rates must be positive. In most cases, snow refreeze
should be handled using the :SnowBalance routines. Example usage in the .rvi file:

:SnowRefreeze FREEZE_DEGREE_DAY SNOW_LIQ SNOW

Available Algorithms

Degree day method (FREEZE_DEGREE_DAY)

The refreeze rate (in [mm/d]) is calculated using the following degree-day relationship (much like
the degree-day melt approaches for calculating potential melt):

Mfrz = Kf ·max(Tf − Ta, 0)

where Kf [mm/d/ ◦C] is the refreeze parameter (land use parameter REFREEZE_FACTOR, Tf is
the freezing temperature (0 ◦C) and Ta is the air temperature.
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3.20 Snow Albedo Evolution

Snow albedo evolution is the process through which snow albedo changes due to snow compaction, snow-
pack aging, or fresh snow accumulation. The snow albedo evolution algorithms have no sources or sinks,
it simply models the rate of change of albedo over time. Snow albedo is constrained to be in the range 0-1.
Example usage in the .rvi file (note that there is no ’to’ and ’from’ state variable, since this is not changing
the water/energy balance):

:SnowAlbedoEvolve SNOALB_UBC

Available Algorithms

UBCWatershed Model approach (SNOALB_UBC)

The albedo, α, increases with accumulating snow and decreases as the season progresses. It is
bounded by the global parameters MIN_SNOW_ALBEDO and MAX_SNOW_ALBEDO, defined in the
:UBCSnowParams command in the .rvp file.

Msnalb = −α · 1−K

∆t
+

(αmax − α)

∆t
min

(
SN

SNalb
, 1

)
if α > αb

Msnalb = −αb exp
(
−Scum
Smax

)
dScum
dt

+
(αmax − α)

∆t
min

(
SN

SNalb
, 1

)
if α < αb

whereαmax is the global parameterMAX_SNOW_ALBEDO,αb is a threshold albedo value (UBC_ALBASE),
SN [mm/d] is the daily snowfall, SNalb [mm/d] is the total daily snowfall required to bring albedo
to that of new snow (global param UBC_ALBSNW), K is the global parameter UBC_ALBREC (a
recession constant), Scum is the cumulative snow deposited in the current winter season and Smax
is an estimate of the maximum cumulative snowfall in a year (UBC_MAX_CUM_MELT). All of these
global parameters are specified using the command :UBCSnowParams in the .rvp file.

CRHM Essery Approach (SNOALB_CRHM_ESSERY)

A simple albedo evolution algorithm developed by Richard Essery, now at the University of Edin-
burgh. The albedo decays as follows:

Msnalb = −β if Tsnow < 0

Msnalb = −β2 · (α− αmin) if α < αb

whereβ is he global parameterALB_DECAY_COLD [1/d], β2 is the global parameterALB_DECAY_MELT
[1/d], and αmin is the global parameter MIN_SNOW_ALBEDO [-]. The albedo also increases due to
fresh snow using the following

Msnalb = (αmax − α) ·min(S/Sthresh, 1.0) ·∆t
where αmax is the global parameter MAX_SNOW_ALBEDO [-], S is the snowfall rate [mm/d], and Sthresh
is the global parameter SNOWFALL_ALBTHRESH [mm/d].

Baker Approach (SNOALB_BAKER)

A simple albedo evolution algorithm from Baker et al. (1990), as ported from CRHM (Pomeroy et al.,
2007). The albedo decays as follows:

α = 0.9− 0.0473 ·A0.1
snow
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where Asnow is the age of the snow in days. The snow age reboots to zero if the snowfall rate
exceeds the global parameter SNOWFALL_ALBTHRESH [mm/d].
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3.21 Glacier Melt

Glacier melt refers to the process of melting of glacier ice. It is typically only applied to those HRUs treated
as glaciers.

Glacier melt algorithms move water from GLACIER_ICE to either GLACIER (liquid water storage in
or on the glacier itself) or SURFACE_WATER. They may also modify the cold content of the glacier,
GLACIER_CC. Glacial melt is not limited by the available glacier ice, which is assumed to be abundant.
Example usage in the .rvi file:

:GlacierMelt GMELT_SIMPLE_MELT GLACIER_ICE SURFACE_WATER

Available Algorithms

Simple melt approach (GMELT_SIMPLE_MELT)

The melt rate is equal to the potential melt rate, calculated using the methods described in section
5.8.1.

HBV approach (GMELT_HBV)

The melt rate is equal to the potential melt rate, calculated using the methods described in section
5.8.1. A glacial melt correction factor may be used to modify the melt rate (land use parameter
HBV_MELT_GLACIER_CORR), which is 1 by default. No glacial melt occurs if there is any snow
cover, i.e., the snow must melt first.

UBCWatershed Model approach (GMELT_UBC)

The potential melt rate is applied to melt the glacier, but modified by the snow cover (i.e., no glacial
melt occurs if there is 100% snow cover).
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3.22 Glacier Release

Glacier release refers to the release of meltwater stored within a glacier to surface water, and is typically
used in conjunction with the glacier melt process, i.e., melt is released from the surface and is temporarily
stored or delayed before reaching the surface water network.

Glacier release algorithms move water from GLACIER to SURFACE_WATER. Glacial release is limited by
the available glacier liquid water storage. Example usage in the .rvi file:

:GlacierRelease GRELEASE_LINEAR_STORAGE GLACIER SURFACE_WATER

Available Algorithms

Linear storage (GRELEASE_LINEAR_STORAGE)

A simple linear storage coefficient approach:

Mgrelease = −Kϕglac

where ϕglac [mm] is the total glacial storage, and K [1/d] is a linear storage coefficient (land use
parameter GLAC_STORAGE_COEFF)

Linear storage (analytical) (GRELEASE_LINEAR_ANALYTIC)

A simple linear storage coefficient approach, but analytically solved for and integrated over the
timestep:

Mgrelease =
ϕglac
∆t

(1− exp(−K∆t))

where ϕglac [mm] is the total glacial storage,∆t is the model time step and K [1/d] is a linear
storage coefficient (land use parameter GLAC_STORAGE_COEFF)

HBV-EC approach (GRELEASE_HBV_EC)

A simple linear storage coefficient approach (Hamilton et al., 2000):

Mgrelease = −K∗ϕglac

where ϕglac [mm] is the total glacial storage, and K∗ [1/d] is a linear storage coefficient which
is corrected for snow cover, such that the glacier releases more water at times of less snow cover,
calculated as:

K∗ = Kmin + (K −Kmin) exp(−AG(SN + SNliq))

where Kmin [1/d] is a linear storage coefficient (land use parameter HBV_GLACIER_KMIN), K
[1/d] is a linear storage coefficient (land use parameter GLAC_STORAGE_COEFF), AG [1/mm]
is the land use parameter HBV_GLACIER_AG, and SN and SNliq [mm] are the SWE and liquid
snow content of the snowpack on top of the glacier, respectively.
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3.23 Glacier Infiltration

Glacier infiltration release refers to the movement of meltwater to other storage compartments, either
within the glacier or in underlying soil layers. This is typically used in conjunction with the glacier melt
process, i.e. melt is released from the surface and then directed via infiltration into one of several plausible
storage units.

Glacier infiltration algorithms move water from PONDED_WATER to MULTIPLE, including GLACIER
and/or soil stores. Example usage in the .rvi file:

:GlacierInfiltration GINFIL_UBCWM PONDED_WATER MULTIPLE

Available Algorithms

UBCWatershed Model approach (GINFIL_UBCWM)

The runoff is determined based on the capacity of underlying soils to accept rain and melt water,
andmoves to GLACIER storage. Of the remaining ponded water (i.e. for which soils have capacity),
a proportion equal to 1-UBCGroundwaterSplit moves to the upper groundwater store and a
proportion equal to UBCGroundwaterSplit moves to the lower groundwater store.
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3.24 Lake Freezing

Lake freezing tracks the thickness of a frozen ice surface on simulated lakes and allows snow to accumulate
atop the lake surface. When ice is not present, any snowfall on a lake is immediately melted and added
to the lake water budget. This process is only applied to HRUs with a LAKE-type soil profile.

Lake freezing algorithms do notmovewater between compartments, but rather adjust theICE_THICKNESS
state variable; this influences the SNOW, SNOW_LIQ, and COLD_CONTENT state variables in the parti-
tioning of precipitation. Example usage in the .rvi file:

:LakeFreeze LFREEZE_BASIC

Available Algorithms

Basic approach (LFREEZE_BASIC)

The ice thickness is determined from the potential melt rate, with a buffering effect applied due to
the presence of snow.

dT

dt
= −

(
1−min

(
ϕSWE

B
, 1

))
Mmelt

whereMmelt [mm/d] is the potential melt rate (positive formelt, negative for freezing), ϕSWE [mm]
is the snowwater equivalent atop the ice, andB is the land surface parameterLAKESNOW_BUFFER_HT
[mm].
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3.25 Crop Heat Unit Evolution

Crop heat units (CHUs) are used by some organizations in Ontario, Canada in order to assess soil evap-
oration. ET is maximized when CHUs meet their maturity level. To be used in conjunction with the soil
evaporation algorithm SOILEVAP_CHU. The crop heat units grow in magnitude over the course of a
growing season based upon the daily temperature profiles.

Crop heat unit evolution algorithm does not move water between storage compartments. The method
only revises the magnitude of the CROP_HEAT_UNITS state variable. Crop heat units are zero outside
of the growing season. Example usage in the .rvi file:

:CropHeatUnitEvolve CHU_ONTARIO

Available Algorithms

Ontario method (CHU_ONTARIO)

The growing season is determined to begin when the minimum temperature over a 3-day period
is 12.8 ◦C, at which time the crop heat units are set to zero. It ends when the temperature dips
below -2 ◦C, or after September 30th. During the growing season, CHUs are incremented using the
following expressions (Brown and Bootsma, 1993):

CHUd = 3.33 · (Tmax − 10)− 0.084 · (Tmax − 10)2

CHUn = 1.8 · (Tmin − 4.4)

CHUnew = CHUold + 0.5 · (CHUd + CHUn)

where Tmin and Tmax are the minimum and maximum daily temperatures
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3.26 Special Processes

The flush, lateral flush, split, redirect flow, and overflow processes are used in conceptual models to
represent the ’instantaneous’ movement of water from one water storage compartment to another. The
convolution process allows for a time lag of storage. As these are wholly conceptual in nature, they are
most often included in order to emulate the functioning of existing hydrologic models. These processes
may not work as intended when using a numerical method other than the ordered series approach.

• The Flush process instantaneously moves some or all of the water storage from one storage com-
partment to another.

• The Lateral Flush process instantaneously moves all of the water storage from one storage com-
partment in one or more HRUs in a basin to another storage unit in another HRU within the basin.

• The Lateral Equilibrate process exchanges storage in adjacent HRUs within a basin until their stor-
ages are equal in depth (and also mixes constituents)

• The Overflow process moves the excess water storage (more than the maximum capacity of the
water storage unit) to another compartment. The .rvi command :AllowSoilOverfill can
be used with the overflow process to ensure that soil compartments may be filled beyond their
maximum capacity (which by default is not the case).

• The RedirectFlow process overrides the default storage targets of the previous algorithm

• The Split process instantaneously moves all of the water storage from one storage compartment
into two, with the proportion specified in the input command.

• The convolution process temporarily stores water in a convolution storage compartment, to be re-
leased using a transfer function approach. The output fluxes from a convolution process are typi-
cally an attenuated and delayed version of the input fluxes.

The flush, lateral flush, overflow, and split processes may move water from any water storage compart-
ment to any other. The convolution process (:Convolve command in the input) releases water added
to a convolution storage structure by any other process to any storage compartment. Example usage in
the .rvi file:

# moves all ponded water to surface water
:Flush RAVEN_DEFAULT PONDED_WATER SURFACE_WATER

# moves 70\% of ponded water to surface water
:Flush RAVEN_DEFAULT PONDED_WATER SURFACE_WATER 0.7

# moves liquid snow in excess of maximum liquid snow storage
# to surface water
:SnowBalance SNOBAL_SIMPLE_MELT SNOW SNOW_LIQ

:-->Overflow RAVEN_DEFAULT SNOW_LIQ SURFACE_WATER

# redirects runoff from infiltration algorithm to a conceptual store
:Infiltration INF_GREEN_AMPT PONDED_WATER MULTIPLE

:-->RedirectFlow SURFACE_WATER SOIL[4]

# moves 60% of ponded water to surface water, the rest infiltrates
:Split RAVEN_DEFAULT PONDED_WATER SURFACE_WATER SOIL[0] 0.6

77



# delays release of surface water to outlet through convolution
:Flush RAVEN_DEFAULT SURFACE_WATER CONVOLUTION[0]
:Convolve CONVOL_GR4J_1 CONVOLUTION[0] SURFACE_WATER

# moves all runoff from upland HRUs to wetlands
# requires definition of Uplands and Wetlands HRU groups
:LateralFlush RAVEN_DEFAULT Uplands SURFACE_WATER To Wetlands DEPRESSION

# instantaneously equilibrates groundwater storage in basin HRUs
# (equivalent to deprecated :AggregatedVariable SOIL[3] AllHRUs
:LateralEquilibrate RAVEN_DEFAULT AllHRUs SOIL[3] 1.0

Available Algorithms (Convolution)

Since convolution methods store the time history of inputs to convolution storage of a duration consistent
with the longest time delay in the convolution, it is not suggested to use convolution with a time constant
in days with an hourly time step. Typically the order of the time delay should be on the order of the model
time step.

The below convolution methods are available. All of them perform a discrete version of the following
convolution:

Mconv =

∞∫
0

UH(τ)I(t− τ)dτ

where I(t) is the input flux history (in mm/d) to the convolution storage unit and UH(t) is the transfer
function; the area under the transfer function is always equal to one to ensure mass balance.

GR4J transfer function 1 (CONVOL_GR4J_1)

The transfer function used is

UH(t) =

 5
2x4

(
t
x4

)3
2 for t ≤ x4

0 for t > x4

where x4 is the land use parameter GR4J_X4.

GR4J transfer function 2 (CONVOL_GR4J_2)

The transfer function used is

UH(t) =


5

4x4

(
t
x4

)3
2 for t ≤ x4

5
4x4

(
2− t

x4

)3
2 for x4 < t ≤ 2x4

0 for t > 2x4

where x4 is the land use parameter GR4J_X4.

Gamma transfer function 1 (CONVOL_GAMMA)

The transfer function used is

UH(t) =
1

t

(βt)a

Γ(a)
exp(−βt)

where a and β are the land use parameters GAMMA_SHAPE and GAMMA_SCALE, respectively.
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Gamma transfer function 2 (CONVOL_GAMMA2)

The transfer function used is

UH(t) =
1

t

(βt)a

Γ(a)
exp(−βt)

where a and β are the land use parameters GAMMA_SHAPE2 and GAMMA_SCALE2, respectively.
The purpose of this is to be able to support two convolution processes in serial or parallel.

79



Chapter 4

Routing and Water Management

The following chapter outlines the routing algorithms available for modelling the downstream migration
of water through a terrain/channel/reservoir network in Raven. As briefly summarized in section 1.2.2,
the routing process in Raven has two components: at the sub-basin level, rainfall and snowmelt from
all HRUs is released to surface water via overland runoff, interflow, and base flow. There is some delay
and/or redistribution of the timing of the release of this water to the subbasin river reach, then again a
delay before the water reaches the subbasin outlet. This total delay is handled in Raven typically using a
linear transfer function (e.g., Unit Hydrograph) approach, and is termed in-catchment routing. The second
form of routing is the hydraulic/hydrologic routing between subbasins within the main channel of each
subbasin. This is referred to as in-channel routing. The distinction between the two is shown in figure 1.4.
In addition to in-catchment and in-channel routing, a separate routine is used to route waters through
reservoirs/lakes at the end of subbasins.

While this chapter addresses the primary catchment-channel-reservoir routing progression in Raven,
Raven supports alternate means of influencing the timing characteristics of a basin. For instance, some
lateral routing between HRUs may be performed prior to delivery to the stream network (e.g., see sec-
tion 3.26 for discussion of the Lateral Flush process which can be used to route water laterally). This
lateral transfer is separate from the landscape routing described in this chapter, but may therefore impact
propagation of water downstream, for instance by sending landscape runoff to a riparian wetland. Other
conceptual models (e.g., those in HBV) route water through conceptual routing stores; this is supported in
Raven by using ’artificial’ soil horizons as routing stores, as can be seen in the HBV-EC and GR4J model
evaluations in appendix F.

4.1 In-Catchment Routing

4.1.1 Overview

It is important to note that the rate of release of water from storage within an HRU is treated as constant
over a given time step. This is the most appropriate, since water storage state variables are stored as
snapshots in time (at the end of each time step). However, in the channel, the state variable is no longer
storage, but flow rates, as is consistent with the majority of routing algorithms developed in the literature.
Therefore, in addition to impacting the timing of the flows, in-catchment routing is used to map flow rates
which are constant over a time step (losses from the HRU) to those which are varying linearly over a time
step (in-channel flows).
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In all cases, in catchment routing is treated using a discrete transfer function approach, i.e.,

Q(t+∆t) =

N∑
n=0

Qlat(t− n∆t) · UHn (4.1)

where Q(t) [m3/s] is the flow rate into the channel from the subbasin at time t, Qlat(t) [m3/s] is the
constant lateral release flow rate from the HRU surface over the time step from t to t + ∆t, and U⃗H
is a unitless vector which describes the distribution of arrival times to the channel. The sum of values
of the U⃗H vector equal 1, and the magnitude of UHn may be interpreted as the percentage of the flow
appearing in the channel n time steps after its release from the HRU. This is the discrete generalization
of a convolution:

Q(t) =

∞∫
0

Qlat(t− τ) · UH(τ)dτ (4.2)

Either of these may be interpreted as providing a distributed delay between when water is released from
the HRU and when it appears in the channel. There are numerous approaches in the literature for esti-
mating unit hydrograph characteristics. While the unit hydrographs below are reported as continuous,
they are internally converted to a discrete version via the following relation:

UHn =
1

∆t

(n+1)∆t∫
n∆t

UH(t)dt n = 0...∞ (4.3)

Only non-zero U⃗H vector elements are retained.

4.1.2 Algorithms

The following algorithms may be used for in-catchment routing. The sole difference between the vari-
ous catchment routing algorithms is the shape of the unit hydrograph used. Note that all of the below
algorithms describe the continuous form of the unit hydrograph for an event of one time step duration.

Dump method (ROUTE_DUMP)

In the “dump” method of catchment routing, all of the water released from the HRUs to surface
water over a time step appears in the channel at the end of the time step (i.e., as soon as it can given a
finite time step). This is generally valid for small subbasins (those with small times of concentration)
or large time steps. This is equivalent to U⃗H = {1, 0, 0, 0, ...}, and is an approximation of

UH(t) = δ(t)

where δ is the Dirac delta function.

Gamma unit hydrograph (ROUTE_GAMMA_CONVOLUTION)

Here, a Gamma distribution is used to represent the unit hydrograph, i.e.,

UH(t) =
1

t

(βt)a

Γ(a)
exp(−βt)

where Γ(a) is the Gamma function and a and β are the subbasin parameters GAMMA_SCALE and
GAMMA_SHAPE. If not provided, a defaults to a reasonable value of 3. if the GAMMA_SCALE pa-
rameter is not provided but the time to peak subbasin parameter TIME_TO_PEAK (tp) is provided,
then β is calculated as follows:

β =
a− 1

tp
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Note that this automatic calculation can lead to issues when a<1.0, because the peak value occurs
at t = 0 for this distribution when a < 1.0.

Triangular unit hydrograph (ROUTE_TRI_CONVOLUTION)

A triangular unit hydrograph is used with a peak time of tp, specified as the subbasin property
TIME_TO_PEAK and total duration specified by the time of concentration, tc, specified using the
subbasin property TIME_CONC. Note that variations in the time of concentration smaller than the
model time step will have no impact on model solution. The property TIME_TO_PEAK must be
less than TIME_CONC.

UH(t) =


2
tc

t
tp

for t < tp
2
tc

(
tc−t
tc−tp

)
for t ≥ tp

Nash unit hydrograph (ROUTE_RESERVOIR_SERIES)

The Nash unit hydrograph is used with a linear reservoir constant (k) specified using the subbasin
property RES_CONSTANT and the integer number of reservoirs (N ) equal to NUM_RESERVOIRS
(another subbasin property).

UH(t) = tN−1kNe−kt
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4.2 In-Channel Routing

4.2.1 Overview

In Raven, in-channel routing is the only means by which water, mass, and energy are exchanged laterally
between subbasins. It is assumed that this movement is unidirectional, i.e., water moves downstream
only through a one-dimensional branching stream network fully described by the succession of subbasins
defined in the .rvh file. Each subbasin can have a single outlet and is conceptualized as having a single
primary channel running through it, which may or may not have a reservoir at the end of the channel.
Headwater subbasins (those without an upstream subbasin) are assumed to have no corresponding chan-
nel, but may have a reservoir which is fed purely via in-catchment routing and releases water to the next
downstream basin.

This routing formalization leads to some implicit guidelines for subbasin discretization.

• Subbasin outlets should typically occur at stream network junctions.

• Surface water reservoirs should be located at the outlet of a subbasin (or themselves embody an
entire subbasin)

• All stream gauges used for calibration or model evaluation should be located at the outlet of a
subbasin

• For lumped (single subbasin) models, channel routing is usually disabled entirely.

In-channel routing may be treated by a number of algorithms. However, as indicated in section 1.2.2, all
of these algorithms may be generalized as

Qn+1
out = Froute(Q

n
out, Q⃗

in, P⃗s) +Qn+1
lat (4.4)

where Froute is the routing algorithm, Q⃗in is the recent time history of upstream (and upbasin) inflows to
the channel,Qn+1

lat is the lateral inputs generated by the in-catchment routingmethod for the time step, P⃗s
is a vector of channel parameters, typically a number of channel rating curves, primary channel and bank
roughness, and weir or reservoir relationships. Lastly, Qn+1

out is the outflow from the stream reach at the
end of the time step. Figure 1.4 indicates the meaning of these major parameters. The descriptions of the
channel inputs are detailed in section A.2.2 of the appendix, and specified using the :ChannelProfile
command.

4.2.2 Algorithms

While more rigorous hydraulic routing algorithms (which handle backwater effects, etc.) may be im-
plemented in future incarnations of Raven, for the most part, the algorithms currently in Raven are
considered hydrologic routing methods based upon simple storage relationships, rather than complete
solution of the Saint-Venant equations for momentum and mass conservation. They fall roughly into two
categories: convolution approaches, which function in a manner nearly identical to that of the unit hy-
drograph approach used for in-catchment routing, and mass-balance approaches, which solve for outflow
through a discrete form of the mass balance equation. Both sets of approaches are mass-conservative.

As with the in-catchment methods, the convolution-based methods (ROUTE_DIFFUSIVE_WAVE) and
(ROUTE_PLUG_FLOW), use a discrete transfer-function approach:

Qn+1
out =

N∑
i=0

Qn−i+1
in · UH ′

i +Qn+1
lat (4.5)
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where Qn+1
out [m3/s] is the flow rate from the subbasin at the end of the time step, Qnin [m3/s] is the

inflow rate from upstream sources at the end of time step n, and U⃗H ′ is a unitless vector which describes
the distribution of arrival times to the channel. The sum of values of the U⃗H ′ vector equal 1, and the
magnitude if UH ′

i may be interpreted as the percentage of the flow leaving from the channel i time steps
after its arrival in the channel from upstream sources.

Many of the in-channel routing routines require the reference celerity for the channel reach:

cref =
dQ

dA

∣∣∣∣∣
Qref

(4.6)

cref is the reference celerity for the reach, the velocity corresponding to the reference flow, Qref [m3/s]
in the reach, usually specified as the bank full flow using the subbasin parameter Q_REFERENCE. If
Q_REFERENCE is not provided explicitly, it is estimated from the AVG_ANNUAL_RUNOFF parameter.
The slope of theQ vs. A relationship atQref is interpolated from that generated for the specific channel.

No routing (ROUTE_NONE)

All inflows (both lateral and upstream), are instantly routed to the channel outlet, i.e.,

Qn+1
out = Qn+1

in +Qn+1
lat

This option is mostly used for single subbasin models.

Simple plug flow (ROUTE_PLUG_FLOW)

Here, there is a delay between water entering and exiting the channel dictated by the celerity of
the channel reach, but there is no smearing out of the hydrograph as it migrates along the channel.

UH ′(t) = δ

(
t− L

cref

)
where δ(t) is the Dirac delta function, L is the reach length within the subbasin (specified from the
subbasin property REACH_LENGTH, and cref is the reference celerity of the channel, as determined
from the channel profile characteristics and the subbasin’s reference flow rate, Qref specified as
the subbasin parameter Q_REFERENCE. The reference celerity cref is calculated using 4.6.

Diffusive wave model (ROUTE_DIFFUSIVE_WAVE)

Here, an analytical solution to the diffusive wave equation is used to smear out the flood wave as it
propagates through the reach. As with the simple plug flow approach, the reference celerity is used
to determine the mean travel time of the wave, and the channel diffusivity,D [m2d−1] controls the
smearing out of the wave signal prior to exiting the reach.

UH ′(t) =
1

2
√
πDt

exp

(
−
(L− cref t)

2

4Dt

)
where L [m] is the channel reach length, cref is calculated using 4.6, and the channel diffusivity,
D, is estimated from the channel reference flow Qref (subbasin parameter Q_REFERENCE) using
the following relationship:

D =
Qref

2S · d(Qref )
where S is the channel bedslope and d(Q) is the relationship between flow depth, d and flow rate,
Q, in the channel, determined from the channel geometry. The diffusive wave model is currently
the preferred routing method for transport simulation. If Q_REFERENCE is not provided explicitly,
it is estimated from the AVG_ANNUAL_RUNOFF parameter.
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Storage coefficient method (ROUTE_STORAGE_COEFF)

The storage coefficient method evaluates outflow using a discrete approximation of the water bal-
ance for the channel over the time step Williams (1969):

Qn+1
out = c1 ·Qn+1

in + c2 ·Qnin + c3 ·Qnout +Qn+1
lat (4.7)

here, the weights c1, c2, and c3 are calculated from the storage coefficient, k, given as:

k = min

(
1

K
∆t + 0.5

, 1

)
(4.8)

where K is the representative travel time for the reach (also the Muskingum K parameter, calcu-
lated as∆x/cref where∆x is the reach segment length). Here, c1 = k/2, c2 = k/2, and c3 = 1−k.
Caution should be used with this method on long reaches without finely discretizing the reach, as
water will arrive at the outlet immediately after entering, even with a large representative travel
time in the reach.

Muskingum-Cunge method (ROUTE_MUSKINGUM)

The standard Muskingum-Cunge approach also evaluates outflow using a discrete approximation
of the water balance for the channel over the time step:

Qn+1
out = c1 ·Qn+1

in + c2 ·Qnin + c3 ·Qnout +Qn+1
lat (4.9)

here, the weights c1, c2, and c3 are calculated from the Muskingum X andK parameters as

c1 =
∆t− 2KX

2K(1−X) + ∆t

c2 =
∆t+ 2KX

2K(1−X) + ∆t

c3 =
−∆t+ 2K(1−X)

2K(1−X) + ∆t

The Muskingum algorithm is well-documented in the literature. The Muskingum parameters X
andK are calculated using the following relations:

K =
∆x

cref

X =
1

2

(
1−

Qref
Swrefcref∆x

)
where cref is the reference celerity for the reach (calculated using equation 4.6), S is the channel
bedslope, wref is the channel width at the reference flow Qref (basin parameter Q_REFERENCE),
and ∆x is the reach segment length (or reach length, L, if only one segment is used per reach).
Care must be taken to ensure that X and K fall within a reasonable range of values, notably that
2KX < ∆t < 2K(1 − X). If the time step is too large, Raven automatically employs local time
stepping for the routing algorithm. However, the case where the time step is too small (a warning
will be thrown to RavenErrors.txt) must be handled via user intervention, by increasing the number
of segments in the reach. If Q_REFERENCE is not provided explicitly, it is estimated from the
AVG_ANNUAL_RUNOFF parameter.
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Iterative hydrologic routing approach (ROUTE_HYDROLOGIC)

Here, the routing is performed using an iterative application of Newton’s root-finding algorithm to
the following discretization of the storage relationship for the reach,

V (Qn+1
out )− V (Qnout)

∆t
=

1

2
(Qnin +Qn+1

in )− 1

2
(Qnout +Qn+1

out )

Given that the channel volume, V (Q) may be written as a function of outflow from the reach if a
level-pool assumption is used, this may be expressed as a root-finding problem for Qn+1

out (without
the in-channel routing included). The final outflow is calculated by adding Qn+1

lat to the resultant
outflow from this algorithm. This method is very stable, fast, accurate, and mass-conserving. It
avoids the numerical pitfalls of the non-iterative Muskingum algorithm. Right now, it can only be
applied to reaches which constitute a single reach segment.

4.3 Lake and Reservoir Routing

4.3.1 Overview

Lakes or reservoirs may be specified using a :Reservoir-:EndReservoir command in the .rvh file
(see appendix A.3), and are always located a the outlet of a subbasin, i.e., a reservoir linked to a given
subbasin receives its water from that basin’s in-channel routing routine, then releases it downstream.
Raven supports a range of methods for determining the outflow from a reservoir or lake using either stage-
discharge relationships or operational constraints such as flow and stage targets. Each reservoir may have
two stage-discharge curves to represent, for example, combined tunnel underflow and spillway overflow.
For simple natural lakes, stage-discharge curves can be calculated by Raven, only the estimated crest
width of the lake overflow is specified by the user. A schematic of two common reservoir configurations,
one for a prismatic single-parameter lake and one for a general managed reservoir are shown in figure 4.1

Iterative reservoir routing approach

Only one algorithmic option is available for routing water in a reservoir. In this approach, a Newton solver
is used to iteratively calculate the reservoir stage using the following time discretization of the reservoir
level-pool mass balance:

dV (h)

dt
= Qin −Q(h) + P ·A∗ − E ·A(h)− S(h) (4.10)

V (hn+1)− V (hn)

∆t
=

1

2
(Qnin +Qn+1

in )− 1

2

(
Q(hn) +Q(hn+1)

)
+P ·A∗ − E

2

(
A(hn) +A(hn+1)

)
− 1

2

(
S(hn) + S(hn+1)

)
where h is the stage and Q(h), V (h), and A(h) are the stage-discharge, stage-volume, and stage-area
relations defined in the :Reservoir command (appendix A.3.2). P is the direct precipitation, applied
to the fixed area A∗ of the HRU associated with the reservoir, E is the timestep-averaged open-water
evaporation rate for the reservoir calculated as determined by the :OWEvaporation command for the
reservoir-linked open water HRU. S(h) = k · (h− hgw) is the groundwater seepage rate of the reservoir,
calculated from a seepage coefficient k [m3/d] and groundwater reference head hgw (specified using the
:SeepageParameters command). Reservoir evaporation may be modified by the LAKE_PET_CORR
land surface parameter. Note that the reservoir should be included as an HRU with the average reservoir
area. All precipitation falling on this HRU gets added to theQin component, where evaporation from the
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Figure 4.1: Example reservoir configurations in Raven. (a) a lake-type reservoir and (b) a general managed
reservoir. h(t) is the absolute stage height and s(t) is the height of the water level above the minimum
crest height. For the lake-type reservoir, D is the :MaxDepth parameter, H is the optional :Abso-
luteCrestHeight parameter, C is the :WeirCoefficient, and W is the :CrestWidth. For
operated reservoirs, typically the stage-volume (V (h)) and stage-discharge (Q(h)) curves are provided,
with optional support for underflow Qu(h) if desired. The gate shift hw(t) may be specified to represent
the operation of a stop-log weir or similar.

surface of the reservoir is only included in the above expression. If no HRU is linked to the reservoir in
the reservoir command, evaporation is considered negligible and not included in the mass balance.

It is critical that the entire range of likely stage elevations are includedwhen specifying the stage-discharge
(Q(h)) and stage-volume (V (h)) curves. The outflow from the reservoir is determined solely from the
stage-discharge curve unless overridden by operational rules.

Operational controls that can be applied to determine reservoir outflow include:

• Maximum Stage constraints - the maximum stage may be provided as a time series using the
:ReservoirMaxStage command in an .rvt file. The maximum stage constraint overrides all
other controls.

• MinimumStage constraints - theminimum stagemay be provide as a time series using the:Reser-
voirMinStage command in an .rvt file. The minimum stage must be less than the maximum
stage; if the minimum stage constraint is hit, then the outflow is set to zero or to the minimum flow
as proscribed in the :ReservoirMinStageFlow time series command.

• Target Stage constraints - the target stage may be provides as a time series using the :Reser-
voirTargetStage command in an .rvt file. The target stage must be between the minimum and
maximum stage. When supplied, the required outflow at the end of the time step Qn+1 needed
to maintain the target stage (i.e., such that hn+1 = hn+1

target) will be determined. If there are no
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maximum flow change constraints, this will be applied and the target stage will always be met.
However, if a maximum flow change constraint is met, then the change in discharge over the time
step (Qn+1 −Qn) will be limited by the flow constraint, which is expressed as the maximum posi-
tive rate of change in outflow, in m3/s. This maximum flow change constraint is supplied as a time
series via the :ReservoirMaxQDelta command. There can also be a maximum negative rate
of change in outflow specified using the :ReservoirMaxQDecrease command.

• Variable weir height - the datum of the stage-discharge curvemay be shifted over time by specifying
the relative weir height as a time series with the :VariableWeirHeight command. This can
emulate the operation of a stop-log weir or similar weir structure where the crest height is controlled
by operators.

• Outflow override - the outflow from the reservoir may be completely specified by the user if the
:OverrideReservoirFlow time series command is supplied for the simulated reservoir.

• Minimum flow constraints - theminimum flowmay be provided as a time series using the:Reser-
voirMinFlow command in an .rvt file. This specifiedminimum flowmay increase to satisfy down-
stream target flows specified using the :ReservoirDownstreamFlow command, if present.

• Maximum flow constraints - themaximum flowmay be provided as a time series using the:Reser-
voirMaxFlow command in an .rvt file.

• The DZTR (Dynamic Zoned Target Release) model of Yassin et al. (2019) - the discharge is calculated
using a time-variable volume-discharge curve generated via matching historical observations occur-
ring under unknown reservoir operational rules using the :DZTRReservoirModel command in
the .rvh :Reservoir block.

Advice

If any of these reservoir constraints are constant in time or annually cyclical, use the :Annual-
Cycle time series command so you don’t have to specify a long redundant time series in the .rvt
file.

The combination of maximum, minimum, and target stage constraints may be used, for instance, to em-
ulate historical application of rule curves during the model calibration/validation process. The override
reservoir outflow control can be used to replace simulated outflows from a reservoir with observed out-
flows during model calibration/validation or it can be used in short-term forecasting to examine the influ-
ence of operational decisions on reservoir stage and downstream flows. Lastly, approximate rule curves
may be used in forecasting for systems where actual operational rules are unknown. It is worth noting
the order of priority of these different constraints when multiple operational controls are specified for a
reservoir (from highest priority to lowest priority):

1. Maximum stage constraint has highest priority (:ReservoirMaxStage)

2. Minimum flow andmaximum flow constraints (:ReservoirMinFlow and:ReservoirMaxFlow
(and also downstream target flows from :ReservoirDownstreamDemand influencing mini-
mum flow))

3. Overridden flow (:OverrideReservoirFlow)

4. Minimum stagewithMin stage specified flow (which is zero if not specified) (:ReservoirMinStage
and :ReservoirMinStageFlow)∗

5. Qdelta constraints (:ReservoirMaxQDelta and :ReservoirMaxQDecrease)

6. Target stage (:ReservoirTargetStage)
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7. Natural weir flows has lowest priority

∗The minimum stage constraint can be moved to the top of this list (i.e., get highest priority) by using the
:MinStageConstraintDominant command in the :Reservoir block.

Note that there are a number of different approaches available for discretizing and representing lakes and
reservoirs in Raven. For small lakes, we may not wish to explicitly represent their outflow characteristics
and only wish to represent their role in influencing the basin water balance. In this case, water HRUs
would be included in the basin, but a reservoir would not be used. For smaller lakes or reservoirs that still
have a notable influence on downstream flows, a single water HRUwould be included in the subbasin and
linked to the reservoir. For natural lakes, it is suggested to use the ’lake-type’ reservoir input structure
described in appendix A.3.2. For large reservoirs (especially those with multiple subbasins draining into
them), it is suggested to treat the reservoir as its own single-HRU subbasin with zero reach length.

Known inflows or outflows from the reservoir (e.g., irrigation diversions) may be considered in the above
mass balance using the :ReservoirExtraction time series command in the .rvt file.

If reservoirs are present in the model, the file ReservoirStages.csv file is automatically created
(with the runname prefix if specified). A full reporting of reservoir mass balance for all gauged subbasins
is provided in the file ReservoirMassBalance.csv if the :WriteReservoirMBFile command
is included in the .rvi file.

Observations of reservoir inflow, reservoir net inflow, and/or reservoir stage may be supplied to Raven
and be evaluated against simulated values using the full set of diagnostics indicated in section 8.2.

4.4 Water Demand and Flow Diversions

4.4.1 Overview

Raven supports user-specified time series of water demand (e.g., irrigation or water treatment with-
drawals) and flow diversions from one part of the watershed to another. It also supports simplified man-
agement constraints upon reservoirs based upon downstream demand. The key tools for representing
these management-driven influences on river discharge include the following commands, described in
details in appendix A.4.4:

• :WaterDemand or :IrrigationDemand (.rvt): a time series of desired withdrawals from the
outlet of a subbasin, constrained such that stream discharge must be greater than zero or the envi-
ronmental minimum flow.

• :EnvironmentalMinFlow (.rvt): used to constrain irrigation demand to maintain environmen-
tal minimum flows. If flows are less than environmental minimum flows, irrigation demand goes
unmet.

• :FlowDiversion (.rvt): moves water from the outlet of one subbasin to the inlet of another
basin. A simple percentage of simulated discharge may be used, or a user-specified lookup table
may be used with the :FlowDiversionLookupTable command.

• :ReservoirDownstreamDemand (.rvt): ensures that theminimum outflow from reservoirs sat-
isfies irrigation demand downstream. This can be specified on a case-by-case basis where (e.g.) a
single reservoir meets a percentage of demand at a single location. Alternately, multi-reservoir sys-
tems may support multiple downstream demands as is controlled by the :ReservoirDeman-
dAllocation command in the .rvi file. Percentages of downstream demand may be determined
by reservoir contributing area or by maximum reservoir capacity.
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• :ReservoirExtraction (.rvt): supports both extraction from a reservoir or (if negative) injec-
tion of water into a given reservoir.

• :BasinInflowHydrograph (.rvt): can be used to add water to (or remove water from, if nega-
tive) a subbasin at its reach outlet. If negative, this command does not respect positivity constraints,
so the use of :IrrigationDemand or :WaterDemand command is preferred for representing
withdrawals.

• :BasinInflowHydrograph2 (.rvt): can be used to add water to a subbasin at its reach inlet.

Because extractions are applied at the inlet (upstream end of basin main reach) or outlet (downstream
end of main reach), users may wish to consider discretizing the watershed into subbasins in such a way
that demand or supply locations correspond to basin outlets. Unmet irrigation demand is reported in the
output file demands.csv when the :WriteDemandFile command is included. The default approach in
Raven is for environmental flow constraints to be applied locally, i.e., only the water demand in basin n is
adjusted for environmental flow constraints in basin n - delivery of demanded water in upstream basins
will not be adjusted to handle downstream flow constraints except explicitly via the :ReservoirDown-
streamDemand command.

4.4.2 Reservoir Demand Allocation

Reservoirs are often managed in such a way to support downstream irrigation needs. Raven supports
emulation of this management practice by modifying the minimum flow targets for individual reservoirs
based upon the instantaneous flows at irrigation demand locations downstream. The :Reservoir-
DownstreamDemand command implements this functionality, and can support individual demands
(e.g., Reservoir A is expected to meet 80% of irrigation demand at location 1) or multiple demands (e.g.,
the 3 reservoirs upstream of demand location 2 share the responsibility of satisfying the minimum flow
at that location. Note that this local handling of downstream demand has been superseded by the global
handling of the water management optimization functionality described in section 4.5.

The impact of multiple controls simultaneously applied are best demonstrated via example. Consider the
watershed in figure 4.2.

Figure 4.2: An example reservoir routing configuration. Numbers at subbasin outlets refer to the subbasin
ID.
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This system is represented using the following setup:

In the .rvi file:

:ReservoirDemandAllocation DEMANDBY_CONTRIB_AREA

In the .rvt file (note that the :AnnualCycle command is here used for brevity; daily or sub-daily time
series can alternatively be provided):

:WaterDemand 4
:AnnualCycle 0 0 0 0 20 20 20 20 20 10 0 0 #monthly flows [m3/s]

:EndWaterDemand
:WaterDemand 6

:AnnualCycle 0 0 0 0 10 10 10 10 10 0 0 0
:EndWaterDemand
:WaterDemand 9

:AnnualCycle 0 0 0 0 5 5 30 5 5 5 0 0
:EndWaterDemand
:EnvironmentalMinFlow 6

:AnnualCycle 22 22 22 22 22 22 22 22 22 22 22 22
:EndEnvironmentalMinFlow

# 20% of irrigation demand in subbasin 4 is supported by
# reservoir A (in subbasin 1)
:ReservoirDownstreamDemand 4 1 0.2
# 90% of irrigation demand in subbasin 6 is supported by
# reservoir C (in subbasin 7)
:ReservoirDownstreamDemand 6 7 0.9
# 50% of irrigation demand in subbasin 9 is supported
# by upstream reservoirs
:ReservoirDownstreamDemand 9 _AUTO 0.5

In the .rvp file, the global demandmultiplier,αG is set with the command:GlobalParameter RESER-
VOIR_DEMAND_MULT. In the .rvh file, in the :Reservoir command blocks, the local demand multi-
pliers αi are set using the :DemandMultiplier property.

Because these reservoir demand constraints are additive, the minimum outflow from each reservoir can
be calculated as follows:

QAmin = αA · αG ·
(
(0.2 · I4) +

A1

A1 +A2 +A7
· (0.5 · I9)

)
QBmin = αB · αG ·

(
A2

A1 +A2 +A7
· (0.5 · I9)

)
QCmin = αC · αG ·

(
(0.9 · I6) +

A7

A1 +A2 +A7
· (0.5 · I9)

)
+ E6

where Ai, Ii and Ei are the contributing area, irrigation demand, and environmental minimum flow
of basin i, respectively. Note that the αi terms locally correct the influence of each dam; by setting to
zero, the influence of this demand constraint can be turned off. The global modifier αG can evaluate
different management scenarios (e.g., determine the impact of not modifying reservoir flows to support
downstream demand). It can be seen that if the local and global demand multipliers are equal to one, the
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minimum flows of all three reservoirs will satisfy 50% of the demand in subbasin 9. It should also be noted
that if an environmental minimum flow is specified at a downstream demand location, then it must be
respected by the reservoir outflow, without any multiplier used.

4.5 Water Management Optimization

Raven (v4.0 and thereafter) supports simulation of basin water management as an optimization problem.
With the :ApplyManagementOptimization option activated in the .rvi file, the management of
reservoirs and the satisfaction of water demands is handled by optimally satisfying a set of management
goals subject to user-specified management constraints in each time step. This command is typically
supported by accompanied commands in the rvt file to specify water demands (:WaterDemand) and/or
minimum environmental flows (:EnvironmentalMinFlow command), as well as the raven water
management rvm file, which can be used to specify user-specified management goals and constraints.
See Appendix A.6 for more on input file commands.

Note that water management can only support the linear routing modes ROUTE_DIFFUSIVE_WAVE,
ROUTE_PLUG_FLOW and ROUTE_NONE.

With water management enabled, the following optimization problem is solved in each time step using
the open-source linear programming library lp_solve:

NG∑
i=0

Pi(Q⃗, h⃗) → min (4.11)

where Pi is a set of penalties associated with not satisfying NG management goals that are associated
with water levels, h⃗, and discharges Q⃗, in the watershed. By default, any unmet water demand induces a
penalty of the form.

P demandi = Pd · (Qd −D) (4.12)

where Pd is the penalty coefficient associated with the demand (1.0 by default), Qd is the water demand
[m3/s], and D is the delivered water [m3/s].

Users can specify additional penalties associated with not satisfying other goals: for instance, a water
level getting too low, a flow target not being met, or excessive ramping up of flow from a reservoir. Be-
cause management goals are often competing, we can weight the importance of each goal by changing
the magnitude of penalties: important management goals will have larger penalties than less-important
goals. This optimization is limited by a set of mass balance constraints and user-specified conditional
management constraints, all of which must be satisfied. The variables adjusted during the optimiza-
tion process are referred to here as decision variables, and include (by default) the outflow from each
subbasin, the outflow from each lake/reservoir, and the stage in each lake/reservoir. These can be sup-
plemented with additional user-defined decision variables such as cumulative withdrawal from a river
segment or net hydropower production. All of the goals, constraints, and penalties are specified within
the .rvm (management) input file.

The optimization process always enforces the following mass balance constraints in each time step. In
each subbasin reach p, conservation of mass is imposed:

Qn+1
p = Up0

N in
p∑

i=0
i
Qn+1
p +

N∑
j=1

Upj

N in
p∑

i=0
i
Qn−j+1
p +Rnp −Dn

p + Inp ± Fnp (4.13)

where Qn+1
p is the subbasin outflow at the end of time step n, Upj are the transfer function terms for

basin p, Nin is the number of inflowing basins to basin p and the term
i
Qnp is the inflow from basin i to
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basin p at the end of time step n. The terms Rnp ,D
n
p , I

n
p , and F

n
p [m3/s] represent the runoff to, delivered

demand from, specified inflow to, and diversions to/from basin reach p. This is identical to the mass
balance problem typically posed by Raven, but is here solved simultaneously rather than sequentially
from upstream to downstream, such that flows and demand delivery can be a function of upstream and
downstream management choices. Unlike many water resource optimization tools, it explicitly handles
the travel time in each reach.

For each lake or reservoir, a linearized version of Equation 4.10 is solved, one which assumes the lake area
doesn’t vary significantly over the time step:

An

∆t
(hn+1 − hn) =

1

2
(Qnin +Qn+1

in )−Qout (4.14)

+P ·An − E ·An − 1

2

(
S(hn) + S(hn+1)

)
Qout =

1

2

(
Q(hn) +Q(hn+1)

)
where Q(hn+1) is approximated by:

Q(hn+1) = Q(hn) +

(
dQ

dh

)
hn

·
(
hn+1 − nn

)
(4.15)

This linearized water management optimization is solved iteratively, updating the unknown reservoir
stages, streamflows, delivered demands, and optimization slack variables in each iteration. After the
water management optimization problem is solved, the delivered water demands are used in the standard
non-linear Raven routing algorithm. This ensures hydrograph results are the same when running with or
without water management optimization.

Environmental minimum flows are handled by defining a slack variable e+ which is minimized as part of
the objective function:

e+ ≥ Q−QE (4.16)

where QE is the environmental minimum flow, and Q is the outflow from the subbasin reach. Because
it is minimized, e+ will be positive and non-zero if Q > QE , but zero when the environmental minimum
flow is violated. This triggers the following constraint within the optimization problem:

upstream∑ Di = 0 (4.17)

i.e., that all of the restricted upstream demands are set to zero if the environmental minimum flow is not
satisfied. Unrestricted demands are not influenced by environmental minimum flows.

Themanagement optimization tool converts all of the reservoir management constraints in section 4.3 into
corresponding management goals. Maximum stage and minimum stage constraints from the :Reser-
voirMaxStage and :ReservoirMinStage commands are treated as goals, as are maximum and
minimum flow constraints specified using the :ReservoirMaxFlow and :ReservoirMinFlow.
The :TargetStage command is likewise interpreted as a management goal. The :ReservoirDown-
streamFlow and :ReservoirDownstreamDemand commands are currently incompatible with the
demand optimization functionality, and should be replaced with equivalent management goals in the .rvm
file.

Lastly, user-specified management constraints and goals may be specified to handle arbitrarily complex
custom management scenarios. The details of how to implement these are supplied in appendix A.6.

The demand optimization process generates two new output files by default:
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• DemandOptimization.csv - reports a time series of all decision variables calculated via the
optimization process

• GoalSatisfaction.csv - reports a time series of all slack variables used to handle goals as soft
constraints. Non-zero slack variables correspond to unmet goals, and their magnitude corresponds
to the degree to which the goal was unmet.

4.6 Strategies for Simulating Lakes/Wetlands in Raven

Raven has multiple mechanisms in place for simulating lakes and key lake processes. Since most of the
template models don’t explicitly represent lakes, a user may wish to augment these models to support
lake simulation.

The primary options are as follows:

1. Lakes as reservoirs- the mass balance of the lake is explicitly simulated using a level pool routing
approach, and the reservoir outflow characteristics must be defined. This is the preferred approach
for large lakes with significant outflows, large surface areas, and significant impact on the timing
of these outflows. It is also necessary if one wishes to simulate reservoir outflow management. For
all such Lakes, a :Reservoir-:EndReservoir command block will be required to define the outflow
characteristics, and therefore these large lakes require additional parameters. It is recommended
that these large reservoir-like lakes be represented using a single subbasin comprised of a single
LAKE HRU (one using the special LAKE soil profile) or a single subbasin with a single LAKE HRU
and a set of land HRUs which drain to the lake. In these lakes, the :OW_Evaporation method
(not the :LakeEvaporation process) determines how the PET from lakes is calculated; this ET
can be modified using the LAKE_PET_CORR land use parameter. With this option, groundwater
seepage to and from the lake may also be simulated.

2. Lakes as water HRUs (approach #1)- for smaller lakes which are along the channel and haveminimal
impacts on flows, it is recommended not to represent these as reservoirs. On these lakes, all precipi-
tation will be directed directly to the channel, and there is no need to define outflow characteristics.
Evaporation from the lake surface may be simulated using the :LakeEvaporation hydrologic process,
which removes water from the SURFACE_WATER in the channel at a rate proportional to the lake
HRU surface area. It may be desirable to address the hydraulic impacts of such lakes by increasing
the MANNINGS_N parameter (or other relevant routing parameters) of the subbasin in which the
lake resides.

3. Lakes as water HRUs (approach #2)- for medium sized lakes which may strongly dissipate the
basin scale response, we can likewise choose not to represent these explicitly as reservoirs. On
these lakes, all precipitation will be directed directly to LAKE_STORAGE, and there is no need
to define outflow characteristics. Evaporation from the lake surface may be simulated using the
:LakeEvaporation hydrologic process, which removes water from the LAKE_STORAGE in at
a rate proportional to the water HRU surface area. Water is released to SURFACE_WATER via a
simple storage-outflow relationship defined using the :LakeRelease hydrologic process. For
such lakes, the :LakeStorage variable must be set to LAKE_STORAGE. This approach sup-
ports more user control over lake impact than option #2, controlled by the land use parameter
LAKE_REL_COEFF.

4. Off-channel lakes - for lakes not connected to the primary stream network, the user must first assess
whether it makes sense to include them and their contributing area in the model, as such lakes may
be hydrologically isolated from the rest of the watershed. If no action is taken, they will function
identically to the lakes as water HRUs (option #2 or #3, above).
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5. Lakes as depression storage - for (potentially ephemeral) lakes, ponds, or wetlands, it may be use-
ful to simulate the storage capacity of the landscape using depression storage. Depression stor-
age withholds some or all of the runoff locally in depression stores via an :Abstraction al-
gorithm. This depression storage can lose water to the subsurface (via :Seepage), leak to the
main surface water network (via :DepressionOverflow) and evaporate to the atmosphere (via
:OpenWaterEvaporation). Because depression storage can interact with the soil layers below,
it is suggested that a LAKE profile not be used to represent local depression storage if :Seepage
is enabled. Typically, depression storage is used to represent lake extents much smaller than the
HRUs of interest, however, larger lakes or wetlands systems could be more explicitly represented by
abstracting laterally to WETLAND HRUs via, e.g., the :LateralFlush process, and there conditionally
applying seepage, evaporation, and overflow.

6. Lakes in HBV [special case] - the HBV hydrological model Bergstrom (1995); Lindström et al. (1997)
and its variants (HBV-EC (Hamilton et al., 2000), HBV-Lite) uses a somewhat curious conceptual
model for lakes that requires overriding of some normal lake functioning. In this model, the second
routing store (the ’slow reservoir’, SOIL[2]) is treated as a ’Lake’ (of sorts), subject to evaporation
via the :LakeEvaporation algorithm, but also used as a routing store and recipient of water
from the ’fast reservoir’. It is likely best not to think about this as a lake, but rather as a (somewhat
curious) conceptual representation of depression storage in a landscape.

All Lake HRUs should be assigned (1) a LAKE soil profile (except wetlands, see above), (2) a WATER/LAKE
land use type and (3) an OPEN/BARREN (or similar) vegetation type with zero LAI. The latter is required to
ensure that no canopy interception or radiation corrections are applied to the lake surface. LAKE profiles

Any HRU whose soil profile is set to LAKE* does not have soil layers underneath. Infiltration, percola-
tion, and baseflow are therefore not simulated. All precipitation (snow and rain) which falls on the lake
HRU will be sent to the lake storage unit defined by the :LakeStorage command. This is, by default,
SURFACE_WATER and should only be overridden for (1) use of option #3 above to simulate lakes and (2)
emulation of HBV and its variants. If the HRU represents a Reservoir, this water is applied directly to the
reservoir mass balance. If the lake IS NOT explicitly represented by a reservoir, then this water goes right
into the channel system, and the only way to represent the impacts of the lake are via an artificially high
Manning’s roughness coefficient or equivalent routing parameter.

Lakes in HBV

By default, the :LakeStorage state variable is SURFACE_WATER. For HBV-EC or HBV light emulation
this is modified to SOIL[2]. HBV treats all landscapes as if they have some presence of lakes, but does
not explicitly treat LAKE HRUs. If you would like to revise HBV to properly handle precipitation on a lake,
an additional command is required in the :HydrologicProcesses block:

:Flush RAVEN_DEFAULT [lake storage SV] [SURFACE_WATER]
:-->Conditional HRU_TYPE IS LAKE

Without this, the precipitation in the ’lake’ storage unit may steadily increase because standard mecha-
nisms for drainage (e.g., baseflow) are disabled for LAKE type HRUs.

4.6.1 Lake Evaporation

Lake Evaporation is only applied to LAKE HRUs which are not linked to a Reservoir by their HRU ID.
If a lake HRU is linked to a Reservoir, ET is handled using the specified :OW_Evaporation algorithm
(which can be corrected by the LAKE_PET_CORR modifier, a land use parameter). Evaporation from
depression storage should be handled via the :OpenWaterEvaporation algorithm.
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4.6.2 Lakes and in-catchment routing

The reach length in a subbasin with a lake or reservoir refers to themain channel upstream of the lake, and
is therefore typically smaller than that of a subbasin without a lake. Likewise, the in-catchment routing
parameters are only applied on the land portion of the subbasin. As such, the time of concentration and
time to peak (or other in-catchment routing parameters) should be determined solely by looking at the
non-lake portion of the subbasin. In the cases where the lake is treated as a single-HRU subbasin, the
reach length should be zero and the time of concentration should be a very small number.
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Chapter 5

Forcing Functions

In Raven, forcing functions, such as rainfall or incoming radiation, are calculated from meteorological
information specified at gauge stations in the watershed or, alternatively, from gridded weather/climate
data. This information is interpolated between gauge stations or grid cells to each hydrologic response
unit (HRU), where it may be corrected for orographic or other effects. Forcing functions are calculated at
the beginning of each computational time step, and are always constant over individual time steps. Many
forcing functions may be estimated by Raven if field data is unavailable.

Note that the basic data from which forcing functions are generated (often daily precipitation, mini-
mum/maximum daily temperature, etc.) must be reported in terms of rates (e.g., mm/d or MJ/m2/d) for
precipitation and radiation data, not total quantities for the time period. For example, if hourly rainfall
information is stored in mm, it must be converted to mm/d prior to simulation. Missing data in the gauge
information is currently not allowed. The time periods of available forcing data must fully overlap the
simulation duration, but they do not have to be identical.

The minimum required forcing data for fueling a Raven simulation is daily precipitation and daily maxi-
mum and minimum temperature. From this, Raven can partition precipitation into snowfall and rainfall,
estimate subdaily temperatures and PET, and provide estimates of incoming shortwave and longwave ra-
diation. Alternately, these parameters may be specified if available. Raven has the ability to estimate the
following forcings from simple records of total precipitation and daily min/max temperatures:

• Snowfall/Rainfall

• Potential ET (or reference ET)

• Shortwave and longwave net radiation

• Cloud cover

• Potential melt

• Wind speed, relative humidity, and air pressure

• Orographic corrections to temperature, precip, and potential ET rates

• Sub-daily corrections to daily ET, SW radiation, and potential melt rates

Refer to section A.1.2 of Appendix A for more details about each of the available processes that will be
discussed in this chapter.
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5.1 Spatial Interpolation

Spatial interpolation of forcing functions from gauge stations to HRUs is based upon the lat-long locations
of the gauges and HRUs as specified in the .rvt and .rvh files, respectively. These coordinates are internally
converted into the most appropriate local Universal Transverse Mercator (UTM) coordinate system (as
determined by Raven) to calculate distances between points. Raven currently supports nearest neighbor
and inverse distance weighting interpolation, as documented under the :Interpolation command
in appendix A.1. It also supports the provision of a user-specified gauge weighting file, such that gauges
may be assigned specifically to individual HRUs or alternate interpolation schemes may be used external
to the program.

In general, any interpolated field value (e.g., temperature), is calculated for each HRU using a relatively
general weighted averaging scheme:

Vk =
NG∑
g=1

wkg · Vg

i.e., any value Vk for HRU k is generated byweighting the values from all gauges Vg , using anHRU-specific

weighting factor wkg . Note that
NG∑
g=1

wkg = 1 is required. Different interpolation schemes differ only in

the means by which they generate the weights, usually based upon the relative geographic position of
the HRUs and gauges.

For gridded data, the contributions to each HRU to each grid cell is similarly specified using a weighting
scheme, though in this case the most intuitive weighting scheme is to use an area-weighted average of
the cells that overlap each HRU, i.e.,

Vk =
NC∑
g=1

wkg · Vg

where NC is the number of cells and wkg = (Ag
⋂
Ak)/Ak, i.e., the weighting is determined by the area

of intersection (
⋂
) between the grid cell (Ag) and HRU (Ak). The user must define these weights, typically

using GIS.

As of v2.8, Raven supports two different sets of gauges interpolants, i.e., only a subset of gauges must
have temperature or precipitation. If an automated interpolation technique (e.g., INTERP_NEAREST_-
NEIGHBOR) is used, only the gauges that have available temperature data will be used to interpolate
temperature; all other gauges will be given a weight of 0.0; likewise with precipitation. However, if the
interpolation is user-supplied ( INTERP_FROM_FILE), all gauges must have precipitation and temper-
ature data. If windspeed/radiation/humidity data is provided, it must be provided at the same gauges
where precipitation is available.

Note that values are first spatially interpolated, then corrected for orography. Orographic corrections are
based upon the interpolated gauge elevation. This ensures, for instance, that an HRU directly between
two met stations at different elevations doesn’t get doubly corrected for orography - the interpolation
already handles this. The interpolated gauge reference elevation is calculated as:

ẑk =
NG∑
g=1

wkg · zg (5.1)

where zg is the elevation of the gth gauge. Note that for a nearest neighbor interpolation, this is equivalent
to standard orographic corrections from the nearest meteorological gauge.
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5.1.1 Interpolation for Gridded Data

If gridded data in NetCDF format is supplied using the :GriddedForcing command, then the user
must provide a means of mapping grid cell meteorological data to HRUs. This is done in a similar fashion
to the INTERP_FROM_FILE option for meteorological gauges. Usually, one would generate the relative
area coverage of each cell i in each HRU k using a GIS tool. The proper weighting for each grid cell in
each HRU is then wki = Aki/Ak whereAik is the area of the HRU andAik is the area of NetCDF grid cell
i which overlaps HRU k. With this (specified using the :GridWeights command structure explained
in appendix A.4.7), the forcings for each HRU may be calculated as:

In general, any interpolated field value (e.g., temperature), is calculated for each HRU using a relatively
general weighted averaging scheme:

Vk =
NC∑
i=1

wki · Vi

i.e., any forcing (precip/temp/etc.) value Vk for HRU k is generated by weighting the values from all

NC cells Vi, using an HRU-specific weighting factor wki. Note that
NC∑
i=1
wki = 1 is required. Different

interpolation schemes differ only in the means by which they generate the weights, usually based upon
the relative geographic position of the HRUs and gauges.

If cell representative elevations are provided, the representative elevation of the meteorological data in
each cell is given as

ẑk =

NC∑
i=1

wki · ẑi

where ẑi is the representative cell elevation (usually the mean ground elevation in each climate model
cell). If not provided, it is assumed that no orographic corrections are applied, i.e., ẑk = zk, where zk is
the elevation of the HRU. This is fairly reasonable approximation if the grid cells are small enough such
that there is relatively small variability of elevation within each cell.
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5.2 Temperature

Daily average, sub-daily, and daily minimum and maximum temperatures are required for many hydro-
logic simulation algorithms. This forcing data is often used for partitioning of precipitation into rainfall
and snowfall components, estimating potential and actual evapotranspiration, driving snow melt and re-
freezing, as a proxy for cloud cover, etc., etc. In Raven, one of three temperature data sets are needed at
each gauge or grid cell. Ideally, sub-daily (typically hourly) data is specified, and daily minimum, max-
imum, and average temperatures are calculated directly. If daily minimum and maximum temperature
data are provided, daily averages are calculated as the average of the two, and sub-daily temperatures (if
needed) are specified using the approach dictated by the :SubdailyMethod command. Lastly, in the
worst case scenario where only daily average temperature is provided, the daily min, max, and sub-daily
temperatures are also generated using the approach specified in the :SubdailyMethod command, but
with the max and min calculated as the mean daily temperature plus or minus 4 degrees.

5.2.1 Orographic Temperature Effects

Orographic effects may be applied to correct temperature estimates at each HRU based on the specified
elevation of the HRU relative to the local meteorological gauge. The options available for orographic
temperature adjustment are described below. The orographic temperature effect is set in the RVI file
using the :OroTempCorrect keyword. Orographic corrections are typically only applied to gauged
(not gridded) input data. Orographic correctionswould typically not be appliedwhen gridded temperature
data is provided.

Advice

The OROCORR_SIMPLELAPSE is recommended for most applications, unless trying to emulate
a specific model configuration (i.e., HBV or UBCWM). The UBCWM algorithm performs well on
the western face of the Rockies.

Simple method (OROCORR_SIMPLELAPSE)

The simple method for orographic temperature correction estimates the HRU through the applica-
tion of a lapse rate correction to the associated gauge temperature:

T = Tk − α(z − ẑk) (5.2)

where T is the estimated HRU temperature after correction, Tk is the temperature in the HRU in-
terpolated from the gauge data, z and ẑk are the elevation of the HRU and reference elevation at the
gauge respectively, where ẑk is calculated from equation 5.1, and α is the specified adiabatic lapse
rate. Equation 5.2 is applied to all temperature forcing variable time series, including: daily average,
minimum and maximum; and monthly average, minimum and maximum. The adiabatic lapse rate
is set with the global parameter ADIABATIC_LAPSE in the RVP file. Note that this correction is
equivalent to the standard interpretation of lapse rates for nearest neighbor interpolation, i.e., 5.2
simplifies to:

T = Tg − α(z − zg) (5.3)

where zg is the elevation of the nearest gauge and Tg is the temperature at the nearest gauge.

HBV method (OROCORR_HBV)

The HBV model method from Bergstrom (1995); Lindström et al. (1997) employs the simple oro-
graphic temperature correction method described above employing Equation 5.2, except that the
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monthly average temperatures are not lapsed to be consistent with their treatment in the standard
HBV model.

UBCWMmethod 1 (OROCORR_UBC)

The UBC watershed model orographic temperature correction method 1 employs a series of lapse
rates and inflection points describing the orographic correction profile. The UBC method 1 calcu-
lates four temperature lapse rates: above and below 2000 m elevation for both daily maximum and
daily minimum temperatures. The parameters are set in the .rvp file using the following keyword
and parameter sequence:

:UBCTempLapseRates A0TLXM A0TLNM A0TLXH A0TLNH P0TEDL P0TEDU

The parameters listed above are described in Table 5.1.

Table 5.1: UBC Watershed Model temperature lapse rate parameters
Parameter Description Units

A0TLNH Lapse rate for minimum temperatures when the sta-
tion elevation is greater than 2000 m

C / 1000 m

A0TLNM Lapse rate for minimum temperatures when the sta-
tion elevation is less than 2000 m

◦C/ 1000 m

A0TLXH Lapse rate for maximum temperatures when the sta-
tion elevation is greater than 2000 m

◦C/ 1000 m

A0TLXM Lapse rate for maximum temperatures when the sta-
tion elevation is less than 2000 m

◦C/ 1000 m

P0TEDL Lapse rate of maximum temperature range for eleva-
tions below 2000 m

◦C/ 1000 m

P0TEDU Lapse rate of maximum temperature range for eleva-
tions above 2000 m

◦C/ 1000 m

V =

{
min

(
P

A0PPTP , 1.0
)
, if A0PPTP > 0

0, if A0PPTP ≤ 0
(5.4)

where P is the precipitation rate, A0PPTP is the threshold precipitation for temperature lapse
rate in mm and V is a rainfall correction factor that transition a lapse rate from a dry to wet
adiabatic lapse rate based on current precipitation rate. A corrected adiabatic lapseαc is determined
by providing a weighted average between the specified dry adiabatic lapse rate αd and the wet
adiabatic lapse rateαw as shown in Equation 5.5. The wet and dry adiabatic lapse rates are specified
in the RVP file using the :WetAdiabaticLapse and :AdiabaticLapseRate respectively.

αc = V αw + (1− V )αd (5.5)

A daily temperature range factor wt is calculated as the current daily temperature range divided
by the maximum temperature range parameter A0TERM shown in Equation 5.6.

wt =
Tmax − Tmin
A0TERM

(5.6)

The final equation for the maximum daily temperature lapse rate αmax and the minimum daily
temperature lapse rate αmin are shown in Equations 5.7 and 5.8 respectively. The lapse rates have
an inflection point at 2000 m in all cases, and as the daily temperature range approaches zero the
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lapse rates approach the corrected adiabatic lapse rate.

αmax =

{
wtA0TLXM+ (1− wt)αc, if elevation ≥ 2000 m

wtA0TLXH+ (1− wt)αc, if elevation < 2000 m
(5.7)

αmin =

{
wtA0TLNM+ (1− wt)αc, if elevation ≥ 2000 m

wtA0TLNH+ (1− wt)αc, if elevation < 2000 m
(5.8)

UBCWMmethod 2 (OROCORR_UBC2)

The UBC Watershed Model method 2 for estimating orographic temperature effects is to dynam-
ically derive the lapse rate from the measured temperature data collected at the meteorological
gauges. This routine uses only the first two meteorological gauges (the first two listed in the RVT
file) to derive the lapse rate relationships. The relationship for the maximum daily temperature
lapse rate is shown in Equation 5.9 and the relationship for the minimum daily temperature lapse
rate is shown in Equation 5.10.

αmax =
Tmax2 − Tmax1

z2 − z1
(5.9)

αmin =
Tmin2 − Tmin1

z2 − z1
(5.10)

where Tmin1 and Tmin2 are the minimum daily temperatures at stations 1 and 2 respectively, Tmax1
and Tmax2 are the maximum daily temperatures at stations 1 and 2 respectively, and z1 and z2 are
the elevations at stations one and two respectively.

This method requires two stations configured in the RVT file and subsequent stations are ignored in the
calculations.
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5.3 Precipitation

Precipitation forcings (rainfall and snowfall) are interpolated directly from gauges or gridded data. At the
very minimum, total daily precipitation and daily average temperature is required to generate required
time series of rainfall and snowfall everywhere in the watershed.

Measured total precipitation, snow precipitation, or rain precipitation may be corrected on a gauge-by-
gauge basis by using gauge-dependent rainfall and snowfall corrections to correct for observation bias.
This is handled using the :RainCorrection and :SnowCorrection commands outlined in ap-
pendix A.4.1. Rainfall and snowfall may further be corrected for bias on a subbasin-by-subbasin basis
using the subbasin properties RAIN_CORR and SNOW_CORR.

5.3.1 Snow-Rain Partitioning

If only total precipitation is specified at a gauge station or grid cell, then this total precipitation is parti-
tioned into rain and snow, based upon the approach specified in the :RainSnowFraction command.
All of the provided algorithms calculate the snow fraction αs, and rain and snow are determined from:

R = (1− αs)P

S = αsP

where R [mm/d], S [mm/d], and P are rainfall, snowfall, and total precipitation rates, respectively. The
following algorithms for αs are available:

Determine From Data (RAINSNOW_DATA)

To be used if snowfall (or the snow fraction) is explicitly reported in the gauge/gridded data.

Temperature range approach (RAINSNOW_DINGMAN)

In the temperature range approach, the snow fraction, α, is calculated from the maximum and
minimum daily temperatures:

αs =
Ttrans − Tmin
Tmax − Tmin

(5.11)

where Ttrans is the rain/snow transition temperature (global parameter RAINSNOW_TEMP) [de-
fault: 0 ◦C], and Tmin and Tmax are the min and max daily temperatures. If Ttrans is outside of this
temperature range, the precipitation is either all snow (αs = 1) or all rain (αs = 0), accordingly.
This snow fraction is applied for the entire day.

Temperature threshold approach (RAINSNOW_THRESHOLD)

In the temperature range approach, all precipitation is assumed to be snowwhen Tave < Ttrans, and
rain otherwise, whereTtrans is the rain/snow transition temperature (global parameterRAINSNOW_TEMP)
[default: 0 ◦C].

Linear approaches (RAINSNOW_UBC or RAINSNOW_HBV)

In these approaches, a linear transition between all snow and all rain is determined from the average
daily temperature, Tave:

αs = 0.5 +
Ttrans − Tave

∆T
(5.12)
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in the range fromTtrans−∆T/2 toTtrans+∆T/2, whereTtrans is the rain/snow transition tempera-
ture (global parameterRAINSNOW_TEMP, [ ◦C]) and∆T is the global parameterRAINSNOW_DELTA
[ ◦C]. If Tave is outside of this temperature range, the precipitation is either all snow (αs = 1) or
all rain (αs = 0), accordingly. This snow fraction is applied for the entire day.

Harder and Pomeroy Approach(RAINSNOW_HARDER)

Using the method of (Harder and Pomeroy, 2013) as implemented in CRHM Pomeroy et al. (2007).
The fraction of snow is given by:

αs = 1− 1

1 + 2.503 · 8−Tib
(5.13)

whereTib is the ice bulb temperature, as determined from the relative humidity and air temperature.

HSPF Approach(RAINSNOW_HSPF)

Using the empirical formula as documented in the HSPF manual Bicknell et al. (1997) (here con-
verted to Celsius). A reference temperature T ∗ is determined using

T ∗ = Ttrans + (Tave − Tdp)(0.5808 + 0.0144 ∗ Tave) (5.14)

where Ttrans is the is the rain/snow transition temperature (global parameter RAINSNOW_TEMP),
Tdp is the dew point temperature, calculated from the relative humidity. If T ∗ > Tave, αs is one,
zero otherwise.

SNTHERM89 Approach(RAINSNOW_SNTHERM89)

Uses the parameter-free empirical formula from the SNTHERM89 model (Jordan, 1991), also used
in Noah-MP3.6.

αs =


0.0 if Tave>2.5

0.6 if Tave>2.0

1.0− 0.2666 · (Tave − 0.5) if Tave>0.5

1.0 otherwise

(5.15)

where Tave is the is the air temperature for the time step.

Wang Approach(RAINSNOW_WANG)

Uses the parameter-free empirical sigmoid function formula from (Wang et al., 2019):

αs =
1

1 + (6.99 · 10−5) exp(2.0(Twet + 3.97)
(5.16)

where Twet is the wet bulb temperature, calculated from air temperature, relative humidity, and air
pressure.

5.3.2 Orographic Precipitation Effects

Orographic effectsmay be applied to correct total interpolated precipitation at eachHRU based uponHRU
elevation. The fraction of precipitation in the form of snow or rain is not modified by these corrections.
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Simple method (OROCORR_SIMPLELAPSE)

The simple precipitation lapse rate method employs a simple linear adiabatic method as outlined
in Equation 5.17 below:

P = Pk + α(z − ẑk) (5.17)

where P is the total precipitation rate [mm/d], Pk is the interpolated precipitation at the HRU
[mm/d], z is the elevation of the HRU, ẑk is the reference elevation calculated from equation 5.1
at the HRU, and α [mm/d/km]is the precipitation correction lapse rate specified using the global
parameterPRECIP_LAPSE. Checks are included to ensure positivity of the precipitation rate. Note
that this simplifies to the traditional interpretation of gauge orographic corrections for a single
gauge or nearest neighbor interpolation algorithm, i.e.,

P = Pg + α(z − zg) (5.18)

where zg is the elevation of the nearest gauge and Pg is the total precipitation rate at the nearest
gauge [mm/d]. This relation is only applied when precipitation at the gauge is non-zero.

HBV method (OROCORR_HBV)

From the HBV model Bergstrom (1995); Lindström et al. (1997):

P = Pk · (1.0 + α(z − ẑk)) (5.19)

where P is the total precipitation rate [mm/d], Pk is the interpolated precipitation at the HRU
[mm/d], z is the elevation of the HRU, ẑk is the reference elevation calculated from equation 5.1 at
the HRU, and α, the precipitation correction lapse rate, is 0.00008 m−1 below 5000 masl, 0 above
this elevation.

UBCWMmethod 1(OROCORR_UBC)

The UBCWatershed Model method 1 for orographic correction of precipitation estimates employs
a temperature-corrected lapse rate with two inflection points (Quick, 2003). The base orographic
correction equation is shown in Equation 5.20:

P = Pg · (1 + αFt)
z−zg
100 (5.20)

where P is the total applied precipitation rate, Pg is the measured gauge precipitation, z and zg are
the elevation of the HRU and gauge, respectively, and α, the precipitation correction lapse rate. Ft
is a temperature correction factor shown in equation 5.21:

Ft =

{
1, if tband ≤ 0 C

1−A0STAB (tband)
2 , if tband > 0 C

(5.21)

where A0STAB is the precipitation gradient modification factor, and tband is the temperature at
the first listed elevation band in the model. Ft is constrained between 0 and 1.
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Figure 5.1: UBC Watershed Model Orographic Correction

5.4 Potential Evapotranspiration (PET)

A variety of potential evapotranspiration (PET) estimation algorithms of varying complexity are available
for calculating PET within an HRU. These PET algorithms use many of the same relationships, including
those for the saturated vapor pressure as a function of temperature,

es(T ) = 0.6108 · exp
(

17.23T

T + 237.3

)
(5.22)

and the slope of this curve,∆(T ) = des/dT ,

∆ =
4098

(T + 237.3)
· es(T ) (5.23)

where T is in ◦C. The latent heat of vaporization of water, λv [MJ/kg], is estimable by:

λv = 2.495− 0.002361 ∗ T (5.24)

where T is the temperature [ ◦C], and the psychrometric constant, γ is here treated as varying with
atmospheric pressure, p [kPa],

γ =
ca

0.622 · λv
p (5.25)

where ca is the specific heat of air, equal to 1.012x10−3 MJ/kg/K.

Note that most of the algorithms below estimate daily PET. Methods are required to downscale these
daily estimates to sub-daily time steps, as discussed in 5.10. If the :DirectEvaporation command
is used, rainfall is automatically reduced by PET, with a corresponding decrease in the available potential
evapotranspiration.
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5.4.1 PET Estimation

Disabled PET (PET_NONE)

The daily PET value used is constant and uniform rate of 0mm/d. Used (for instance) in routing-only
mode to disable over-water evaporation.

From file (PET_DATA)

The daily PET is explicitly specified at each gauge or grid cell (see section A.4 for details) and inter-
polated in-between. This enables any measured ET or user-specified means of calculating PET to
be used.

From monthly (PET_FROMMONTHLY)

Used in the HBV Model Bergstrom (1995); Lindström et al. (1997). Monthly PET and temperature
norms are provided at the gauge using the:MonthlyAveEvaporation and:MonthlyAveTem-
perature commands. These estimates are assumed not to vary year-to-year. Daily estimates of
PET may then be obtained from:

PET = PETmon ·min(1 + 1
2(Tave − Tmon), 2)

where PETmon and Tmon are the daily PET [mm/d] and temperature norms for the current month,
and Tave is the average daily temperature spatially and temporally interpolated from the gauge
values for :MonthlyAveEvaporation and :MonthlyAveTemperature. Checks are used
to ensure PET is positive and doesn’t exceed twice the average representative monthly PET.

Penman Monteith (PET_PENMAN_MONTEITH)

From Monteith (1965). The standard Penman-Monteith equation estimates daily reference evapo-
transpiration over a reference vegetation,

PET =
1

λvρw
·
[

∆

∆+ γ∗
Rn +

ρaCatm
∆+ γ∗

(es − e)

]
where λv [MJ/kg] is the latent heat of vaporization of water, ρw [kg/m3] is the density of water,
∆ = des/dT is the slope of the saturated vapor pressure curve,Rn = Sn+Ln [MJ/m2/d] is the net
radiation to the system, ρa is the air density, Ca [MJ/kg] is the specific heat of air, catm [md−1] is
the atmospheric conductance, e is the vapor pressure of the atmosphere, es(T ) [kPa] is the current
saturated vapor pressure of the atmosphere, a function of temperature, and γ∗ [kPa/ ◦C] is the
corrected psychrometric constant,

γ∗ =

(
1 +

catm
ccan

)
γ

where ccan [m/d] is the canopy conductance, and γ [kPa/ ◦C] is calculated using 5.25. The final
expression is converted from m/d to mm/d. The atmospheric conductance is calculated using the
following relationships Dingman (2002):

catm = v · κ2

ln
(
zref−z0
zrough

)
ln
(
zref−z0
zvap

)
where κ is the Von Karman Constant (0.42), zref is the reference height [m] at which the wind
velocity v [m/d] is reported, z0 [m] is the zero-plane displacement height, zrough is the roughness
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height [m], and zvap is the vapour roughness height [m]. These parameters are predominantly
calculated from the ground roughness and canopy heights. The canopy conductance is calculated
as a function of vegetative leaf area index Dingman (2002):

ccan = 0.5 · cleaf · LAI

where cleaf is the leaf conductance [m/d], calculated using the expressions detailed in Dingman
(2002) and LAI is calculated from equation 3.1.

Penman combination (PET_PENMAN_COMBINATION)

From Penman (1948). A similar expression to the Penman Monteith equation, daily reference ET is
calculated from the following equation:

PET =
1

λvρw
·
[

∆

∆+ γ
Rn

]
+

[
γϵvv

∆+ γ
(es − e)

]
i.e., here the deficit-driven evapotranspiration (the second term) is treated using the wind velocity,
v [m/s] and a vertical transport efficiency factor, ϵv , calculated as

ϵv =
0.622ρa
6.25 · eρw

·

(
ln

(
zref − z0
zrough

)−2
)

terms are defined as defined above in the description of the PET_PENMAN_MONTEITH algorithm.

Priestley-Taylor (PET_PRIESTLEY_TAYLOR)

From Priestley and Taylor (1972). A simplified version of the Penman-Monteith approach where
only net radiation explicitly drives daily ET, with an additional correction factor for the (unmodeled)
ET driven by vapor deficit. The Priestley-Taylor equation is given by:

PET = 1.26 · 1

ρwλv
·
[

∆

∆+ γ
Rn

]
whereRn is the net radiation [MJ/m2/d], and other terms are defined as above in the description of
the PET_PENMAN_MONTEITH algorithm. The factor of 1.26 is used to scale the radiation-driven
ET to account for the (unmodeled) vapor deficit-driven ET; this coefficient may be overridden for
individual land uses using the PRIESTLEYTAYLOR_COEFF land use parameter. Priestley Taylor
is predominantly used to estimate evaporation from open water.

Hargreaves (PET_HARGREAVES)

From Hargreaves and Samani (1982).

PET =
1

ρwλv
· SET · 0.000938 ·

(√
Tmonmax,F − Tmonmin,F

)
Tave,F

where SET [MJ/m2/d] is the extraterrestrial shortwave radiation, the temperatures Tmonmax,F and
Tmonmin,F are the maximum and minimum monthly temperatures in Fahrenheit, and Tave,F is the
daily temperature in Fahrenheit (converted internally within the code). The temperature factors
attend to the impact of cloud cover and atmospheric interference with the extraterrestrial radiation.
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Hargreaves 1985 (PET_HARGREAVES_1985)

From Hargreaves and Samani (1985). The 1985 Hargreaves equation, an empirical approach based
solely on temperature and incoming solar radiation. Similar to PET_HARGREAVES, but it uses
metric units.

PET =
1

ρwλv
· SET · 0.0023 ·

√
Tmax − Tmin (Tave + 17.8)

where Tave, Tmax, and Tmin are the average, maximum, and minimum daily air temperature, and
SET [MJ/m2/d] is the extraterrestrial shortwave radiation.

Monthly factor method (PET_MONTHLY_FACTOR)

Method used in the UBC Watershed Model (Quick, 1995). PET is calculated using the following
formula:

PET = max(Emon · Tave − ϵ, 0) · δforest
whereEmon [mm/d/K] is a monthly PET factor (specified using the :MonthlyEvapFactor com-
mand in the .rvt file, on the order of 0.2), Tave is the daily average temperature in Celsius, and δforest
is the land use parameter FOREST_PET_CORR), applied only to forested regions. The factor ϵ is
an orographic correction factor, given as

ϵ = 0.009 · (z − ẑk)

where z is the HRU elevation, and ẑk is the reference elevation for the HRU calculated using equa-
tion 6.1, respectively. Note that, unlike with most other ET approaches, the orographic correction is
necessarily fused with the PET calculation and therefore the orographic PET correction should be
set to OROCORR_NONE. In previous versions (prior to 3.0), ẑk was the elevation of the first gauge
in the .rvt file.

Hamon (PET_HAMON)

From Hamon (1961). PET is calculated using the following relationship:

PET = 1115 ·
esatL

2
d

Tave

where esat is the saturated vapor pressure [kPa], Tave is the average daily temperature [K],Ld is the
day length [d], and the PET is in mm/d. The constant 1115 includes both units conversion factors
and an approximate relationship to convert saturated vapor pressure and temperature to absolute
humidity.

Oudin PET (PET_OUDIN)

A simple method from Oudin et al. (2005). PET is calculated using the following relationship:

PET =
SET
λvρw

·min

(
Tave + 5.0

100
, 0.0

)
where SET is the shortwave extraterrestrial radiation [MJ/m2/d], λv is the latent heat of vaporiza-
tion, ρw is the density of water, and Tave is the daily average temperature.
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Turc 1961 (PET_TURC_1961)

From Turc (1961) as reported in Liu et al. (2005). This empirical PET estimation algorithm has no
additional parameters required.

PET =

0.013
(

Tave
Tave+15

)
(23.88 ∗ Sn + 50)

(
1 + 50−RH

70

)
for RH<50%

0.013
(

Tave
Tave+15

)
(23.88 ∗ Sn + 50) for RH≥50%

where the PET is in mm/d, Tave is the average daily temperature [ ◦C], Sn is the daily net shortwave
radiation [MJ/m2/d], and RH is the relative humidity expressed as a percentage.

Makkink 1957 (PET_MAKKINK_1957)

From Makkink (1957) as reported in Liu et al. (2005).

PET = 14.57

(
∆

∆+ γ

)
Sn
58.5

− 0.12

where ∆ is the slope of the saturation vapor pressure-temperature curve [kPa/ ◦C], γ is the psy-
chrometric constant, and Sn is the net incoming solar radiation [MJ/m2/d].

MOHYSE (PET_MOHYSE)

From the MOHYSE model (Fortin and Turcotte, 2006):

PET =
c

π
· cos−1 (− tan(Λ) ∗ tan(δ)) ∗ exp

(
17.3 · T
238 + T

)
where c is the global parameter MOHYSE_PET_COEFF, Λ is the latitude in radians, δ is the solar
declination, and T is the average daily temperature in ◦C.

Granger-Gray (PET_GRANGERGRAY)

From Granger and Gray (1989), as implemented in the Cold Regions Hydrologic Model (CRHM)
Pomeroy et al. (2007):

PET =
1

λvρw

∆ · 0.9 ·Rn + γ ·D∗ · (es − ea)

∆ + γ/G

where ∆ = des/dT is the slope of the saturated vapor pressure curve, γ is the psychometric con-
stant, Rn = Sn + Ln [MJ/m2/d] is the net radiation to the system, es(T ) is the saturated vapour
pressure and e is the actual vapour pressure. The 0.9 correction for net radiation assumes that
10 percent of energy goes to ground heat flux. Here, the formulation uses a drying power, D∗

[MJ/m2/d/kPa], given as

D∗ = λvρw ((8.19 + 22z0) + (1.16 + 8z0) · v)

where z0 is the vegetation roughness height [m] and v is the wind velocity [m/s]. The correction
term G is given by

G =
1.0

0.793 + 0.2 exp(4.902D)
+ 0.006D

where
D =

1

1 + Rn
D∗·(es−ea)
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where es [kPa] is the saturated vapour pressure and ea is the actual vapour pressure. Note that
in Granger and Gray (1989), this ’potential’ evapotranspiration rate is an actual evaporation rate
constrained bymoisture availability. The formula forG is similar to that of Granger and Gray (1989)
in trend, but not precisely the same.

Linacre (PET_LINACRE)

From Linacre (1977).

PET =
a ·Tave
100−ϕ + 15 · (Fave − Tdew)

80.0− Tave

where Tave is the average daily temperature, Tdew is the daily dew point temperature, ϕ is the
latitude, in degrees. The parameter a is equal to 700 for open water evaporation, 500 otherwise.

Vapor Deficit (PET_VAPDEFICIT)

Linear variation of PET with vapour deficit:

PET = C · (es − ea)

where es [kPa] is the saturated vapour pressure and ea is the actual vapour pressure. The parameter
C is the land use parameter PET_VAP_COEFF.

Blended (PET_BLENDED)

Allows the PET to be estimated using a weighted average of two or more PET algorithms described
above, in a method consistent with the :ProcessGroup command, though with a different syn-
tax. This method must be used in combination with the :BlendedPETWeights command in
the .rvi file to specify the PET algorithms included in the blended group, as well as the associated
weights or weight-generating parameters.

5.4.2 PET Orographic Effects

Orographic effects are calculated using the following algorithms, specified using the :OroCor-
rPET command in the .rvi file. Note that these should typically only be applied if PET data is
provided at the gauge; otherwise, temperature orographic corrections will already impact PET es-
timates.

HBV method (OROCORR_HBV)

From the HBV model (Bergstrom, 1995; Lindström et al., 1997):

PET = PETk · α (1− β) (z − ẑk)

where PETk is the interpolated gauge-provided PET rate [mm/d], α is the global PET correction
factor (GLOBAL_PET_CORR), β is the HBV precip correction factor (HBV_PRECIP_CORR), z is
the HRU elevation, and ẑk is the reference elevation for the HRU calculated using equation 5.1,
respectively.
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PRMS method (OROCORR_PRMS)

This orographic correction factor is described in the users’s manual of the PRMS model (Leavesley
et al. (1983)). It uses the maximum saturated vapor pressure, emaxsat [kPa] (calculated from the aver-
age August temperature) and the minimum saturated vapor pressure eminsat [kPa] (calculated from
the average February temperature).

PET = PETk ·

(
1

68− 0.0118z + 650
emax
sat −emin

sat

)

where z is the HRU elevation [masl] and PETk is the interpolated PET at the HRU (implicitly pre-
sumed to be calculated at an elevation of zero). Note that because this algorithm implicitly includes
orographic temperature effects, it must be used with care in combination with orographic temper-
ature corrections.

112



5.5 Shortwave Radiation

Solar radiation contributes to the earth surface’s energy balance, and is important for estimating snow
melt and evapotranspiration, amongst other things. Since solar radiation is not directly measured inmany
places, here the standard routines documented in (Dingman, 2002) are used to estimate critical terms
needed to estimate extraterrestrial shortwave radiation. This can then be corrected using information
about cloud cover and/or optical air mass. Used in many of these calculations is the day angle, Γ [rad],
and the solar declination, δ [rad]:

Γ =
2πJ

365
(5.26)

δ = 0.006918− 0.399912 · cos(Γ) +
0.070257 · sin(Γ)− 0.006758 · cos(2 · Γ) +
0.000907 · sin(2Γ)− 0.002697 · cos(3 · Γ) +
0.001480 · sin(3Γ)

Day length is calculated as follows, with additional corrections for polar latitudes:

Day Length =
arccos(− tan(δ) · tan(Λ))

π

where Λ is the latitude of the location (in radians). In Raven, net shortwave is calculated as

Sn = (1− α) · fcan · fcloud · Scs (5.27)

where fcan and fcloud [0..1] are correction factors for canopy cover and cloud cover, respectively, and the
clear sky solar radiation is given as

Scs = fatm · fasp · SET (5.28)

where fatm and fasp [0..1] are a correction factors for atmospheric refraction and slope/aspect of the
ground surface, SET is the extra terrestrial radiation. Section 5.5.1 details methods for calculating SET ,
section 5.5.2 details methods for handling fatm, section 5.5.3 details methods for handling fcloud and
section 5.5.4 details methods for handling fcan. These individual terms may be visualized in figure 5.2.

5.5.1 Extraterrestrial Shortwave Generation

The following shortwave radiation estimation algorithms are available, and are specified using the:SWRadi-
ationMethod command in the .rvi file.

Raven default (SW_RAD_DEFAULT)

Extraterrestrial radiation flux on a horizontal plane is calculated using Dingman (2002):

SET = Isc · E0 · [cos(δ) · cos(Λ) · cos(2πt) + sin(δ) sin(Λ)] (5.29)

where Isc is the solar constant (118.1 MJm−2d−1), E0 is an eccentricity correction (see Dingman
(2002)), and t is the time of day in days (i.e., t = 0 is midnight, t = 0.5 is noon). Corrections
are applied for radiation on a sloping surface (i.e., on HRUs with a non-zero slope). Aspects are
corrected for in the default approach using the corrections put forth in Dingman (2002), and can
handle the two sunset effect.
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Figure 5.2: The surface energy balance in Raven. Important components include shortwave radiation (S),
longwave radiation (L), conductive/convective heat transfer (H), and latent heat/phase change (LH). This
figure indicates magnitudes only; the sign convention used in Raven is such that incoming radiation is
positive, while outgoing is negative, thus Lout will always be negative, and Lnet will typically be negative.

UBCWM approach (SW_RAD_UBCWM)

Shortwave radiation is calculated using the same equations as the SW_RAD_DEFAULT approach
(equation 5.29), but employs a correction to the day length to account for mountain barrier effects.
Two sets of monthly correction parameters are employed in this method to correct for SW radiation
for north- and south-facing slopes. The parameters are included in the UBCNorthSWCorr and
UBCSouthSWCorr keywords in the RVP file with one parameter for each month (January to
December). The HRU orientation factor is calculated as a function of the aspect of the HRU

O = 1−
∣∣∣∣ θπ − 1

∣∣∣∣
where θ is the dominant aspect direction and O is the orientation (eg. north = 0 and south = 1,
east/west = 0.5). The final SW radiation estimate is

fasp = [O · CS + (1−O) · CN ]

where fasp is the correction factor for shortwave radiation on an inclined plane, SET is the un-
corrected shortwave radiation estimate based on equation 5.29, and CS and CN are the south and
north correction factors respectively (from UBC_S_CORR and UBC_N_CORR).

Interpolate from data (SW_RAD_DATA)

The incident shortwave radiation is read from a file, specified at one or more gauge locations or on a
grid (as generated by a climate model). The radiation could be either measured, generated from an
atmospheric model, or estimated using an external preprocessor. If incident shortwave is provided
directly, cloud cover corrections (but not aspect, or canopy corrections) are implicitly contained in
this number. What is actually being input is

fcloud · fatm · SET
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Additional algorithms are required to attend to slope/aspect and canopy corrections.

5.5.2 Clear Sky Radiation

As radiation passes through the earths atmosphere, energy is absorbed and scattered by particles and
water vapor, both in cloudy and cloud-free areas. Corrections must be made to extraterrestrial radiation
to account for this.

Dingman (SW_RAD_DEFAULT)

The approach outlined in Dingman (2002), total incident radiation is calculated as:

fatm = (τdir + 0.5(1− τdiff )) · (1 + 0.5(1− τdiff )α)

where α is the surface albedo, and the scattering correction factors for diffuse and direct solar
radiation τdiff and τdir are given by

τdir = exp (−0.124− 0.0207Wp − (0.0682 + 0.0248Wp)Mopt) (5.30)

τdiff = exp (−0.0.363− 0.0084Wp − (0.0572 + 0.0173Wp)Mopt)

where the precipitable water vapor, Wp, is calculated as Wp = 1.12 exp(0.0614Td), where Td is
the dew point temperature, and the optical air mass,Mopt, is calculated using the methods of Yin
(1997).

UBCWM approach (SW_RAD_UBCWM)

In the UBC watershed model, the corrections for atmospheric scattering and adsorption are given
as

fatm = exp(−2.0 · (0.0128− 0.0234 ln(ma))

where the air mass,ma is given by

ma =
1− 0.001 · z

[cos(δ) · cos(Λ) · cos(2πt) + sin(δ) sin(Λ)]
(5.31)

This product fatm · SET is numerically integrated over the course of the day to estimate the daily
clear sky radiation. The day length in this integration calculation is corrected for using a mountain
barrier correction.

5.5.3 Cloud Cover Corrections

Additional corrections are required to handle cloud cover. While the algorithms for estimating actual
cloud cover are included in section 5.7 below, the use of the cloud cover factor for estimating incident
radiation is treated here.

UBC approach (SW_CLOUD_CORR_UBC)

The UBC watershed model (Quick, 1995) corrects shortwave radiation due to cloud cover using the
following equation

fcloud = (1− (1− POCAST) · Cc)

where SC is the shortwave radiation corrected for cloud cover, S is the uncorrected shortwave
radiation, CC is the cloud cover correction factor and POCAST is the cloud penetration factor
specified in the RVP file with the :UBCCloudPenetration keyword.
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Dingman approach (SW_CLOUD_CORR_DINGMAN)

The cloud cover correction factor may also be estimated as outlined in Dingman (2002, Eq. 5-30):

fcloud = (0.355 + 0.68 · (1− Cc)) (5.32)

where Cc is cloud cover. This approach does not require any parameters to be set in the RVP file.

Annandale approach (SW_CLOUD_CORR_ANNANDALE)

The cloud cover correction factor is generating using the approach from Annandale et al. (2002):

fcloud = 0.16 ∗ (1.0 + 0.00027z)
√
(Tmax − Tmin) (5.33)

where z is the elevation inmasl, andTmax/Tmin are themaximumandminimumdaily temperature.

5.5.4 Canopy Cover Corrections

Calculates the ratio of solar radiation under forest canopy relative to open. The default canopy cover
correction method is no correction (SW_CANOPY_CORR_NONE).

UBCWMmethod (SW_CANOPY_CORR_UBCWM)

To correct for shortwave correction due to canopy cover the UBCwatershedmodel method employs
the following equation

fcan = FE

where SC is the shortwave energy corrected for canopy cover, S is the uncorrected shortwave
energy, and FE is the forest cover correction factor specified using the :UBCExposureFactor
command in the RVP file.

Bulk transmittance approach (SW_CANOPY_CORR_STATIC)

The Bulk transmittance approach provides a static canopy transmittance based on leaf-area index
and stem-area index estimates to produce a “sky view” factor, or the fraction of the ground that
receives sunlight (Dingman, 2002):

fcan = exp(−k(LAI+ SAI))

where k is the extinction coefficient, LAI is the leaf-area index and SAI is the stem-area index, both
estimated as indicated in equation 3.1. The extinction coefficient, leaf-area index and stem-area
index are supplied or calculated from parameters within the :VegetationClasses parameter
structure in the .rvp file by the SVF_EXTINCTION, MAX_LAI, and SAI_HT_RATIO columns
respectively.

5.6 Longwave Radiation

Longwave radiation is the electromagnetic radiation emitted by materials with near-earth-surface tem-
peratures. The net longwave is the difference between the incoming longwave emitted (or back scattered)
by the atmosphere, clouds, and canopy and the outgoing radiation from the land surface (see figure 5.2).
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5.6.1 Incoming Longwave Radiation

Raven Default method (LW_INC_DEFAULT)

By default, incoming longwave radiation is not calculated, and only net longwave is estimated.
The exception is if LW_RAD_DEFAULT is used, in which case the LW_INC_DINGMAN is used by
default.

Interpolate from data (LW_INC_DATA)

The incoming longwave radiation (in MJm−2d−1) is read from a file, specified at one or more gauge
locations or on a grid (as generated by a climate model). The radiation could be either measured,
generated from an atmospheric model, or estimated using an external preprocessor.

Skyview method (LW_INC_SKYVIEW)

A simple skyview method with air emissivity estimated from (Prata, 1996).

Winc = (0.95 · v + ϵair · (1− v)) · σT 4
air

where v is the sky view factor, corrected for forest cover, σ is the Stefan-Boltzmann constant, Tair
is the air temperature in Kelvins, and ϵair is the air emissivity, calculated as:

ϵair = 1− (1 + η) exp(−
√

1.2 + 3η)

where
η = 46.5 · ea

Tair

and ea is the vapour pressure, in hPa.

Sicart et al. method (LW_INC_SICART)

(From Sicart et al. (2006))
Linc = L0 · v + LF · (1− v)

where v is the sky view factor, corrected for forest cover. The canopy contribution to the incoming
radiation is:

LF = 0.98 · σT 4
air

where σ is the Stefan-Boltzmann constant, and Tair is the air temperature in Kelvins. The atmo-
spheric contribution to the incoming radiation is:

L0 = ϵair ∗ (1.0 + 0.44 ∗ RH− 0.18 ∗ tau) · 0.864

where the factor 0.864 converts from watts to MJ/m2/d, τ is the ratio of shortwave radiation on an
inclined plane to that on a horizontal surface, and the air emissivity is given by ?:

ϵair = 1.24 (ea ∗ /Tair)1/7 ;

where ea is the atmospheric vapour pressure, in hPa.
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Dingman method (LW_INC_DINGMAN)

The approach documented in Dingman (2002), which uses the air emissivity of ?, adjusted for forest cover
(without skyview correction) and cloud cover.

Linc = ((1− Fc)ϵair + 0.99(Fc)) · σT 4
air

where σ is the Stefan-Boltzmann constant, and Tair is the air temperature in Kelvins.

ϵair = 1.72 ·
(
ea
Tair

)(
1.0 + 0.22 ∗ f2cloud

)
where fcloud is the cloud cover, and ea is the vapour pressure.

5.6.2 Net Longwave Radiation

Raven Default method (LW_RAD_DEFAULT)

Net longwave radiation is treated using the Stefan-Boltzmann law, with a correction factor for the
inefficiency of the land and atmospheres as black-body emitters.

Ln = σ · ·
(
ϵatm · T 4

atm,K − ϵsT
4
s,K

)
where σ is the Stefan Boltzmann constant (4.9x10−9 MJm−2d−1K−4), Tatm,K and Ts,K [ ◦K] are
the effective temperatures of the atmosphere and ground surface (here presumed equal to the air
temperature in Kelvin), and ϵs and ϵatm are the effective emissivities of the surface and atmosphere,
respectively. In Raven, the surface emissivity is held constant as ϵs = 0.99 and the atmospheric
emissivity is calculated as Dingman (2002)

ϵatm = (1− Fc) · 1.72 ·
(

e

Ta,K

)1/7

· (1 + 0.22 · f2cloud) + Fc

where Fc [0..1] is the forest cover (treated as a blackbody), e is the vapor pressure, Ta,K is the air
temperature in Kelvin, and Cc is the cloud cover.

Interpolate from data (LW_RAD_DATA)

The net longwave radiation (in MJm−2d−1) is read from a file, specified at one or more gauge
locations or as a gridded climate product. The radiation could be either measured or estimated
using an external preprocessor.

UBCWMmethod (LW_RAD_UBC)

The longwave radiation is estimated in the UBCWatershed model separately for open and forested
covers. The open longwave radiation is estimated using

Lo = (1− fcloud) · λfρw · (−20 + 0.94Tavg) + fcloud · λfρw · (1.24Tmin)

where Lo is the net longwave radiation estimate for open forest cover in mm/d, Tavg ◦Cis the
daily average temperature, Tmin ◦Cis the daily minimum temperature, f is the UBC cloud cover
correction factor (see Section 5.7), and λf is the latent heat of fusion. The net longwave radiation
estimate for forest covered areas is:

Lf = λfρwfLWTavg
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whereLf is the longwave radiation estimate for open forest cover in mm/d, tavg is the daily average
temperature, and fLW is the temperature multiplier factor in mm/dK−1 which is set in the RVP file
using the :UBCLWForestFactor keyword. If the forest cover for an HRU is greater than zero
then the latter equation is employed. Note that this expression is a linearization of the Stefan-
Boltzmann law.

HSPF method (LW_RAD_HSPF)

Net longwave radiation is given as a simple function of average daily temperature, Tavg [ ◦C]

Ln = 0.361 ∗ (Tavg − 6.6) (5.34)

where Ln is in MJm−2d−1.

No method (LW_RAD_NONE)

Net longwave radiation is not calculated. Usually used for simple models where radiation is not
used.

5.7 Cloud Cover

This section outlines the various method for the estimation of a cloud cover in the model and the as-
sociated cloud cover corrections for incident short wave radiation. The default cloud cover method is
CLOUDCOV_NONE, implying no cloud cover estimation or cloud cover correction.

No cloud cover calculations (CLOUDCOV_NONE)

No cloud cover is the default approach to cloud cover for Raven and can be set explicitly in the RVI
file using the :CloudCoverMethod keyword of NONE, or by excluding the keyword entirely.

Interpolate from data (CLOUDCOV_DATA)

The cloud cover data [0-1] may be incorporated from gauge data if available in which case the
CLOUDCOV_DATA option for the CloudCoverMethod keyword should be employed in the RVI
file. The cloud cover data is stored in the meteorological time series data files (see Section A.4 for
details).

UBC approach (CLOUDCOV_UBC)

Cloud cover factor in theUBCwatershedmodel are estimated by determining the daily temperature
range as observed at the meteorological gauges that influence an HRU and comparing that range
to specified cloud temperature range parameters. The observed temperature range for the HRU is
calculated as

∆T = Tmax − Tmin (5.35)

where Tmax and Tmin are the interpolated maximum and minimum temperatures and ∆t is the
temperature range at HRU. The cloud cover correction factor is

Cc =


1, if ∆T ≤ Tcmin

1− ∆T−Tcmin
Tcmax−Tcmin

, if Tcmin > ∆T > Tcmax

0, if ∆t ≥ Tcmax

(5.36)
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where Cc is the cloud cover factor [0-1], and Tcmin and Tcmax are the cloud cover temperature
ranges in ◦Cas specified for each gauge within the RVT file using the keyword :CloudTem-
pRanges.

5.8 Energy

This section includes a number of processes that are involved in the energy balance in the Raven model,
including the estimates of potential snowmelt

5.8.1 Potential Melt

Potential snow melt can be estimated using a number a methods in the Raven model. To set the
appropriate process in the model the RVI must include the :PotentialMeltMethod keyword
along with the appropriate value for the method selected.

Advice

These methods generally fall in the category of degree day methods (e.g.,
POTMELT_DEGREE_DAY, POTMELT_HBV, POTMELT_HMETS), or full energy-balance based
methods (e.g., POTMELT_UBCWM, POTMELT_EB). For regional and/or data-poor applications,
the degree day methods (which use only temperature) are preferred, as the energy balance based
methods require reasonably accurate estimates of wind speed, relative humidity, and radiation.
For applications where you are confident in estimates of these quantities, the energy balance
methods may be preferred, and will be more sensitive to things like rain-on-snow.

Degree day method (POTMELT_DEGREE_DAY)

The degree day method estimates a potential snow melt using an temperature index approach as
described in, e.g., Dingman (2002):

Mmelt =Ma ·max(T − Tf , 0)

where Mmelt is the potential melt rate [mm/day], T is the atmospheric temperature of the HRU
[deg C], Tf is the freeze/melt temperature [ ◦C] (zero by default, but can be set with the land use
parameter DD_MELT_TEMP), andMa is the melt factor [mm/day/deg C], specified using the land
use/land type parameter MELT_FACTOR.

No method (POTMELT_NONE)

The potential melt is set to zero. Only to be used when snow is not simulated (e.g., when routing
output from a land surface scheme).

UBC approach (POTMELT_UBCWM)

The UBC watershed model approach to calculating potential snowmelt is described below. The
model requires a certain number of participating parameters defined in the RVP file: FOREST_-
COVERAGE supplied in the :LandUseClasses table, and UBC_MIN_SNOW_ALBEDO, UBC_-
SW_S_CORR and UBC_SW_N_CORR provided as global variables. The total snow melt is an accu-
mulation of separate melt components:

Mmelt =
1

λfρw
((1− αs)S + Ln +Qc +Qa +Qr)
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whereMmelt is the total potential melt rate [mm/d], S is the incoming shortwave radiation, αs is
the snow albedo, Ln [MJ/m22/d] is the long wave radiation, Qc [MJ/m22/d] is the convective melt
energy,Qa [MJ/m22/d] is the condensation or advective melt energy andQr [MJ/m22/d] is the melt
energy due to rainfall. The convective and advective melt energy is estimated using

Qc = 0.113 · p · Ta · V ·RM
Qa = 0.44 · Tmin · V ·RM · [(1− fc)p+ fc]

where p is the air pressure Ta is the average air temperature, Tmin is the minimum daily air tem-
perature, V is the wind velocity, fc is the fraction of forest cover and RM is a reduction factor as
described below,

RM = 1.0− 7.7 ·RI
0 ≤ RM ≤ 1.6

where RI is a linearized estimate of Richardson’s number:

RI =
0.095 · Tavg

V 2

The rainfall related melt is estimated using the following equation:

Qr = k · Ta · Pr

where k represents the heat content of the rainmm/C and Pr is the rainfall over the time step.

HBV method (POTMELT_HBV)

The potential melt in the HBV method (Bergstrom, 1995; Lindström et al., 1997) is given by a cor-
rected version of the degree day approach, with the corrected melt coefficient given by

M ′
a = Cf · Ca

(
Ma.min + (Ma.max −Ma.min) ·

1.0− cos(Γ− Γs)

2

)
(5.37)

whereM ′
a is the potential melt coefficient, Cf is the forest correction factor, Ca is the aspect cor-

rection factor,Ma.max andMa.min are the maximum and minimum potential melt rate parameters
specified using the MELT_FACTOR and MIN_MELT_FACTOR keywords respectively, and are spec-
ified in the land use parameters. Γ is the day angle calculated using equation 5.26 and Γs is the
winter solstice angle and is a model constant of 23.5◦. The forest and aspect correction factors
developed for HBV-EC Hamilton et al. (2000) are described below:

Cf = (1.0− Fc) · (1.0 + (Fc) ·MRF ) (5.38)

Ca = max (1−Am · Cs · cos(θ), 0.0) (5.39)

where Fc is the fraction of forest cover,MRF is the forest melt correction parameter specified using
HBV_MELT_FOR_CORR,Am is the aspectmelt correction parameterHBV_MELT_ASP_CORR, and
θ is the landscape aspect angle. Cs is slope correction factor described below:

Cs = (1.0− Fc) · (1.0 + (Fc) · sin(θs)) (5.40)

where θs is the landscape slope.
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HBV method with rain-on-snow (POTMELT_HBV_ROS)

Identical to the POTMELT_HBV algorithm, but with an additive term for melt due to rain on the
snowpack:

Mmelt =Mmelt +
cwp
λf

·R ·max(T, 0)

where cwp is the specific heat of water, λf the latent heat of fusion, R is the rainfall rate in mm/d, T
is the air temperature, and α is the land use parameter RAIN_MELT_MULT, which defaults to 1.0.

Restricted method (POTMELT_RESTRICTED)

The potential melt rate is given by the degree daymethod plus a correction term due to net incoming
radiation:

Mmelt =Ma · (T − Tf ) +
Sn + Ln
λfρw

where Sn andLn are the net incoming radiation, and the melt factor,Ma is the land surface param-
eter MELT_FACTOR. λf and ρw are the latent heat of fusion [MJ/kg] and density of water [kg/m3],
respectively. An additional factor in the latter portion of the equation converts from meters to
millimeters.

Energy balance method (POTMELT_EB)

Similar to the POTMELT_UBCWM approach, except the estimates for Qc, Qa and Qr are obtained
using the methods of Dingman (2002). This approach requires no additional parameters: all energy
estimates are taken from the current air and surface temperatures, and roughness heights of the
land/vegetation.

U.S. Army Corps method (POTMELT_USACE)

The U.S. Army Corps of Engineers potential melt model (U.S. Army Corps of Engineers, 1998) takes
into account various factors including solar radiation, wind, and long-wave radiation exchange.
The equation combines several melt equations, depending on the physical characteristics of the
hydrologic response unit (HRU) and precipitation. These melt estimates include shortwave radi-
ation melt, long-wave radiation melt, convection (sensible heat) melt, condensation (latent heat)
melt, rain melt, and ground melt. Requires the parameter WIND_EXPOSURE, which represents the
mean exposure of the HRU to wind considering topographic and forest effects; for open areas this
would be equal to 1.0, but may be as low as 0.3 for forested areas. Details may be found in U.S.
Army Corps of Engineers (1998).

HMETS method (POTMELT_HMETS)

A revised degree day model from the HMETS model (Martel et al., 2017), which uses a degree day
factor which varies with cumulative snowmelt. The degree day model is given as

Mmelt =Ma · (T − Tf )

where T is the daily average temperature. Tf is the melt temperature [ ◦C] (zero by default, but
can be set with the land use parameter DD_MELT_TEMP), andMa [mm/d/ ◦C] is the degree day
melt factor, calculated as a function of cumulative melt:

Ma = min
(
Mmax
a ,Mmin

a · (1 + α ·Mcumul)
)
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where the following land use parameters are used: the maximum melt rate Mmax
a [mm/d/ ◦C]

(MAX_MELT_FACTOR), the minimum melt rateMmin
a [mm/d/ ◦C] (MIN_MELT_FACTOR), and α

[1/mm] is the parameter DD_AGGRADATION.

CRHM EBSM method (POTMELT_CRHM_EBSM)

A parameter-free energy-based potential melt model from the Cold Regions Hydrologic Model
(CRHM) (Pomeroy et al., 2007).

Mmelt =
1

λvρw
(Sn + Ln +Qh+Qp)

where convective/conductive heat transfer Qh [MJ/m2/d] is estimated from wind velocity, v [m/s],
and maximum daily temperature, Tmax [ ◦C],

Qh = −0.92 + 0.076 · v + 0.19 · Tmax

and the energy content of the rainfall is given by the rainfallR [mm/d] and air temperature T [ ◦C]:

Qp = cpρw ·R ·max(T, 0.0)/1000

where cp and ρw are the specific heat capacity and density of water; the 1000 factor converts rainfall
to m/d.

Blended (POTMELT_BLENDED)

Allows the potential melt to be estimated using a weighted average of two or more potential melt
algorithms described above, in a method consistent with the :ProcessGroup command, though
with a different syntax. This method must be used in combination with the :BlendedPot-
MeltWeights command in the .rvi file to specify the potential melt algorithms included in the
blended group, as well as the associated weights or weight-generating parameters.

Not calculated (POTMELT_NONE)

Potential melt is not calculated by the model.

5.9 Atmospheric Variables

This section includes various methods for estimating wind speed, relative humidity, and air pressure.

5.9.1 Wind Speed

The following methods can be used to estimate the wind speed at 2 meters, as used for a number of
ET and potential melt estimation algorithms. All of the following estimates will be adjusted with the
land cover/land use parameter WIND_VEL_CORR (a positive multiplier), with the constraint that relative
humidity must be greater than zero.

Constant wind velocity (WINDVEL_CONSTANT)

Returns a constant value of 2.0 m/s (the global average).

Interpolate from data (WINDVEL_DATA)

Wind velocity is interpolated from data supplied at a gauge location, as specified in the .rvt file.
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UBCWM approach (WINDVEL_UBC)

An algorithm adapted from the UBC Watershed model. The base wind speed, vb [km/hr] is first
estimated to be between a reasonable range using the temperature range for the day

vb = (1− ω)vmax + (ω)vvmin

where vmax = 8 km/hr, vmin = 1 km/hr, and ω = 0.04 · min(Tmax − Tmin,∆Tmax). Here Tmax
and Tmin are the orographically corrected minimum and maximum daily temperature, ∆Tmax is
the global parameter MAX_RANGE_TEMP, which may be corrected for elevation. If the following
maximum temperature range is smaller thanMAX_RANGE_TEMP, it overridesMAX_RANGE_TEMP:

∆Tmax = 25.0− 0.001 · P0TEDL · zg − 0.001 · P0TEDU(z − zg)

where P0TEDL and P0TEDU are global lapse rate parameters specified using the :UBCTem-
pLapseRates command, and zg and z are the elevation of the temperature gauge and HRU,
respectively. The wind velocity is then converted to m/s, then corrected for forest cover and eleva-
tion,

v = αf · (0.001 · z)1/2 · vb
where αf is equal to 1 for bare ground and 0.7 if FOREST_COVER is greater than zero.

5.9.2 Relative Humidity

The following algorithms may be used to estimate relative humidity in Raven. All of the following es-
timates will be adjusted with the land cover/land use parameter RELHUM_CORR (a positive multiplier),
with the constraint that relative humidity must be greater than zero.

Constant humidity (RELHUM_CONSTANT)

The relative humidity is (somewhat arbitrarily) estimated to be 0.5.

Interpolate from data (RELHUM_DATA)

Relative humidity is interpolated fromdata supplied at a gauge location or gridded data, as specified
in the .rvt file.

Minimum daily temp as estimator of dew point (RELHUM_MINDEWPT)

The minimum daily temperature is assumed to be equal to the dew point temperature, allowing
relative humidity to be estimated as

RH =
es(Tmin)

es(Tave)

where Tmin and Tave are the minimum and average daily temperatures and es(T ) is the saturated
vapor pressure, a function of temperature. This is the preferred algorithmwhen no relative humidity
data is available.

5.9.3 Air Pressure

The following approaches may be used to estimate atmospheric pressure:

Constant air pressure (AIRPRESS_CONSTANT)

A constant air pressure of 101.3 kPa is used (air pressure at standard temperature of 25 ◦C).
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Interpolate from data (AIRPRESS_DATA)

Air pressure is interpolated from data supplied at a gauge location, as specified in the .rvt file.

UBCWM approach (AIRPRESS_UBC)

FromQuick (1995). Air pressure is corrected for elevation above mean sea level, z,

P = 101.3 · (1− 0.001z)

where P is in kPa and z is the HRU elevation in metres above sea level.

Basic Approach (AIRPRESS_BASIC)

Air pressure is corrected for both temperature and pressure using the following relationship:

P = 101.3 ·
(
1− 0.0065

z

TKave

)5.26

where P is in kPa, TKave is the average temperature for the time step in ◦K, and z is the HRU
elevation in metres above sea level.

5.10 Sub-daily Corrections

Many of the above algorithms estimate incoming radiation, potential melt, and/or ET on a daily timescale.
When simulating at a sub-daily timescale, it is advantageous to be able to downscale these estimates for
smaller time intervals. If a time step less than∆t=1.0 is used, the sub-daily corrections are used to modify
the following quantities:

• potential melt

• shortwave radiation

• PET

No sub-daily correction (SUBDAILY_NONE)

No modification is used.

Simple method (SUBDAILY_SIMPLE)

The half-day length is used to scale a cosine wave which peaks at midday, is zero after sunset and
before sunrise, and has a total area of 1.0 underneath; the average value of this sine wave over the
time step is used as the sub-daily correction.

δ =
1

∆t

t+∆t∫
t

− 1

2
cos

(
πt

DL

)
dt

where DL is the day length, in days.
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UBCWatershed model approach (SUBDAILY_UBC)

When hourly temperatures are available, melt and ET are scaled by the hourly temperature in excess
of zero degrees Celsius, i.e.,

δ =
max(T, 0)

24∑
n=1

max(Ti, 0)

5.11 Monthly Interpolation

Various methods to be used for interpolation and use of all monthly data.

Uniform method (MONTHINT_UNIFORM)

Monthly values are assumed to be uniform throughout the month, jumping abruptly when moving
from month to month.

Relative to first day of month (MONTHINT_LINEAR_FOM)

Monthly values are linearly interpolated, assuming that the specified monthly values correspond
to the first day of the month.

Relative to middle day of month (MONTHINT_LINEAR_MID)

Monthly values are linearly interpolated, assuming that the specified monthly values correspond
to the middle of the month.

Relative to 21st day of the month (MONTHINT_LINEAR_21)

Monthly values are linearly interpolated, assuming that the specified monthly values correspond
to the 21st day of the month (as done in the UBC Watershed model (Quick, 1995)).
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Chapter 6

Forecasting and Assimilation

Raven has a number of built-in features to support short-term flood and reservoir inflow forecasting.

6.1 Streamflow Assimilation- Direct Insertion

Raven can integrate real-time observations of streamflow into its forecasting model via a simple and
unique direct insertion algorithm. For more complicated applications of data assimilation (e.g., ensemble
Kalman Filter or similar), it is recommended to use external tools.

When supplied with streamflow observations (using the :AssimilateStreamflow command in the
.rvi file), Raven will override the stream discharge simulated at any point in the domain with streamflow
observed at a subbasin outlet. Only the observations at subbasins indicated using the :Assimilat-
eStreamflow [SBID] command in the .rvt file will be assimilated. In addition to overriding the flows
during hindcasting (when observations are available), it can also propagate a scaled flow forward in time
and upstream in space, with the key assumption that the ratio of the observed to simulated flow is more
likely to be constant than not. The following scaling relationship is used:

ωi(t, xi, t
last
i ) = 1 + α ·

(
Qiobs(t)−Qimod(t)

Qimod(t)

)
· exp(−βxi) · exp(−γt− tlasti )

where ωi(t) is the weighting factor in subbasin i at time t, Qiobs(t) is the observed flow at the nearest
downstream observation location from basin i at time t, Qimod(t) is the simulated flow at the same lo-
cation at time t (which may reflect the impact of upstream data assimilation in previous time steps),
xi is the downstream distance to the nearest downstream observed flow, and tlasti is the time, in days,
since the last observation was observed at this location (typically equal to t in hindcasting). The param-
eter α (global parameter ASSIMILATION_FACT) indicates the unit-less degree of assimilation, where
α = 1 corresponds to full insertion and α = 0 corresponds to none. The parameter β (global parame-
ter ASSIM_UPSTREAM_DECAY, with units of 1/km) determines how the scaling factor decreases with
distance to the observation. For β = 0, the scaling factor persists to the headwater of the basin, scal-
ing all upstream flows by the ratio of observed to simulated discharge at the downstream observation;
for β > 0, the persistence last (with diminishing influence with distance) for a distance of roughly 4/β.
The parameter γ (global parameter ASSIM_TIME_DECAY, with units of 1/d) determines how the scaling
factor diminishes with time after the observations are unavailable, such that the assimilated flows con-
verge upon the simulated unassimilated flows at some time forward in the forecast. The scaling factor
likewise lasts for a duration of roughly 4/γ, after which assimilation influences ceases and the simulated
flow dominates. Both global assimilation parameters are specified in the .rvp file.
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In all basins upstream of an observation point, the streamflows and rivulet flows in the basin are scaled
using the following:

Q′
mod = ωi ·Qmod

For basins without a downstream observation point, the scaling factor ωi is one, and no assimilation is
performed.

In this algorithm, the closest downstream observation is always used for scaling. If there is assimilation
data at more than one basin downstream, the scaling factor from most immediately downstream takes
precedence, i.e., the assimilation data influence will not propagate upstream past another assimilation
location.

6.2 Reservoir Stage Assimilation - Direct Insertion

Raven can integrate real-time observations of reservoir stage into a forecasting model via direct insertion.
If the:AssimilateReservoirStage command is present in the .rvi file, all available lake or reservoir
stage observations will be used to override the simulated stage at the start of each time step; assimilation
will not be performed in cases where there are blank data values in the observation time series. The reser-
voir stage reported by Raven will be the simulated stage at the end of each time step after applying the
reservoir mass balance. The observed reservoir/lake stage is supplied using :ObservationData com-
mand in the .rvt file with the RESERVOIR_STAGE tag (see appendix A.4.2). This algorithm is necessarily
simpler than the streamflow assimilation algorithm above because it doesn’t propagate upstream.

To disable reservoir assimilation for a specific reservoir, the observation data for that reservoir must not
be read in by Raven.

For more complicated applications of reservoir data assimilation (e.g., ensemble Kalman Filter or similar),
it is recommended to use external tools.

6.3 State Nudging

Forecasters can modify states directly in the .rvc initialization file, but can also apply additive or multi-
plicative changes to states such as soil moisture or snow water equivalent using the :Nudge command,
also specified from the .rvc file. This nudging can be applied globally to the state variable or to a specified
HRU group. See appendix A.5 for details.

6.4 Ensemble Kalman Filter

Raven supports data assimilation of observed hydrograph data using the Ensemble Kalman Filter (EnKF)
methodology. The user gets to specify how the ensembles are generated via perturbation of forcings, how
many members are included in the ensemble, the nature of any observational error, and which model
internal states get updated during assimilation. This approach cannot be used in combination with the
direct assimilation approach defined above.

With the EnKF method, Raven runsN simulations over the specified model duration, whereN is the size
of the EnKF ensemble. After running themodelN times, two sets of ensemble solution files are potentially
produced: the standard (un-assimilated) model states, and the EnKF-adjusted model states, where the
observational data is used to adjust model states such as streamflow or SWE. The EnKF ensemble can be
run in five modes:

128



1. Spinup mode (:EnKFMode ENKF_SPINUP), where each ensemble member is run using a single
default initial conditions file and with perturbed forcings. Produces an EnKF-adjusted solution file
for each ensemblemember at the end of simulation that can be used to initialize further simulations.

2. Closed-loop mode (:EnKFMode ENKF_CLOSED_LOOP), where each ensemble member is run
using the observation-adjusted state file (solution_EnKF.rvc) from the previous run of that member
as initial conditions and with perturbed forcings. Produces an EnKF-updated solution file at the
end of the simulation run.

3. Forecast mode (:EnKFMode ENKF_FORECAST), where each ensemble member is run using the
observation-adjusted state file (solution_EnKF.rvc) from the previous run of that member as initial
conditions, except without perturbing model forcings. Forecast mode is typically run for the future,
when observations are unavailable.

4. Open-loop mode (:EnKFMode ENKF_OPEN_LOOP), where each ensemble member is run using
the un-adjusted state file from the previous run of that member as initial conditions and with per-
turbed forcings.

5. Open-loop Forecast mode (:EnKFMode ENKF_OPEN_FORECAST), where each ensemblemember
is run using the un-adjusted state file (solution.rvc) from the previous run of that member as initial
conditions, except without perturbing model forcings.

The open-loop modes are strictly used for evaluating the effectiveness of the EnKF assimilation strategy;
they are not typically used in operations. For all simulations, each ensemble member is generated by
perturbing some subset of forcing functions (usually at least precipitation) prior to t0 (spinup or closed-
loop mode) and using unperturbed forcings after t0, where t0 is the start of the forecast (forecast mode).
Open loop mode is typically only used as a reference, to evaluate the impact of assimilation. This process
is shown in figure 6.1.

Figure 6.1: EnKF data assimilation process - here EnKF state updates are appiled every eight time steps
using the most recent observation data, and t0 corresponds to the current time such that after t0 is a
future forecast. Raven only applies EnKF data assimilation at a single time for each ensemble run, but
these assimilation runs may be strung together in sequence. In this figure, t−1 and t−2 correspond to the
model :StartDate of previous closed-loop forecasts; t0 corresponds to the start of the forecast run. For
standard EnKF, the data window only includes the single model time step prior to t0.
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Specified components of the model state (e.g., streamflow, soil moisture, and/or snow) are updated using
perturbed observational data (e.g., hydrographs). This is effectively a computation whereby the a priori
estimates of system state (represented by an ensemble) is corrected using noisy observational data (also
represented by an ensemble) to generate an a posteriori estimate of the system state. This updated state
is used as initial conditions for an ensemble of deterministic forecasts. The full ensemble of forecasts may
be used, or only the ensemble mean (which has to be calculated externally of Raven).

The state updating done at the end of each ensemble run follows the EnKF approach outlined in Mandel
(2006). The primary input components are:

• Osim, an Nobs x N matrix of simulated output, with one simulation value for every corresponding
observation data point used in assimilation.

• O, anNobs xN matrix of perturbed observational data points, where each ensemble member varies
around the actual observation based upon the chosen observational error model.

• E, an Nobs x N matrix of the error applied to each observational point (the difference between O
and the original observations), and

• X , the state matrix. AnM xN matrix of the system states at time t0, whereM is the total number
of state variables to be updated during assimilation.

Raven assembles thesematrices internally. At the end of each spinup or closed loop simulation, the system
state is updated, and written to the solution_EnKF.rvc solution file. This update is done via the following
matrix operations, detailed in Mandel (2006) using a different notation:

H = Osim − Osim
A = X− X
P = 1

N−1(HH
T + EET )

Z = HT (P−1(O− Osim))
X∗ = X+ 1

N−1AZ

where the overbar notation indicates averaging over theN ensemble members andH, A, P, and Z are only
used in these intermediate calculations. The inversion of the P matrix is internally calculated via singular
value decomposition algorithm of Press et al. (1992), and X∗ is the updated system state used as initial
conditions for the forecast ensemble members.

Raven should be run in three phases for practical application of EnKF forecasting, by stringing together
an initial spinup run, a sequence of closed-loop runs, and a forecast run. Only the EnKF mode, start time,
end time, and external forcings such as temperature and precipitation will typically vary between these
successive ensemble model runs. All EnKF options (number of members, data horizon, assimilated states,
perturbation methods) will typically be fixed for a given watershed.

At steady state, daily simulationswill typically include one closed loop run for the previous day followed by
one forecast run for some future time horizon (e.g., the 10-day forecast). Testing of the EnKF can be done by
comparing results against an open-loop run, replacing the ENKF_CLOSED_LOOP and ENKF_FORECAST
modes above with ENKF_OPEN_LOOP and ENKF_OPEN_FORECAST options. These options will disable
the Kalman Filter application so that states are not adjusted to agree with observations. The model is
otherwise identical, including the randomized perturbations of the forcings.

The key choices used in EnKF data assimilation are 1) the number of ensemble members to use, 2) the
specification of which observations to include and the observational error model, 3) the states to in-
clude in updating, and 4) the strategy for perturbing the forcings. The number of ensemble members is
specified in the :EnsembleMode ENSEMBLE_ENKF command in the .rvi file. The observations are
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included using the :AssimilateStreamflow command and the observational error model is sup-
plied using the :ObservationErrorModel command (both in the .rve file). The forcing perturba-
tion approach (which can be applied differently in each subbasin group) is specified using one or more
:ForcingPertubation commands in the .rve file. These are all documented in appendix A.8, with an
example EnKF template setup included in appendix F.14.

By default, the file management for EnKF simulation is such that all individual ensemble outputs are
generated in a set of N output folders defined by the :OutputDirectoryFormat command in the
.rve file. Each simulation generates two output solution files in this folder: solution.rvc and solution_-
EnKF.rvc. When run in succession, EnKF simulations will by default read one of these solution files as
initial conditions (either with or without assimilation, as determined by the open/closed EnKF mode).
These files are overwritten at the end of their simulations. If a forecasting system wishes to save these
states, it must therefore intervene in between successive EnKF runs. If these solution files are saved, they
may be used to re-boot EnKF simulations at any previous time by overriding the default assumed location
of the initial conditions using the :EnsembleRVCFormat command documented in appendix A.8.

Currently, Raven only supports the use of streamflow observations or lake/reservoir stage for EnKF as-
similation.

6.5 Deltares FEWS support

Raven readily plugs into the Deltares Delft-FEWS forecasting environmenthttps://www.deltares.
nl/en/software/flood-forecasting-system-delft-fews-2/, communicating directly to
FEWS via custom NetCDF input and output files. Instructions for getting Raven to directly communicate
with FEWS are found in appendix C. FEWS provides a number of external tools for ensemble model sim-
ulation, state updating, and data assimilation.
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Chapter 7

Tracer, Heat, and Contaminant Transport

Raven can be used to track conservative contaminants, enthalpy (i.e., temperature),and/or synthetic trac-
ers (here collectively referred to as constituents) through a watershed via advection. Transport is activated
using the :Transport command in the .rvi file (see appendix A.1.6, and the user specifies the name of
the constituent. For results to be interesting, boundary and/or initial conditions must also be supplied.
For special constituents like enthalpy (temperature simulation) and isotopes, transport automatically ac-
tivates other processes (in-reach energy balance calculation and isotopic enrichment processes, respec-
tively). For all user-specified constituents, the constituents are assumed to be conservative tracers or
subject to simple first-order decay.

7.1 Advective Transport

The advective transport capabilities of Raven are relatively simple in concept. During each time step, water
exchange in the HRU is first calculated. Using the known water fluxes between storage compartments
over a given time step, and the mass of a given constituent in each storage compartment, the net mass
flux is calculated between all storage compartments for the time step. Internally, the mass density (m, in
mg/m2) is stored in each storage compartment (i.e., soils, surface water, snow, etc.), though concentrations
of constituents are reported in more natural concentration units of mg/L. Advective fluxes between all
water storage compartments are calculated as

J =M ·
(
m

ϕ

)
where J is the advective flux [mg/m2/d],M is the water exchange rate between compartments [mm/d],
m is the constituent mass density [mg/m2], ϕ is the water storage of the compartment which the mass is
leaving [mm]. In any of the storage compartments, constituent concentration [mg/mm-m2] is calculated
as

C =
m

ϕ

With theORDERED_SERIES global numerical algorithm, mass balance errors for each constituent should
be exactly zero. Because the transport module wraps around the hydrologic water balance model, the ad-
dition of new hydrologic processes and algorithms does not require the addition of new code for simulating
mass transport.

For advection of heat, the principles are the same, but the units of [mg] are replaced with [MJ], and
instead of mass concentrations, the specific (volumetric) enthalpy is tracked. This is converted to (and
reported as) an equivalent temperature in the model output files.
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The base outputs from the transport simulation are the average concentrations of a given constituent in
each of the various storage compartments and pollutographs (time series of in-stream concentration) at
subbasin outlets. The :CustomOutput command may be used to report local concentrations and mass
fluxes.

7.2 Constituent Sources

Sources of constituents may be handled in one of two ways:

• As Dirichlet conditions, where the constituent concentration in a given compartment is fixed at a
user-specified value

• As Robin conditions, where a user-specified (dry) mass flux is applied to a given compartment

These are handled using the :FixedConcentration and :MassFlux commands (for time-invariant
concentrations or fluxes) and using the:FixedConcentrationTimeSeries or:MassFluxTime-
Series commands for time-variable fluxes. These source terms may be applied selectively to arbitrary
groups of HRUs.

7.3 Constituent Routing

7.3.1 Catchment Routing

Constituents are routed through the catchment in a manner consistent with the catchment routing pro-
cess described in section 4.1. A discrete transfer function approach is used,

QC(t+∆t) =
N∑
n=0

QClat(t− n∆t) · UHn (7.1)

where QC [mg/d] is the mass loading, QClat [mg/d] is the loading released from the catchment at time
t, and U⃗H is a unitless vector which describes the distribution of arrival times to the channel, and is the
same distribution used by the catchment routing for water, described in section 4.1. This expression is
identical for synthetic tracers and heat transport, but calculated in units of [L/d] and [MJ/d], respectively.

7.3.2 In-channel Routing

Raven currently supports in-channel routing of transport constituents only with the ROUTE_DIFFU-
SIVE_WAVE, ROUTE_PLUG_FLOW, and ROUTE_NONEmethods of in-channel routing. For these meth-
ods, a discrete transfer function approach is used similar to that used in the in-catchment routing,

QC(t+∆t) =
N∑
n=0

QCin(t− n∆t) · UH ′
n (7.2)

where QC [mg/d] is the mass loading, QCin [mg/d] is the loading from upstream at time t, and U⃗H ′

is a unitless vector of size N which describes the distribution of arrival times to the channel outlet, and
is the same distribution used by the in-channel routing for water, described in section 4.2. Again, This
expression is identical for synthetic tracers and heat transport, but calculated in units of [L/d] and [MJ/d],
respectively.
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7.3.3 In-reservoir Routing

Constituent routing in the reservoir is based upon an explicit solution of the Crank-Nicolson discretized
mass balance on the reservoir,

dM

dt
=

N∑
i=1

QiinC
i
in −QoutC − λM (7.3)

where M is the reservoir mass (in mg), Qiin and Qout are the N inflows and single outflow rates from
the reservoir (in m3/s), Ciin are the concentrations [mg/m3] from the multiple inflows, and λ is the decay
rate of the constituent [1/d]. Note that evaporation is presumed not to carry the constituent from the
reservoir surface. The discrete form of the equation, after summing all of the mass inflow terms together

into a single effective mass inflow, QinCin =
N∑
i=1
QiinC

i
in, is:

Mn+1 −Mn

∆t
=

1

2

(
QninC

n
in +Qn+1

in Cn+1
in

)
+

1

2

(
QnoutC

n +Qn+1
out C

n+1
)
− λ

2

(
Cn + Cn+1

)
(7.4)

where n indicates the time step, and the concentration Cn is evaluated asMn/V (hn) where V (h) is the
volume of the reservoir for a stage of h. This expression may be directly rearranged to determine the mass
(or energy, or composition) in the reservoir at the end of the time step,Mn+1.

7.4 Synthetic Tracers

Raven can support the simultaneous use of multiple synthetic tracers to calculate the percentage of
streamflow sourced from different regions of the watershed (e.g., from headwater basins) or different
physical stores on the landscape (e.g., to determine the percentage of flow sourced from snowmelt). This
can be done by defining a tracer with a fixed concentration of 1.0 [mm/mm] in the store of interest (e.g.,
snowpack), and initial conditions of zero concentration everywhere else in the model (the default). This
simplest form of tracer can be included with just two lines in the Raven input .rvi file. For example, we
can tag all snow with a tracer using the following:

:Transport SNOWMELT
:FixedConcentration SNOWMELT 1.0 SNOW

In the case of a synthetic tracer, the same expression as above is valid, though using an equivalent flux
and equivalent mass, i.e.,

J ′ =M ·
(
m′

ϕ

)
where J ′ is the advective flux [mm/d], and m′ is the effective mass [mm]. In this case, J ′/M may be
interpreted as the fraction of the flow which contains the tracer fluid; likewise,m′/ϕ, the tracer concen-
tration [mm/mm] can be interpreted as the fraction of storage which is marked by tracer. Synthetic tracer
concentrations should range from 0 to 1 [mm/mm], i.e., mm of water from a given source per mm of total
water.

7.5 Thermal Transport

Raven supports simulation of advection of heat on the landscape and treats the full energy balance in
each non-headwater river reach. This is enabled by specifying a constituent named TEMPERATURE in
the :Transport command. Instead of using temperature as the state variable of interest, volumetric
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enthalpy of the water hw, in [MJ/m3] is simulated, defined from the temperature, T , and percent frozen,
pf , as:

hw(T, pf ) =


cwρwT T > 0

−λfρwpf T = 0; 0 ≤ pf ≤ 1.0

ht + ciρwT T < 0

(7.5)

where cw and ci [MJ/kg/K] are the specific heat capacities of liquid water and ice, respectively, ρw [kg/m3]
is the density of water, λf [MJ/kg] is the latent heat of fusion of water, and ht = −λfρw [MJ/m3] is the
transition enthalpy at which water fully freezes. Simulating volumetric enthalpy instead of temperature
allows Raven to support simulation of freezing with fewer numerical artefacts.

In each non-headwater reach, the following energy balance is solved using a Lagrangian approach for
each parcel of water as it moves from inlet to outlet:

V
dhw
dt

= k∗As(Tair − T )︸ ︷︷ ︸
convection

+RincAs −RogLWAs︸ ︷︷ ︸
radiation

−ETρwλvAs︸ ︷︷ ︸
latent heat

+QfAs︸ ︷︷ ︸
frict.

+ qmixAbcwρw(TGW − T )︸ ︷︷ ︸
GW mixing

+2
kbed
dbed

Ab(Tbed − T )︸ ︷︷ ︸
bed conduction

(7.6)
where V is the volume of the parcel, hw [MJ/m3] is the volumetric enthalpy of the parcel, k∗ [MJ/m2/d/K]
is the convective exchange coefficient of the reach (subbasin parameter CONVECT_COEFF), As [m2]
is the reach surface area, Tair is the air temperature [ ◦C], T is the water temperature [ ◦C], Rinc is
the incoming radiation on the stream surface, RogLW is the outgoing longwave energy from the stream
surface, ET is the evaporation from the stream surface, ρw is the density of water, λv is the latent heat of
volatilization, Qf is the heat gained through friction with the bed, qmix [m/d] is the hyporheic exchange
flux with the groundwater (subbasin parameter HYPORHEIC_FLUX, kbed [MJ/m/d/K] is the riverbed
thermal conductivity, dbed [m] is the riverbed material thickness, Ab [m2] is the wetted bed area, cw is
the specific heat of water, and TGW [ ◦C] is the groundwater temperature. The outgoing longwave term
is linearized using a first order Taylor series.

The details of this semi-analytical approach will be found in a forthcoming paper; because the energy bal-
ance is solved analytically, there are no time stepping or discretization constraints, nor are there stability
issues; the numerical method is unconditionally stable. Because this problem is only solved in each reach,
and the temperature from headwater basins is solely estimated from advective mixing alone, care must
be taken in interpreting simulation results in headwaters.

A similar Lagrangian energy balance is applied for water during its transit between being released from
the landscape and reaching the channel, i.e., for water as it is being processed through in-catchment
routing. Because the pathway of this water is not explicitly represented and can represent a combination
of overland flow or subsurface pathways, Raven provides two empirical parameters that enable the water
to either exchange sensible heat with the atmosphere or mixing withe the groundwater. The energy
balance for parcels of water on their way to the channel is:

dT

dt
= k1(Tair − T ) + k2(TGW − T ) (7.7)

where k1 [1/d] and k2 [1/d] are the subbasin parameters SENS_EXCH_COEFF and GW_EXCH_COEFF,
respectively. These parameters would typically be used within calibration. Increased values of k1 will
force the runoff temperature to equilibrate the air temperature, while increased values of k2 will force
the runoff temperature to equilibrate with the groundwater store temperature, as specified using the
:HyporheicLayer command.

Stream temperature simulation requires the following modification to the input files:

1. The following command sequence should be added to the .rvi file:
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:Transport TEMPERATURE
:FixedConcentration TEMPERATURE ATMOS_PRECIP -9999
:FixedConcentration TEMPERATURE SNOW 0.0
:FixedConcentration TEMPERATURE CANOPY_SNOW 0.0

2. Specific WATER HRUs must be added to the HRU list - one in each non-headwater subbasin.
These HRUs are used for determining the air temperature, evaporation rate, and incoming radi-
ation at the stream reach surface. Each HRU is ’tied’ to the corresponding subbasin by specifying
the REACH_HRU_ID parameter for each subbasin within a :SubBasinProperties command
block.

3. The exchange is controlled by the key subbasin parametersCONVECT_COEFF andHYPORHEIC_FLUX
(also specified in the :SubBasinProperties command block), and the parameters which in-
fluence the ET rate and incoming radiation on the stream surface (dependent upon the chosen
algorithms for shortwave canopy corrections and PET). It may also be useful to fix the ground-
water local temperature using the :FixedTemperature command. The subbasin parameters
SENS_EXCH_COEFF and GW_EXCH_COEFF may also be set to non-zero values to modify the
runoff temperature. Lastly, the subbasin parametersRIVERBED_CONDUCTIVITY andRIVERBED_THICKNESS
control conductive heat exchange with the bed materials.

4. The fidelity and quality of the stream temperature simulations is strongly tied to the level of dis-
cretization of the stream network. Amodel which provides adequate flow predictionsmay generally
require a finer resolution of subbasins to adequately simulate stream temperature.

5. Temperature models are very sensitive to diurnal variation, and will perform better when run using
model time steps of 4 hours or less.

Lakes and reservoirs are also simulated as part of the stream temperature model. Each lake is treated
as fully-mixed (i.e., no thermocline is allowed to form), and exchanges heat via atmospheric radiative,
sensible, and latent heat exchange plus conduction with the lake bed. The model supports partial freezing
of the lake, but this freezing is assumed not to impact the lake outflow hydraulics. The model solves the
following coupled energy balance equations for the lake and bottom sediment, where these equations
are solved using the Newton-Raphson method as applied to a Crank-Nicolson approximation of these
equations in each time step:

dHw

dt
= Qinhin −

Qout
V

Hw + k∗(Tair − T )A+RnetA− ETρwλvA+
kbed2Abcwρw

Dbed
(Tb − T )

dHs

dt
= −kbed2Abcwρw

Dbed
(Tb − T )

where the parameters are defined as in equation 7.7 except k∗ [MJ/m2/K/d] is the lake convection coeffi-
cient (reservoir parameter specified using the:LakeConvectionCoeff command), kbed [MJ/m/K/d] is
the thermal conductivity of the lake bedmaterial (reservoir parameter:LakebedThermalConductivity,
andDbed [m] is the thickness of the lake bed (reservoir parameter:LakebedThickness). The variables
Hw and Hs refer to the enthalpy of the lake water and lake bed material (including water), respectively,
and A is the (time-varying) lake surface area. The bed interface area Ab is treated as constant and equal
to the corresponding HRU area. hin is the volumetric enthalpy of the incoming water.

Raven automatically generates the file StreamReachEnergyBalances.csv if TEMPERATURE transport is
enabled. If there are also “gauged” subbasins with reservoirs/lakes, then Raven will generate the output
file LakeEnergyBalances.csv which reports upon the detailed energy balance components of these lakes
over time. Neither NetCDF nor Ensim output format is supported for these outputs.
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7.6 Geochemistry

Geochemical processes operate similarly to hydrologic processes and determine the decay, consumption,
and transformation of transported constituents. The specification of geochemical processes must be after
the :Transport command is used to declare which constituents are to be tracked in the model. These
appear in the :GeochemicalProcesses block as follows:

:Transport STRONTIUM
:Transport STRONTIUM_S SORBED
:GeochemicalProcesses
:Decay DECAY_LINEAR RAD_DECAY STRONTIUM
:Equilibrium EQ_FIXED_RATIO SORPTION STRONTIUM STRONTIUM_S

:EndGeochemicalProcesses

Much like the :HydrologicalProcesses commands, each geochemical process consists of a pro-
cess (e.g., :Decay), an algorithm to represent that process (e.g., DECAY_LINEAR), and one or more
constituents (STRONTIUM). Unlike the hydrological processes, here a user-specified ’process name’ is
also linked to each geochemical process (e.g., RADIOACTIVE_DECAY). This is because the same con-
stituents may experience multiple similar processes in the same storage compartment (e.g., consumption
/loss via two different linear mechanisms); the process name helps to distinguish between these and also
helps to track the impact of these processes in the output.

Note that all of the calculations below assume units are in terms of constituent mass, not molar concen-
trations. Therefore handling of stoichiometry and units conversion is (in part) left to the user.

7.6.1 Decay

Any constituent may be subjected to first order linear decay/consumption/loss in any water compartment,
with the decay rate being 1) uniform everywhere in the domain 2) conditional upon compartment or 3)
conditional on soil class. This simple decay relation (in terms of aqueous concentration of the constituent,
C) is given as:

dC

dt
= −kC (7.8)

In all cases, the mean decay over the time step is numerically calculated using the following discrete
expression over the time step∆t:

dm

dt
= m · (1− exp(−k∆t))

∆t
; (7.9)

where k is the decay rate [1/d] andm [mg/m2] is the constituent mass density. This is derived from the
analytical solution to Equation 7.8 as evaluated over a single time step. All mass lost to decay is tracked as
moving to theCONSTITUENT_SINK storage compartment formass balance accounting. These processes
are handled using a :Decay command in the :GeochemicalProcesses command block.

Simple linear decay (DECAY_LINEAR)

The linear decay rate, k [1/d] in 7.9 is a constant parameter defined by the geochemical parameter
DECAY_COEFF for the target compartment or soil class and the specified constituent.
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Denitrification(DECAY_DENITRIF)

The linear decay rate, k [1/d] in 7.9 is a denitrification rate which varies with temperature and soil
saturation:

k = k′ · C(T ) ·
(
ϕm
ϕmaxm

)
where k′ [1/d] is the geochemical parameter DECAY_COEFF for the target compartment or soil
class, ϕm [mm] and ϕmaxm are the soil water storage and maximum soil capacity of soil layer m,
and C(T ) is a function of temperature, equal to 1 for temperatures between 10 ◦Cand 30 ◦C, and
linearly varying to zero as the temperatures approach 5 ◦Cand 50 ◦C, respectively. This is only
intended to be used if the constituent is (some variation of) NITRATE.

7.6.2 Equilibrium

A process whereby two constituents approach (or are assumed to always preserve) an equilibrium balance.
Handled using a :Equilibrium command in the :GeochemicalProcesses command block.

Fixed mass ratio equilibrium (EQUIL_FIXED_RATIO)

Assumes the concentrations of two aqueous constituents are always at a fixed ratio:

C1 = aC2

If this ratio is not preserved, a precise amount of C1 is converted to C2 or vice versa in order to
maintain this equilibrium. The coefficient a is the geochem parameter PAR_EQFIXED_RATIO,
which may be global or specified as specific for a given water compartment. Note that because
Raven does not simultaneously solve chemical equations, this equilibrium is only approximately
preserved if competing with other chemical reactions or additions of mass. Note - this approach
can be used to represent chemical equilibrium. For example, if you have the following reaction:

C1 ⇋ C2

with unitless equilibrium coefficientKeq , we get

[C1]

[C2]
= Keq

where square brackets denote molar concentrations. Given the molecular weights γ1 and γ2 (g/mol)
of the two species, we can calculate the fixed ratio a as:

a =
γ1
γ2
Keq

Fixed mass ratio equilibrium (EQUIL_FIXED_RATIO)

Assumes a rate-limited reaction whereby concentrations of two aqueous constituents approach a
fixed ratio.

C1 ⇋ aC2

dC1

dt
= −k (C1 − aC2)

dC2

dt
= +ks (C1 − aC2)
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where the coefficient a [-] is the geochemical parameter PAR_EQFIXED_RATIO and k [1/d] is
the geochemical paramter PAR_EQUIL_COEFF. Both may be global or specified as specific for a
given water compartment. The parameter s is the stoichiometric ratio between the two components
relating the mass lost of constituent 1 to the mass gained by constituent 2, and is specified using
the :StoichiometricRatio command in the .rvp file.

Linear Equilibrium Sorption (EQUIL_LINEAR_SORPTION)

Assumes an instantaneous reaction whereby the aqueous and sorbed concentrations of a con-
stituent species are linearly related:

Cs = KdCw

where Cw [mg/l] is the aqueous concentration, Cs [mg/kg] is the sorbed concentration, and Kd is
the sorption coefficient (geochemical parameter PAR_SORPT_COEFF). In terms of mass density,
this relationship translates to:

ms =

(
KdρbHn

Vw

)
·mw

where ms and mw are the sorbed and aqueous mass densities, ρb [kg/m3] is the bulk density of
the soil (soil parameter BULK_DENSITY), H is the soil layer thickness, n is the soil porosity (soil
parameter POROSITY), and Vw [m] is the water content of the soil. This process is only enabled
within soil storage compartments. Note that because Raven does not simultaneously solve chem-
ical equations, this equilibrium is only approximately preserved if competing with other chemical
reactions or additions of mass.

7.6.3 Chemical Transformation

A process whereby one constituents transforms into another at a rate proportional to the concentration
of one or more species, and potentially influenced by other controls (such as temperature). Handled using
a :Transformation command in the :GeochemicalProcesses command block.

Linear transformation (TRANS_LINEAR)

A single species transforming to another at a rate proportional to the concentration of the first
species:

C1 → aC2

This is treated internally as a set of rate reactions:

dC1

dt
= −kC1

dC2

dt
= +ksC1

where k [1/d] is the rate of reaction, the geochemical parameter PAR_TRANSFORM_COEFF, which
may be global or specified as specific for a given water compartment. The parameter s is the sto-
ichiometric ratio between the two components relating the mass lost of constituent 1 to the mass
gained by constituent 2, and is specified using the :StoichiometricRatio command in the
.rvp file.
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Chapter 8

Model Diagnostics

While Raven doesn’t have built-in calibration functionality, it supports it’s own assessment by internally
comparing observation data to simulation output. The model diagnostic output can readily be used by
model-independent optimization and parameter estimation tools, such as Ostrich or PEST (as briefly
discussed in section 2.6). This chapter includes information about all of the available diagnostics.

8.1 Pointwise vs. Pulsewise comparison

Note that in all cases, Raven is comparing a time series of observations to a time series of model output.
It is assumed that the observations are instantaneous observations at a point in time (e.g., a single soil
moisture measurement or snow depth measurement). The key exception to this is observed hydrographs.
Most observed hydrographs available from government or municipal agencies report averaged data over
discrete time intervals, e.g., daily average flows. Raven is careful to treat this continuous data as is ap-
propriate, and compares the simulated average flows over each time interval to the observed average
flows.

For non-hydrograph data, the model output is interpolated to the exact time of observation.

The documentation for the relevant .rvi and .rvt input commands (:ObservationData, :Observa-
tionWeights, :IrregularObservations, :IrregularWeights and:EvaluationMetrics)
can be found in appendix A. The :ObservationData command is used for continuous observations at
regular intervals (e.g., hydrographs) while the :IrregularObservations is used to store infrequent
observations with irregular spacing (e.g., those from snow surveys).

8.2 Diagnostic Algorithms

In all of the algorithms below, ϕi is an observation of interest, ϕ̂i is the corresponding simulated value,
wi is the corresponding weight of the observation (1.0 by default, 0 for blank observation data) and N is
the number of non-blank observations. Note that many of these diagnostics are useful for hydrographs
but may not make particular sense for other observed state variables (even though we can calculate them
anyhow). By default, Raven calculates the diagnostics for the entire simulation period, however, the
diagnostics for any sub-period of the simulation may be evaluated using the :EvaluationPeriod
command documented in appendix A.1.3. Alternately, the evaluation period command can also limit
diagnostic calculation to low or high flows only (e.g., the top 20% of observed flows). Specification of the
time series of observation weights is done via the :ObservationWeights or :IrregularWeights
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commands, as documented in appendix A.4.2. Blank observation data (denoted by the flag value -1.2345
in any time series) is ignored, and treated as if it has a weight of zero.

Nash-Sutcliffe Efficiency (NASH_SUTCLIFFE)

Returns the Nash-Sutcliffe efficiency coefficient:

NSE = 1−

N∑
i=1
wi

(
ϕ̂i − ϕi

)2
N∑
i=1
wi
(
ϕ̄− ϕi

)2
where ϕ̄ is the weighted mean of observations,

ϕ̄ =
1

N

N∑
i=1

wiϕi

Running Average Nash-Sutcliffe Efficiency (NASH_SUTCLIFFE_RUN)

Returns Nash-Sutcliffe efficiency coefficient between theM -day running average of the observed
and theM -day running average of the simulated variables:

NSE = 1−

N∑
i=1
wi

(
ϕ̂∗i − ϕ∗i

)2
N∑
i=1
wi
(
ϕ̄− ϕ∗i

)2
where ϕ̂∗i is theM -day running average of the simulated value (averaging window centred on day
i), and ϕ∗i is the M -day running average of the observed value (centred on day i), and ϕ̄ is the
weighted mean of observations,

ϕ̄ =
1

N

N∑
i=1

wiϕi

The window size,M , in days, is specified in the NASH_SUTCLIFFE_RUN command.

Log-transformed Nash-Sutcliffe Efficiency (LOG_NASH)

Returns the Nash-Sutcliffe efficiency metric applied to the logarithmic transform of the variable of
interest, usually discharge.

NS = 1−

N∑
i=1
wi

(
ln(ϕ̂i)− ln(ϕi)

)2
N∑
i=1
wi

(
ln(ϕ)− ln(ϕi)

)2
where ϕ̄ is the weighted mean of observations,

ϕ̄ =
1

N

N∑
i=1

wiϕi
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Fourth-power Nash-Sutcliffe Efficiency (NSE4)

NSE4 = 1−

N∑
i=1
wi

(
ϕ̂i − ϕi

)4
N∑
i=1
wi
(
ϕ̄− ϕi

)4
where ϕ̄ is the weighted mean of observations,

ϕ̄ =
1

N

N∑
i=1

wiϕi

Daily Nash-Sutcliffe Efficiency (DAILY_NSE)

Nash-Sutcliffe efficiency metric calculated using daily average values of simulated and observed
flows. Calculations begin with the first full day of values.

Fuzzy Nash-Sutcliffe Efficiency (FUZZY_NASH)

Nash-Sutcliffe efficiency metric calculated in such a way that only deviations beyond a fixed frac-
tion, ω, of the observed value are penalized.

NSEF = 1−

N∑
i=1
wi

(
ϵ(ϕ̂i, ϕi)

)2
N∑
i=1
wi
(
ϵ(ϕ̄, ϕi)

)2
where ϵ(ϕ̂i, ϕi) is defined as:

ϵ(ϕ̂i, ϕi) =


ϕ̂i − (1 + ω)ϕi if ϕ̂i > (1 + ω)ϕi

ϕ̂i − (1− ω)ϕi if ϕ̂i < (1− ω)ϕi

0 otherwise

and ϕ̄ is the weighted mean of observations,

ϕ̄ =
1

N

N∑
i=1

wiϕi

Root-mean-squared Error (RMSE)

RMSE =

√√√√ N∑
i=1

wi

(
ϕ̂i − ϕi

)2
Fourth-root-mean-quadrupled Error (R4MS4E)

R4MS4E = 4

√√√√ N∑
i=1

wi

(
ϕ̂i − ϕi

)4
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Square-root-transformed mean-squared Error (RTRMSE)

RTRMSE =

√√√√ N∑
i=1

wi

(√
ϕ̂i −

√
ϕi

)2

Kling Gupta Efficiency (KLING_GUPTA)

Returns the Kling-Gupta efficiency metric as defined in Gupta et al. (2009):

KGE = 1−

√
(r − 1)2 +

(
σ̂

σ
− 1

)2

+

(
µ̂

µ
− 1

)2

where r is the Pearson correlation coefficient, σ and σ̂ are the standard deviation of the observed
and simulated data, respectively, and µ and µ̂ are the means of the observed and simulated data,
respectively.

Kling Gupta Efficiency Variant (KGE_PRIME)

Returns the Kling-Gupta efficiency metric as defined above except using the ratios of coefficient of
variation (σ/µ) rather than the ratios of standard deviations.

Daily Kling Gupta Efficiency (DAILY_KGE)

Returns the Kling-Gupta efficiency metric for daily observations as defined in Gupta et al. (2009),
regardless of simulation time step.

Percentage Bias (PCT_BIAS)

Returns the percent bias. Non-zero weights have no effect on this calculation, but zero weights will
force the corresponding data points to be ignored.

PCT_BIAS =

N∑
i=1

(
ϕ̂i − ϕi

)
N∑
i=1

(ϕi)

Absolute Percentage Bias (ABS_PCT_BIAS)

Returns the absolute percent bias. Non-zero weights have no effect on this calculation, but zero
weights will force the corresponding data points to be ignored.

ABS_PCT_BIAS =

∣∣∣∣∣∣∣∣∣
N∑
i=1

(
ϕ̂i − ϕi

)
N∑
i=1

(ϕi)

∣∣∣∣∣∣∣∣∣
Average Absolute Error (ABSERR)

Returns the weighted average absolute error.

ABSERR =
1

N

N∑
i=1

wi

∣∣∣ϕ̂i − ϕi

∣∣∣
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Average Absolute Error - Running average (ABSERR_RUN)

Returns the weighted average absolute error applied to a moving window average of the simulated
and observed time series.

Maximum Absolute Error (ABSMAX)

The maximum absolute error between observed and simulated values. Non-zero weights have no
effect on this calculation, but zero weights will force the corresponding data points to be ignored.

ABSMAX = max
{∣∣∣ϕ̂i − ϕi

∣∣∣}
Relative Absolute Error (RABSERR)

Returns the weighted relative absolute error.

RABSERR =

N∑
i=1
wi

∣∣∣ϕ̂i − ϕi

∣∣∣
N∑
i=1
wi

∣∣∣ϕ̂i − ϕ̄i

∣∣∣
Spearman Rank Correlation Coefficient (SPEARMAN)

Returns the unweighted Spearman rank correlation coefficient

SPEARMAN =
cov(R(ϕ̂), R(ϕ))
σR(ϕ̂)σR(ϕ)

where R(X) is a vector comprised of the rank of the ordered arguments X , σR(X) is the standard
deviation of these ranks, and cov() denotes the covariance of two vector inputs. With the Spearman
coefficient calculation, observation weights are ignored unless they are zero, in which case the zero-
weight data point is excluded from the calculation.

Peak difference (PDIFF)

Returns the difference between the peak simulated data and peak observed data. Non-zero weights
have no effect on this calculation, but zero weights will force the corresponding data points to be
ignored.

PDIFF = max
{
ϕ̂i

}
−max {ϕi}

Percent peak difference (PCT_PDIFF)

The difference between the peak simulated data and peak observed data, normalized by the peak
observed data. Non-zero weights have no effect on this calculation, but zero weights will force the
corresponding data points to be ignored.

PCT_PDIFF =
{
max

{
ϕ̂i

}
−max {ϕi}

}
/ {max {ϕi}}

Absolute percent peak difference (ABS_PCT_PDIFF)

The difference between the peak simulated data and peak observed data, normalized by the peak
observed data and taken as an absolute value. Non-zero weights have no effect on this calculation,
but zero weights will force the corresponding data points to be ignored.

ABS_PCT_PDIFF =
∣∣∣{max

{
ϕ̂i

}
−max {ϕi}

}
/ {max {ϕi}}

∣∣∣
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Monthly Mean Squared Error (TMVOL)

Describes the total monthly mean error between simulated data and observed data.

TMVOL =
M∑
j=1

 1

N

Nj∑
i=1

wi

(
ϕ̂i − ϕi

)2
whereM is the number of months in the simulation andNj is the number of data points in month
j.

Correlation of Error (RCOEF)

Describes the correlation of error between adjacent time steps. It represents the tendency for the
error to remain constant from one time step to the next and should only be applied to continuous
time series.

RCOEF =
1

σϕσϕ̂

1

N∗ − 1

N−1∑
i=1

(ϕ̂i − ϕi)(ϕ̂i+1 − ϕi+1)

where σϕ is the standard deviation of the observed data and σϕ̂ is the standard deviation of the
simulated data. N∗ is the number of adjacent non-blank data entries. Non-zero observationweights
are ignored.

Number of Sign Changes (NSC)

NSC describes the number of sign changes in the error from one data point to the next. A low
NSC (as compared to the total number of data points) would imply that the simulated values are
constantly above or below the observed values.

Persistence Index (PERSINDEX)

The Persistence Index, defined in Bennett et al. (2013), compares the sum of squared error to the
error that would occur if the previous observation value (ϕi−1) was used to predict the next value
(ϕi). Similar to NSE, this metric is equal 1 if the model is perfect, and is less than zero if the model
predicts more poorly than a hydrograph shifted by one time step.

PERSINDEX = 1−

1
N

N∑
i=2
wi

(
ϕ̂i − ϕi

)2
1
N

N∑
i=2
wi (ϕi−1 − ϕi)

2
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Chapter 9

Raven Code Organization

∗This section is intended primarily for Raven software developers

The Raven code is fully object-oriented code designed to, as much as possible, separate the numerical
solution of the coupled mass-balance and energy-balance ODEs and PDEs from the evaluation of flux-
storage relationships, enabling the testing of various numerical schemes without having to dig into each
subroutine for each hydrologic process.

9.1 Classes

The Class diagram for the Raven code is depicted in figure 9.1. The code operates by generating a single
instance of the CModel class, which may be considered a container class for all of the model data, i.e.
the arrays of basins, HRUs, land/vegetation classes, and meteorological gauges/gridded forcing data that
define the entirety of the model.

Figure 9.1: Raven class diagram
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9.1.1 CModel class

The CModel class is a container class for all of the hydrologic response units (HRUs), subbasins, hydro-
logic processes (“HydroProcesses”) and measurement gauges/gridded data. It also has global information
about all of the state variables. It has a few key functions called by the solver routines:

• Initialize() Called before the simulation begins to initialize all variables. This also calls all
Subbasin, Gauge, HRU and other initialize functions.

• IncrementBalance()

• IncrementLatBalance()

• IncrementCumulInput()

• IncrementCumOutflow() increment the individual cumulative HRU water and energy bal-
ances, stored within the CModel class

• WriteMinorOutput() Called at the end of each timestep, writes water and energy balance and
watershed-scale storage information (i.e., total storage in snowpack, etc.), in addition to all custom
output.

• WriteMajorOutput() Called at user-specified intervals, basically dumps a snapshot of all sys-
tem state variables and derived parameters to an output file.

• UpdateHRUForcingFunctions() Called every time step - sifts through all of the HRUs and
updates precip, temperature, radiation, and other (external) atmospheric forcing functions, inter-
polated from gauge/measurement data or gridded forcings. These values are then stored locally
within each HRU. Called at the start of each time step.

• RecalculateHRUDerivedParams(), UpdateTransientParams() called every time step
- updates derived and specified model parameters which change over time.

• ApplyProcess(), ApplyLateralProcess() Based upon some assumed current water
storage/state variable distribution, returns a prediction of the rate of water (or energy) movement
from one storage unit (e.g., canopy) to another (e.g., atmosphere) during the time step. This func-
tion DOES NOT actually move the water/energy - this is done within the solver. Basically returns
Mk({ϕ}, {P}) in the above discussion for specified values of {ϕ}

• UpdateDiagnostics Compares current simulated and observed output for the time step and
updates diagnostic measures.

The CModel class has an abstracted parent class, CModelABC, that ensures the model can only pro-
vide information to, but cannot be modified by, other classes aware of its existence (e.g., any hydrologic
processes (CHydroProcess), or subbasin (CSubBasin), etc.)

9.1.2 CGauge class

The CGauge class stores a set of time series (of class CTimeSeries) corresponding to observations of atmo-
spheric forcing functions (precipitation, air temperature, radiation, etc.) at a single point in the watershed.
Themodel interpolates these forcing functions from gauge information in order to determine forcing func-
tions for individual HRUs at any given time step.

Interpolation is performed using the most appropriate local UTM coordinate system automatically calcu-
lated from the specified lat-long centroid of the watershed.
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9.1.3 CSubBasin class

A container class for HRUs - only used for routing of water, as it stores information about the connected-
ness of itself to other subbasins in the simulated watershed(s). Conceptualized as a subbasin.

9.1.4 CHydroUnit class

An abstraction of an HRU - a homogeneous area of land to which the zero- or one-dimensional water
and energy balances are applied. It is unaware of the CModel class. It stores the state of all local HRU-
specific parameters that are valid for the current timestep, the values of the HRU forcing functions (e.g.,
precipitation, PET, radiation) averaged over the entirety of the current timestep, and the values of the
state variables (water storage, energy storage, and snow parameters) that are valid at the start of the
current timestep. It also stores its membership to the land use and vegetation cover classes via pointers
to those instances, so that it may be used to access properties shared by all measures of that class.

Key routines:

• SetStateVarValue() updates the values of a specific state variable. Called at the end of each
time step by the main Raven solver

• UpdateForcingFunctions() updates the values of the forcing functions (rainfall, tempera-
ture, saturated water vapor, etc.) uniformly applied to the HRU at the beginning of each time step.
The HydroUnit is unaware of the source of these values, but they are interpolated from measured
data.

• RecalculateDerivedParams() Given some set of state variables and the current time of
year, updates all derived parameters (e.g., Leaf area index) stored locally within the HRU. These are
used within GetRatesOfChange functions

9.1.5 CHydroProcessABC class

An abstraction of any hydrologic process that moves water or energy from one or more storage units
to another set of storage units (i.e., an abstraction of Mij for one-to-one transfer of water/energy, or a
summation of more than one Mij that moves water through multiple compartments, as is required for
PDE solution). Each CHydroProcess child class has five key subroutines:

• Initialize() initializes all necessary structures, etc. prior to solution

• GetParticipatingStateVars() returns the list of participating state variables for themodel.
This is used to dynamically generate the state variables used in the model. For example, snow will
not be tracked in the model until a process (e.g., snowmelt) is introduced that moves snow between
storage compartments.

• GetParticipatingParameters() returns the list of algorithm-specific parameters needed
to simulate this process with the specified algorithm. This is used to dynamically ensure that all
parameters needed by the model are specified by the user within each HRU.

• GetRatesOfChange() calculates and returns rate of loss of one set of storage units to another
set, in units of mm/d (for water), mg/m2/d (for constituent mass) or MJ/m2/d (for energy).

• ApplyConstraints() Corrects the rates calculated by rates of change to ensure that model
constraints (e.g., state variable positivity) are met.

The CHydroProcessABC class is purely virtual - inherited classes each correspond to a single (or coupled
set of) hydrologic process(es) as described in section 9.1.6
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9.1.6 Hydrologic Processes

All hydrologic process algorithms are specified as individual child classes of CHydroProcessABC. Note
that each HydroProcess may include multiple algorithms; distinction between classes is mostly based
upon physical interpretation, i.e., baseflow and snowmelt are fundamentally different. While independent
snow melt/snow balance algorithms may be very different, they are still grouped into one class.

9.2 Contributing to the Raven Framework*

Source code for Raven is available online, with file support for Microsoft Visual Studio, both 2013 and 2017
versions. Users are encouraged to develop custom-made algorithms for representing hydrologic processes,
estimating forcing functions from gauge data, or interpolating gauge data. If a new algorithm is tested and
found useful, feel free to submit your code to the Raven development team to be considered for inclusion
into the main Raven code.

9.2.1 How to Add a New Process Algorithm

1. Make sure the process algorithm is not already included in the framework with a slightly different
“flavour”

2. Determine whether the algorithm requires new state variable types to be added to the master list.
The complete list of state variables currently supported may be found in the enum sv_type def-
inition in RavenInclude.h. If a new state variable is required, follow the directions in section
9.2.2.

3. Determine whether the algorithm requires new parameters, and whether these parameters will be
fixed for the model duration or depend upon transient factors. The lists of existing parameters
(all linked to soils, vegetation, land use, or terrain types) are found in Properties.h. If a new
parameter is needed, follow the directions in section 9.2.3

4. Determinewhether the algorithm fits within an existingCHydroProcess class, i.e., is it a different
means of representing one of the many processes already simulated within Raven? If so, you will
be editing the code in 6 or 7 places, all within either the CHydroProcess header/source files or
the main input parsing routine:

(a) Add a new algorithm type to the enumerated list of algorithms for that process. For example,
if it is a new baseflow algorithm, you would add BASE_MYALGORITHM to the enum base-
flow_type in SoilWaterMovers.h. Follow the apparent naming convention.

(b) Edit the CHydroProcess constructor. Constructors should be dynamic for all routines that
have fixed input and output variables. Others, such as baseflow, can have user-specified in-
put/output pairs declared. The CmvBaseFlow and CmvSnowBalance codes are excellent
templates for class construction. Edit the if-then-else statement in the constructor, specifying
the iFrom and iTo state variables manipulated by the algorithm connections. For exam-
ple, most infiltration algorithms move water from ponded storage to both topsoil and surface
water, requiring the following specification:

CHydroProcessABC::DynamicSpecifyConnections(2);
iFrom[0]=pModel->GetStateVarIndex(PONDED_WATER);
iTo [0]=pModel->GetStateVarIndex(SOIL,0);
iFrom[1]=pModel->GetStateVarIndex(PONDED_WATER);
iTo [1]=pModel->GetStateVarIndex(SURFACE_WATER);
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This creates two connections, one from ponded water to the topmost soil (SOIL[0]) and
one from ponded water to surface water. The corresponding rates of exchange will later be
calculated in GetRatesOfChange() and stored in rates[0] and rates[1]. Note you
shouldn’t have to check for existence of state variables in the constructor - if they are later
specified in GetParticipatingStateVarList, they will be generated in the master
state variable list prior to instantiation of the class.

(c) Edit the if-then-else statement in the corresponding GetParticipatingParamList rou-
tine with the list of parameters needed by your new algorithm. This information is used for
quality control on input data (ensuring that users specify all parameters needed to operate
the model).

(d) Edit (if necessary) in GetParticipatingStateVarList the list of state variables re-
quired for your algorithm, within a conditional for your specific algorithm. See CmvSnow-
Balance for a good example.

(e) Add the actual flux calculation algorithm to the corresponding GetRatesOfChange()
function for this CHydroProcesss class. Some key things to keep in mind:
(a) parameters may be obtained from the corresponding soil, vegetation, or land use structure
via the HRU pointer, e.g.,

double lambda,K;
K =pHRU->GetSoilProps(m)->max_baseflow_rate;
lambda=pHRU->GetTerrainProps()->lambda;

(b) the final result of the algorithm (rates of change of simulated state variables) are assigned
to the rates[] array. The rates[i] array value corresponds to the flux rate of mass/wa-
ter/energy from state variable iFrom[i] to iTo[i], which you have defined in the con-
structor (step b).
(c) Try to follow the following code habits:

• unless required for emulation of an existing code, constraints should ideally not be used
except later in the ApplyConstraints routine. A good rule of thumb is that the time
step should not appear anywhere in this code. This may not be strictly possible with some
more complicated algorithms.

• each process algorithm longer than about 20-30 lines of code should be relegated to its
own private function of the class

• all unit conversions should be explicitly spelled out using the provided global constants,
defined in RavenInclude.h

• constants that might be used in more than one process subroutine should not be hard-
coded, where at all possible.

• references should be provided for all equations, where possible. The full reference should
appear in the back of this manual

• all variables should be declared before, not within, algorithm code

• All returned rates should be in mm/d or MJ/m2/d for water storage and energy storage,
respectively

(f) If needed, add special state variable constraints in the ApplyConstraints() function,
conditional on the algorithm type.

150



(g) Lastly, add the process algorithm option to the corresponding command in the ParseMain-
InputFile() routine within ParseInput.cpp.

9.2.2 How to Add a New State Variable

1. Make sure the state variable is not already included in the framework with a slightly different name.
Note that proxy variables should be used cautiously. For example, right now snow (as SWE) and
snow depth are included in the variable list, while snow density is not (as it may be calculated from
the other two).

2. Add the state variable type to the sv_type enumerated type in RavenInclude.h

3. Edit the following routines in the CStateVariables class (within StateVariables.cpp)
(revisions should be self-evident from code):

• GetStateVarName()

• StringToSVType()

• IsWaterStorage()

• IsEnergyStorage()

4. Edit the CHydroUnit::GetStateVarMax() routine in HydroUnits.cpp if there is a max-
imum constraint upon the variable

9.2.3 How to Add a New Parameter

1. Make sure that the parameter is not included in the framework by examining the available param-
eters in the soil_struct, canopy_struct, terrain_struct defined in Properties.h
and the global parameters currently defined within the global_struct (RavenInclude.h).
If it is not, determine whether the parameter is (and should always be) global (i.e., not spatially or
temporally varying). If it is not global, determine whether the property is best tied to land use/land
cover class, soil class, vegetation class, or terrain class.

2. Add the new global parameter to the global_struct structure, non-global parameters to the
corresponding soil_, veg_, terrain_, or surface_struct (corresponding to land use). The
units of the parameter should generally be consistent with those used throughout Raven, i.e., SI
units, with fractions represented from 0 to 1 (not 1-100%), time units preferably in days, and energy
in MJ.

3. Depending upon the type of parameter, different classes will have to be revised. As an example, if
it is a soil parameter, the following code must be revised:

• CSoilClass::AutoCalculateSoilProps() In most cases, the new parameter will be
conceptual and therefore not autocalculable from the base parameters of soil composition. In
this case, code may be replicated from other parameters (see, e.g., VIC_zmin code for an
example).

• CSoilClass::InitializeSoilProperties() (revisions evident from code)

• CSoilClass::SetSoilProperty()(revisions evident from code)

• CSoilClass::GetSoilProperty()(revisions evident from code)

Similar functions exist in the alternate classes (e.g., CVegetationClass, CGlobalParams).
With these revisions, the parameter is now accessible via (for soils)
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pHRU->GetSoilProps(0)->new_param_name

where pHRU is a pointer to a specific instantiated HRU. New global parameters (which are not
specific to an HRU) may be accessed via

CGlobalParams::GetParams()->new_param_name
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Appendix A

Input Files

A.1 Primary Input file (.rvi)

The primary input file stores the model simulation options and numerical options. An example .rvi file
is shown below. Note that comments may be included on individual lines using the # character as the
first word on the line. Inline comments are also allowed - Raven will ignore all text to the right of the #
symbol. An .rvi file is structured as follows:

# --------------------------------------------
# Raven Input (.rvi) file
# --------------------------------------------
:StartDate 2000-10-01 00:00:00
:EndDate 2001-09-30 00:00:00
:TimeStep 01:00:00
# -Options-----------------------------------
:Routing ROUTE_HYDROLOGIC
:CatchmentRoute ROUTE_GAMMA_CONVOLUTION # inline comment
:Evaporation PET_PENMAN_MONTEITH
:SoilModel SOIL_TWO_LAYER
# -Processes----------------------------------
:HydrologicProcesses

:Precipitation PRECIP_RAVEN ATMOS_PRECIP MULTIPLE
:Infiltration INF_GREEN_AMPT PONDED_WATER SOIL[0]
:SoilEvaporation SOILEVAP_SEQUEN SOIL[0] ATMOSPHERE
:Percolation PERC_POWER_LAW SOIL[0] SOIL[1]
:Percolation PERC_POWER_LAW SOIL[1] GROUNDWATER
:Baseflow BASE_LINEAR SOIL[1] SURFACE_WATER

:EndHydrologicProcesses
# -Custom Output------------------------------
:CustomOutput DAILY AVERAGE SOIL[0] BY_HRU
:CustomOutput MONTHLY MAXIMUM SOIL[1] BY_BASIN

Note that, for the most part, input commands in Raven are unstructured - spacing, tabs, etc., should not
impact the ingestion of input. Most commands can be input in arbitrary order. The key exceptions to this
are

1. The:SoilModel commandmust precede the:HydrologicProcesses block, :DefineHRUGroups

153



command, and :LakeStorage command.

2. The :HydrologicProcesses block must precede any :Transport command.

3. If HRUgroups are to be used for conditional application of processes in the:HydrologicProcesses
block, for :CustomOutput, for disabling HRUs, or for transport boundary conditions, they must
be declared first using the :DefineHRUGroups command.

A.1.1 Required RVI Commands

The .rvi file consists of the following required commands:

:StartDate [yyyy-mm-dd hh:mm:ss]

(Required) Starting date and hour of the simulation.

:EndDate [yyyy-mm-dd hh:mm:ss]
# OR
:Duration [days]

(Required) Ending date and hour of the simulation (:EndDate) or duration of the simulation (:Duration),
in decimal days, beginning from the start date specified. Only one of these commands should be used. If
both appear, the last command to appear is used.

:TimeStep [time step in days]
# OR
:TimeStep [hh:mm:ss]

(Required) Time step for the simulation, expressed in days as a real-valued number (e.g., 0.04166667 for
one hour) or using hh:mm:ss format (e.g., 01:00:00 for one hour). As Raven is intended for sub-daily
calculations, the time step must be less than or equal to 1.0. It also must evenly divide into a day - 2 hours
or 5 minutes is allowed, but 1 hour 40 minutes is not.

:SoilModel [soilmodel string] {(conditional) other_data}

(Required) Soil model used in the simulation, one of the following:

• SOIL_ONE_LAYER - Single soil layer

• SOIL_TWO_LAYER - Two soil layers

• SOIL_MULTILAYER [number of layers] - Any number of soil layers

This command must be placed before the :HydrologicProcesses block.

:DefineHRUGroups [HRUgrp1] {HRUgrp2} ... {HRUgrpN}

(Somewhat required) Declaration of HRU groups that may be used for (1) conditional application of
hydrologic processes, (2) grouping of custom output, (3) disabling of groups of HRUs, or (4) . They
must be defined prior to use in the .rvi file. They are populated in the .rvh file using the :HRUGroup-
:EndHRUGroup command. Here, theHRUgrp is a unique string identifier for the group (e.g., OpenHRUs
or ForestBurnSite)
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:HydrologicProcesses
...
:EndHydrologicProcesses

(Required) These commands bracket the list of hydrologic processes to be simulated (see section A.1.5)
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A.1.2 Model Operational Options

The following section discusses about the several hydrologic processes that are supported by Raven and
their respective algorithms. Some of these algorithms require specific parameters to be entered by the
users. Refer to table D.4 for more details about the required parameters for each option.

:CatchmentRoute [method]

Catchment routing method, used to convey water from the catchment tributaries and rivulets to the
subbasin outlets. Can be one of the following methods, discussed in section 4.1:

• DUMP (default) - water from the catchment is dumped directly to the basin outlet

• ROUTE_GAMMA_CONVOLUTION - a Gamma distribution is used to represent the unit hydrograph

• ROUTE_TRI_CONVOLUTION - a triangular distribution is used for the unit hydrograph

• ROUTE_RESERVOIRS_SERIES - series of linear reservoirs (Nash Hydrograph)

:Routing [method]

Channel routing method which is used to transport water from upstream to downstream within the main
subbasin channels. Can be one of the following methods, as described in section 4.2:

• ROUTE_DIFFUSIVE_WAVE (default/recommended) - analytical solution to the diffusive wave
equation along the reach using a constant reference celerity

• ROUTE_HYDROLOGIC - iterative level-pool routing using channel characteristics and Manning’s
equation

• ROUTE_NONE - water is not routed from subbasin to subbasin. Intended for single-subbasin/single
catchment models or numerical testing only.

• ROUTE_STORAGE_COEFF - From Williams (1969)

• ROUTE_PLUG_FLOW - water travels as a pulse of uniform celerity along the reach

• ROUTE_MUSKINGUM - reach storage is updated using the Muskingum-Cunge routing algorithm.
May require adjustment of time step to ensure convergence.

Importantly, only ROUTE_DIFFUSIVE_WAVE, ROUTE_PLUG_FLOW, and ROUTE_NONE routing algo-
rithms support constituent and/or thermal transport.

:Method [method]

(Optional) Numerical method used for simulation. The method string be one of the following:

• ORDERED_SERIES (default) - Process ordering is defined as being the same as the order of hy-
drologic process in the input file. Many Raven methods (in particular, constituent transport) ONLY
work with the ordered series approach, and it is strongly recommended that users use this option.

• EULER - uses the classical Euler method, with operator-splitting. Process order as specified in the
input file does not matter. This option is NOT recommended, and should be used only for research.

:InterpolationMethod [method]
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(Optional) Means of interpolating forcing function data (e.g., precipitation, PET, etc.) between monitoring
gauges. The centroid of the HRU is used as the interpolation point. The following methods, discussed in
section 5.1 are supported:

• INTERP_NEAREST_NEIGHBOR (default) - the nearest neighbor (Voronoi) method

• INTERP_INVERSE_DISTANCE - inverse distance weighting

• INTERP_INVERSE_DISTANCE_ELEVATION - inverse distance weighting with consideration of
elevation changes

• INTERP_AVERAGE_ALL - averages all specified gauge readings

• INTERP_FROM_FILE [filename]- weights for each gauge at each HRU are specified in a file
named filename with the following contents:

:GaugeWeightTable
[NG] [# of HRUs]
{w_n1 w_n2 ... w_nNG} x {# of HRUs}

:EndGaugeWeightTable

where NG is the number of gauges. The sum of the weights in each row (i.e., for each HRU) should
be 1. It is assumed that the number of HRUs is the same as in the current model .rvh file; the orders
are also assumed to be consistent.

:RainSnowFraction [method]

(Optional) Means of partitioning precipitation into snow and rain, if these values are not specified as time
series data. The following methods, discussed in detail in section 5.3.1, are supported:

• RAINSNOW_DINGMAN (default)

• RAINSNOW_DATA - gauge or gridded time series of snowfall used

• RAINSNOW_UBC

• RAINSNOW_HBV

• RAINSNOW_HSPF

• RAINSNOW_HARDER

• RAINSNOW_WANG

• RAINSNOW_SNTHERM89

:Evaporation [method]

PET calculation method for land surface. Can be one of the following methods, described in detail in
section 5.4:

• PET_HARGREAVES_1985 (default)

• PET_DATA - gauge or gridded user-specified time series used

• PET_OUDIN - works quite well in Canadian watersheds

• PET_PENMAN_MONTEITH - physically-based, but data requirements are intensive
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• PET_PENMAN_COMBINATION

• PET_PRIESTLEY_TAYLOR

• PET_HARGREAVES

• PET_HAMON_1961

• PET_TURC_1961

• PET_MAKKINK_1957

• PET_PENMAN_SIMPLE33

• PET_PENMAN_SIMPLE39

• PET_FROMMONTHLY - use only for HBV emulation

• PET_MONTHLY_FACTOR - use only for UBCWM emulation

• PET_MOHYSE

• PET_VAPDEFICIT

• PET_NONE - for routing-only mode; disables evaporation

• PET_CONSTANT - constant value; not recommended in practice

Note that the evaporation algorithm will be influence by whether the :DirectEvaporation com-
mand is used.

:OW_Evaporation [method]

(Optional) PET calculation method for open water. Has the same options as :Evaporation command.

:DirectEvaporation

(Optional) If this command is added, rainfall (but not snowfall) is automatically reduced through evapo-
transpiration up to the limit of the calculated PET, before it has the opportunity to interact with the land
surface. PET is likewise reduced by the quantity of rainfall evaporated.

:SnowSuppressesPET

(Optional) If this command is added, presence of snow suppresses PET to zero.

:SuppressCompetitiveET

(Optional) If this command is added, competitive ET is disabled and ET routines independently remove
water based upon PET instead of PET reduced by simultaneous evaporative processes. By default (without
this command), ET routines appropriately ’compete’ to satisfy evaporative demand. This command is only
recommended for emulation of existing models.

:AllowSoilOverfill

(Optional) If this command is added, soils may be filled beyond their maximum storage capacity; this
excess watermay then bemoved using an:Overflow process. This command is generally recommended
only for emulation of existing models (and is used, for instance, in the HMETS model).
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:OroPrecipCorrect [method]

(Optional)Method for correcting total precipitation for orographic (elevation) effects. The followingmeth-
ods, discussed in detail in section 5.3.2, are supported:

• OROCORR_NONE (default)

• OROCORR_HBV

• OROCORR_UBC

• OROCORR_UBC_2

• OROCORR_SIMPLELAPSE

:OroTempCorrect [method]

(Optional) Method for correcting estimated temperatures for orographic (elevation) effects. The following
methods are supported:

• OROCORR_NONE (default)

• OROCORR_HBV

• OROCORR_UBC

• OROCORR_UBC_2

• OROCORR_SIMPLELAPSE

:OroPETCorrect [method]

(Optional) Method for correcting estimated PET for orographic (elevation) effects. The following methods
are supported, as discussed in section 5.4.2:

• OROCORR_NONE (default)

• OROCORR_HBV

• OROCORR_PRMS

Note: No specific parameters are required for any of the methods mentioned above.

:SWRadiationMethod [method]

(Optional) Means of estimating shortwave radiation to the surface. The following methods, described in
detail in section 5.5, are supported:

• SW_RAD_DEFAULT (default) - From Dingman (2002)

• SW_RAD_DATA - gauge or gridded time series used

• SW_RAD_UBCWM - FromQuick (2003)

:SWCanopyCorrect [method]

(Optional) Means of correcting shortwave radiation to the surface due to canopy cover. The following
methods, described in detail in section 5.5, are supported:
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• SW_CANOPY_CORR_NONE (default)

• SW_CANOPY_CORR_STATIC

• SW_CANOPY_CORR_DYNAMIC

• SW_CANOPY_CORR_UBC - FromQuick (2003)

:SWCloudCorrect [method]

(Optional) Means of correcting shortwave radiation to the surface due to cloud cover. The following
methods, described in detail in section 5.5, are supported:

• SW_CLOUD_CORR_NONE (default)

• SW_CLOUD_CORR_DINGMAN

• SW_CLOUD_CORR_UBC - FromQuick (2003)

:LWRadiationMethod [method]

(Optional) Means of estimating net longwave radiation. The following methods are supported, as dis-
cussed in section 5.6:

• LW_RAD_DEFAULT (default) - From Dingman (2002) - as of Raven v3.8, this method by default
uses the LW_INC_DINGMAN incoming shortwave radiation calculation, which will be overridden
by other choices of :LWIncomingMethod

• LW_RAD_DATA - gauge or gridded time series used

• LW_RAD_UBC - FromQuick (2003) - ignores incoming longwave estimates

• LW_RAD_HSPF - From Bicknell et al. (1997) - ignores incoming longwave estimates

• LW_RAD_VALIANTZAS - From Valiantzas (2006) - ignores incoming longwave estimates

• LW_RAD_NONE

:LWIncomingMethod [method]

(Optional) Means of estimating incoming longwave radiation. The following methods are supported, as
discussed in section 5.6:

• LW_INC_DEFAULT (default) - Uses LW_INC_DINGMAN (Dingman, 2002) if LW_RAD_DEFAULT
is also used, otherwise incoming longwave is presumed zero, and only net longwave is calculated.

• LW_INC_DATA - gauge or gridded time series used

• LW_INC_SKYVIEW - (From Prata (1996))

• LW_INC_SICART - (From Sicart et al. (2006))

• LW_INC_DINGMAN - (From Dingman (2002))

:CloudCoverMethod [method]

(Optional) Means of calculating cloud cover percentages, if used. The following methods, as described in
section 5.7, are supported:
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• CLOUDCOV_NONE (default)

• CLOUDCOV_DATA - gauge or gridded time series used

• CLOUDCOV_UBC - FromQuick (2003)

:WindspeedMethod [method]

(Optional) Means of calculating wind speed at a reference height. The following methods are supported,
as described in section 5.9.1:

• WINDVEL_CONSTANT (default) - an unrealistic constant wind velocity of 3 m/s. Should be used
only when processes are not strongly dependent upon wind speed.

• WINDVEL_DATA - gauge or gridded time series used

• WINDVEL_UBC - FromQuick (2003)

:RelativeHumidityMethod [method]

(Optional) Means of calculating relative humidity. The following methods are supported, as described in
section 5.9.2:

• RELHUM_CONSTANT (default) - constant relative humidity of 0.5. Should be used only when pro-
cesses are not strongly dependent upon relative humidity.

• RELHUM_DATA - gauge or gridded time series used

• RELHUM_MINDEWPT - uses minimum dew point to estimate relative humidity. Recommended if
observational data is unavailable.

Note: No specific parameter required for any of the methods mentioned above.

:AirPressureMethod [method]

(Optional) Means of estimating air pressure. The following methods are supported, as described in section
5.9.3:

• AIRPRESS_BASIC (default)

• AIRPRESS_CONST - standard atm. pressure at 20 ◦C

• AIRPRESS_DATA - gauge or gridded time series used

• AIRPRESS_UBC - FromQuick (2003)

:PrecipIceptFract [method]

(Optional) Means of estimating the precipitation interception fraction (i.e., what percentage of precipita-
tion is intercepted by the canopy). The following methods are supported, as described in section 3.1.1:

• PRECIP_ICEPT_USER (default)

• PRECIP_ICEPT_LAI

• PRECIP_ICEPT_EXPLAI

• PRECIP_ICEPT_NONE
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• PRECIP_ICEPT_HEDSTROM

:PotentialMelt [method]

(Optional) If used, estimates the potential melt. The following methods are supported , as discussed in
section 5.8.1:

• POTMELT_DEGREE_DAY (default)

• POTMELT_NONE

• POTMELT_EB

• POTMELT_RESTRICTED

• POTMELT_UBCWM

• POTMELT_HBV

• POTMELT_CRHM

• POTMELT_HMETS

:RechargeMethod [method]

(Optional) Typically used for coupling with other hydrologic models that independently calculate runoff
and recharge, which is handled by Raven for routing and water management.

• RECHARGE_NONE (default)

• RECHARGE_DATA - gridded time series used

:MonthlyInterpolationMethod [method]

(Optional) If used, performs monthly interpolations. The following methods, as discussed in section 5.11,
are supported:

• MONTHINT_UNIFORM - monthly variables are treated as constant during each month

• MONTHINT_LINEAR_MID (default) - the monthly variables are linearly interpolated from the
midpoint of each month

• MONTHINT_LINEAR_FOM - the monthly variables are linearly interpolated from the 1st day of
each month

• MONTHINT_LINEAR_21 - the monthly variables are linearly interpolated from the 21st day of
each month (yes, this seems very specific)

Note: No specific parameter is required for any of the methods mentioned above.

:SubdailyMethod [method]

(Optional) Used for sub-daily temporal downscaling of daily average PET and snowmelt. The supported
methods are, as described in section 5.10:

• SUBDAILY_NONE (default)

• SUBDAILY_UBC
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• SUBDAILY_SIMPLE

Note: No specific parameter required for any of the methods mentioned above.

:LakeStorage [lake storage variable]

Specifies the state variable to be used for rainfall on lake HRUs, typically SURFACE_WATER (default) or
LAKE_STORAGE. If the lake storage state variable is used, it is critical that the user provide a hydrologic
process mechanism which removes water from the lake in addition to accumulating it through precip-
itation. This command is typically only used for HBV emulation, which uses a non-conventional lake
evaporation routine.

:Calendar [calendar string]

(Optional) Specifies the calendar to be used. By default, Raven uses the standard proleptic Gregorian
calendar which includes leap years. However, for compatibility with some climate model outputs for long-
term forecasting, sometimes it is useful to be able to run with (e.g.,) 365 day calendars. Raven supports
the following calendars (consistent with the NetCDF calendar convention):

• PROLEPTIC_GREGORIAN (default)

• JULIAN - ignores special leap years (every 100/400 years)

• GREGORIAN - ignores special leap years before 1583

• STANDARD - same as GREGORIAN

• NOLEAP - leap years ignored

• 365_DAY - same as NOLEAP

• ALL_LEAP - every year gets a February 29

• 366_DAY - same as ALL_LEAP

The :Calendar command MUST be near the very top of the .rvi file before the :StartDate or
:EndDate commands are indicated, because all date calculations are dependent upon the proper calen-
dar description.

Warning: strange things can happen when mixing different calendars for forcings and simulation, and it
is strongly advised that all calendars are consistently applied.
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A.1.3 Optional Input/Output Control Commands

:RunName [name]

The name of the model run. This acts as a prefix to all output files generated by the program. The default
is no run name, and no prefix is appended to the file outputs.

:rvh_Filename [name]

The name of the *.rvh file. By default, the .rvh file has the same name as the .rvi file; this command allows
the user to override this default behavior. If no directory is specified, it is assumed the file exists in the
working directory. Equivalent to the command prompt argument -h [name].

:rvc_Filename [rvc_name]
:rvp_Filename [rvp_name]
:rvt_Filename [rvt_name]
:rve_Filename [rve_name]
:rvl_Filename [rvl_name]

Same as :rvh_Filename [name] above, but for .rvc,.rvp,.rve,.rvl, and .rvt files, respectively.

:OutputDirectory [directory name]

Sets the output directory, which by default is the working directory from which the executable is called.
Directory name is usually in a system independent format, using all forward slashes for folders, ending
with a forward slash, e.g., C:/Temp/Model Output/run 3/.

This is equivalent to the (preferable) command line argument -o [directory name]. If used, this
should be called as early as possible in the .rvi file. This command supports both absolute and relative
path names. Recommended practice is to specify the output directory from the command line, rather
than using this command.

:CreateRVPTemplate

Produces a template .rvp file in the same directory as the .rvi file based upon the hydrologic process list
and model options in the .rvi file, so the user knows which parameters need to be specified for the given
model configuration. NOTE: this turns off model operation, only the template file will be created. Only
the .rvi file is required if this command is used. The same effect is accomplished using the command
argument -template.

:OutputInterval [frequency]

The frequency of printing output to the output files. Default of 1 (printing every time step). Typically
used for simulations with small time steps (e.g., if frequency=60 for a model with a time step of 1 minute,
standard output is printed hourly).

:WriteMassBalanceFile

The file runname_WatershedMassEnergyBalance.csv (or .tb0) is generated (see appendix B)
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:WriteForcingFunctions

The file runname_ForcingFunctions.csv (or .tb0) is generated (see appendix B)

:WriteDemandFile

The file runname_Demands.csv is generated (see appendix B)

:WriteWaterLevels

The file runname_WaterLevels.csv is generated (see appendix B)

:WriteLocalFlows

The file runname_Hydrographs.csv (see appendix B) is augmented with the local subbasin contribution
to its outlet (i.e., the component of the outlet hydrograph sourced from the subbasin itself, in m3/s). Only
enabled subbasins listed as ’gauged’ are reported.

:WriteSubbasinFile

The file runname_SubbasinProperties.csv is generated (see appendix B)

:WriteEnsimFormat

Specify that the output files generated by Raven should be in an EnSim (*.tb0) format instead of .csv. Used
primarily for visualization with the Green Kenue software.

:WriteExhaustiveMB

The file runname_ExhaustiveMB.csv is generated (see appendix B)

:WriteMassLoadings

The file runname_MassLoadings.csv is generated (see appendix B)

:EndPause

This command forces the program output to stay on the screen (e.g., as a DOS window) until the user
exits manually. Default behaviour is that the command prompt will close once execution finished.

:DebugMode

The equivalent of including :WriteMassBalanceFile and :WriteForcingFunctions. Also
generates the output file debug.csv.

:SilentMode

If this command is included, output to the command prompt is minimized. Useful during automated
calibration or uncertainty analysis to speed program operation.
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:NoisyMode

If this command is included, output to the command prompt is maximized. Useful during debugging of
program or problematic model.

:SuppressOutput

Suppresses all standard output, including generation of hydrograph, transport output, solution.rvc, cus-
tom output, and watershed storage files. Does not turn off optional outputs which were requested else-
where in the input file. Does not turn off creation of diagnostics.csv. Useful during automated calibration
to speed program operation.

:WaterYearStartMonth [integer month]

Changes the start of the water year from October 1st (the default) to the 1st of another month (for exam-
ple, :WaterYearStartMonth 7 #July for Australian application). The water year is only used for
reporting of annual (WATER_YEARLY) budget reporting in the :CustomOutput command.

:OutputDump [YYYY-MM-DD hh:mm:ss]

Outputs snapshot of all state variables to file state_(timestamp).rvc, where timestamp is the indicated
time in the command. The format of this file is the same as solution.rvc. This can later be used as an
initial condition file. Multiple calls to this command will cause snapshots to be written at all requested
dump times. This is useful for long model operations where interruption could cause work to be lost.
Alternately, it can be used to generate intermediate warm start states.

:SnapshotHydrograph

Hydrographs are reported using the values at the end of each time step. By default, hydrographs are
reported as averaged over the time step, to be consistent with most available observation data, typically
reported using time-averaged values. This is mostly used for direct comparison to emulatedmodels, which
typically do not report time step-averaged flows.

:EvaluationMetrics [metric1] {metric2} {metric3} ... {metricN}

If observation time series are provided (see :ObservationData command in appendix A.4.2), Raven
will generate the evaluation metrics listed in this command. The metrics include:

• NASH_SUTCLIFFE

• NASH_SUTCLIFFE_RUN[#1]

• LOG_NASH

• FUZZY_NASH

• NSE4

• RMSE

• KLING_GUPTA

• KGE_PRIME
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• DAILY_KGE

• PCT_BIAS

• ABSERR

• ABSERR_RUN

• ABSMAX

• PDIFF

• TMVOL

• RCOEF

• NSC

• RSR

• R2

• SPEARMAN

These metrics are defined in section 8.2, and the parameter #1 is the size of the running average window,
in time steps (e.g., 7 for a weekly running average if the time step is in days). By default, these metrics are
calculated for the full model duration (or whenever non-zero observation weights are present). However,
the metrics may also be calculated only for specific time periods (e.g., calibration or validation periods)
using the :EvaluationPeriod.

:EvaluationPeriod [per_name] [yyyy-mm-dd] [yyyy-mm-dd] {cond} {thresh}
# e.g.,
:EvaluationPeriod CALIBRATION 2002-10-01 2008-09-30

Specifies that the diagnostics specified using the :EvaluationMetrics command should (in addi-
tion to being calculated for the entire simulation) also be calculated also for sub-periods of the model
simulation, usually calibration or validation periods. Each period is bounded by a start date and end date
(the first and second date entries in the command). The period name is appended to the name of the
diagnostic in the Diagnostics.csv output file. Users may add as many evaluation periods as needed
(e.g., to generate annual fit statistics).

The optional arguments cond and thresh can be used to exclude observation data based upon a thresh-
old percentile. cond can be one of IS_GREATER_THAN or IS_LESS_THAN and thresh is a number
between 0 and 1. This conditional clause determines the frequency of observed flows in the evaluation
period then retains data above or below the specified threshold percentile (expressed from 0 to 1). For
instance,

:EvaluationPeriod CALIB_HI 2002-10-01 2008-09-30 IS_GREATER_THAN 0.2

Evaluates the diagnostics for the 80% highest magnitude observations during the simulation duration, and
disregards the 20% smallest observations. For observed hydrographs, this may be considered retaining all
flows larger than the Q20 flow.

:AggregateDiagnostic [agg_stat] [datatype]
e.g.,
:AggregateDiagnostic AVERAGE HYDROGRAPH
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Reports the aggregate statistics for every diagnostic metric and every evaluation period and reports
these in the Diagnostics.csv file. For instance, if the :EvaluationMetrics command contains the
KLING_GUPTA diagnostic, you can use this to report the mean Kling Gupta efficiency of the simu-
lated hydrographs across all basins. The agg_stat may be one of (MAXIMUM, MINIMUM, AVERAGE, or
MEDIAN) and the datatype uses the same convention as listed in the documentation for the :Obser-
vationData, e.g., HYDROGRAPH for discharge measurements or RESERVOIR_STAGE for lake level
measurements. The aggregation does not adjust for length of data record, so these aggregate diagnostics
can break down during simulations with no data coverage at one or more gauges.

:NetCDFAttribute [attribute name] [value]

Adds a user-specified attribute with name ’attribute name’ and arbitrary string value ’value’. Com-
mas are not allowed in the value string. This will typically only be used for automation of Raven within
another platform.

:UseStopFile

If enabled, Raven looks for a file named ’stop’ (no extension) in the model directory. If this file appears at
any time during model operation, the model immediately exits after writing the solution file. This is used
to interrupt long model runs, and is a safe way to prematurely terminate a run prior to completion. This
should be used sparingly on supercomputing systems, as it makes repeated file open calls.

A.1.4 Custom Output

:CustomOutput [time_per] [stat] [variable] [space_agg] {filename}

This command is used to create a custom output file that tracks a single variable, parameter, or forcing
function over time at a number of basins, HRUs, or across the watershed. Here, thevariable is specified
using either the state variable name(for an exhaustive list, see table D.1), the forcing name (see table D.2),
or parameter name. time_per refers to the time period, one of:

• DAILY

• MONTHLY

• YEARLY

• WATER_YEARLY

• CONTINUOUS (for output created every time step)

For the water year aggregation, a default water year of October 1-September 30 is used. The start month
can be changed using the :WaterYearStartMonth command above. stat is the statistic reported
over each time interval, one of:

• AVERAGE

• MAXIMUM

• MINIMUM

• RANGE

• MEDIAN

• CUMULSUM

168



• QUARTILES

• HISTOGRAM [min] [max] [num. of bins]

If HISTOGRAM is selected, the command should be followed (in the same line) with the minimum and
maximum bounding values of the histogram range and the number of evenly spaced bins. The CUMULSUM
generates the integrated value over the time aggregation period, e.g., MONTHLY CUMULSUM RAINFALL
will generate the monthly total rainfall (in mm) from the integrated rainfall rate (in mm/d).

space_agg refers to the spatial evaluation domain for reporting, and is one of:

• BY_BASIN

• BY_HRU

• BY_HRU_GROUP

• BY_SB_GROUP

• ENTIRE_WATERSHED

In all cases, the variable statistics will be determined using the area-weighted average, i.e., if

:CustomOutput MONTHLY MAXIMUM SOIL[0] BY_BASIN

is specified, it will report the maximum basin average soil moisture in the top soil layer in any given
month, NOT the maximum HRU soil moisture found in the basin within that month.

If the state variable is not used in the model (it does not participate in any of the user-specified hydrologic
processes), the output file will not be created; a warning will be generated.

As an example, the custom output command may be used as follows:

:CustomOutput DAILY MAXIMUM SNOW BY_BASIN

This would create the file runname_DailyMaximumSnowByBasin.csv, which would include a time
series of daily maximum snow contents (as mm SWE) for all subbasins in the model. An optional specified
filename may be appended to the end of any command to override the default filename.

There are also three special forms of custom output for tracking fluxes between simulated storage com-
partments. The first reports the cumulative flux from a single storage compartment, using the following
syntax:

:CustomOutput DAILY AVERAGE From:SNOW BY_HRU

where the term after the From: command is a state variable from table D.1. This example returns the
cumulative loss from snowpack in the form of snowmelt or sublimation (in mm).

:CustomOutput DAILY AVERAGE To:SNOW BY_HRU

where the term after the To: command is a state variable from table D.1. This example returns the
cumulative gain of snow (in mm).

:CustomOutput DAILY AVERAGE Between:SOIL[0].And.ATMOSPHERE BY_HRU
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where the terms after the Between: and .And. commands are both state variables from the table D.1.
This example returns the cumulative loss of water from the top soil (SOIL[0]) to the atmosphere, i.e.,
the actual evapotranspiration rate from the top soil. To get the total actual evaporation rate, you can use
the special state variable AET, i.e.,

:CustomOutput DAILY AVERAGE AET BY_HRU

Note that a special syntax is used for reporting transported constituents (i.e., if the user wishes to gen-
erate a custom report of tracer concentrations or temperatures). In this case the state variables are la-
beled as !CONSTIT|WATERSTOR|, where CONSTIT is the constituent name (e.g., SNOW_TRACER)
and WATERSTOR is the water storage state variable from table D.1 (e.g., SOIL[0]). Thus, to report
the percentage of water in the topsoil sourced from snowmelt in each HRU, one could use the following
command:

:CustomOutput DAILY AVERAGE !SNOW_TRACER|SOIL[0] BY_HRU

(this assumes that the :Transport SNOW_TRACER command is applied above this entry in the .rvi
file.)

If the user requires this custom output file to be written as an Ensim (.tb0) or NetCDF (.nc) file, all
:CustomOutput commandsmust be preceded by the:WriteEnsimFormat or:WriteNetCDFFormat
command, respectively. Raven does not support mixing of custom output formats.

# Common/Popular Custom Outputs:
# ----------------------------------------

# Daily AET:
:CustomOutput DAILY AVERAGE AET BY_HRU

# Net runoff (includes baseflow) every time step:
:CustomOutput CONTINUOUS AVERAGE RUNOFF BY_HRU

#monthly total gains/losses
:CustomOutput MONTHLY CUMULSUM PRECIP BY_BASIN
:CustomOutput MONTHLY CUMULSUM AET BY_BASIN

A.1.5 Hydrologic Processes

In addition to the above commands, the .rvi file must include the list of all of the necessary hydro-
logic processes to be included in the model, which are bracketed by the :HydrologicProcesses
and :EndHydrologicProcesses commands. The process commands are typically in some variation
of the following format:

:ProcessName ALGORITHM {ProcessFrom} {ProcessTo}

where :ProcessName is the name of the process (e.g., :CanopyDrip), ALGORITHM refers to the par-
ticular algorithm used for simulation (e.g., CANDRIP_RUTTER corresponds to the (Rutter et al., 1971)
model for loss of water from canopy to ground surface), and ProcessFrom and ProcessTo are the
state variable code for the source and sink storage compartments, which are selected from the complete
list of state variables in table D.1.
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The state variables SURFACE_WATER, PONDED_WATER, ATMOS_PRECIP and ATMOSPHERE are auto-
matically included in all models. The others will be dynamically included in the model as processes are
added. For example, the SNOW variable will be automatically added if a snowmelt or sublimation hydro-
logic process is added to the list. Note that the computational cost of a model is directly related to the
number of state variables and number of processes included in that model. Note that the SOIL variable
is followed by the index of the soil layers in the model, with [0] corresponding to the topmost layer. The
MULTIPLE tag is a placeholder, indicating that there are more than one compartments either receiving
water/energy/mass, or more than one losing. The specific compartments are usually determined from
the chosen algorithm, though there are certain routines (e.g., many baseflow or percolation algorithms)
which require the user to specify the ’to’ or ’from’ compartment.

Important: depending upon the numerical method chosen, the ordering of the processes in the
input file may determine the accuracy and/or behavior of the solution. In general, processes should
be ordered from fast to slow and precipitation and snowmelt should be applied prior to infiltration.
This becomes less of an issue with decreasing time step size.

As shown in the template files in appendix F, the :Alias command may be used to give ’nicknames’
to state variables which can be used instead of the Raven standard syntax. This is most often done to
distinguish between actual storage compartments (e.g., SOIL[1]) and conceptual storage compartments
(e.g., the alias ROUTING_STORE). For example,

:Alias FAST_RESERVOIR SOIL[1]
:Alias SLOW_RESERVOIR SOIL[2]
# SLOW_RESERVOIR now refers to SOIL[2] when used

Table A.1 includes a detailed description of the process commands available in Raven.
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The Lateral Flush process

Lateral flow processes may require the specification of the source and destination HRU groups as well as
the state variables. The :LateralFlush process, for instance, uses the following syntax:

:LateralFlush RAVEN_DEFAULT [SourceGrp] [SourceSV] To [DestGrp] [DestSV]

Where the source and destination HRU group (SourceGrp and DestGrp, within a given basin) and
source and destination state variable (water compartments SourceSV and DestSV, from table D.1), are
specified. For instance,

:LateralFlush RAVEN_DEFAULT Uplands SURFACE_WATER To Wetlands DEPRESSION

The preceding command will drain all surface and subsurface runoff from the Uplands HRU group to
depression storage in an HRU belonging to the WetlandsHRU group. Note that only one recipient HRU
in the destination group is allowed in each subbasin (i.e., you couldn’t have two HRUs belonging to the
Wetlands group in a single subbasin).

The Lateral Equilibrate process

Lateral equilibration is used to represent the basin-wide equilibration of storage over time. It would typ-
ically be used to represent groundwater exchange between deep groundwater storage or wetlands. The
:LateralEquilibrate process uses the following syntax:

:LateralEquilibrate RAVEN_DEFAULT [HRUGroup] [SV] [mix_rate] {INTERBASIN}

Where HRUGroup denotes which HRU group this applies to in a given basin (often all HRUs), the SV
refers to a source variable from table D.1). mix_rate is the percentage of water equilibrated per day
(for a time step of 1.0 and mixing rate >1/d, the storage will be instantaneously equilibrated every day).
If the additional INTERBASIN flag is included, the equilibration will occur across the entire simulated
watershed, and not just in each subbasin. Note that if there are fewer than 2 HRUs in each group per
subbasin, then this command will have no effect.

This replaces the now deprecated :AggregatedVariable command, and also supports transport sim-
ulation.

Conditional Application of Processes

Note that application of any given process algorithm can bemade conditional using the:-->Conditional
command immediately after the process command. For example,

:Flush RAVEN_DEFAULT PONDED_WATER SURFACE_WATER
:-->Conditional HRU_TYPE IS_NOT GLACIER

:Flush RAVEN_DEFAULT PONDED_WATER GLACIER
:-->Conditional HRU_TYPE IS GLACIER

The above input file snippet moves ponded water to surface water, unless the HRU type is a glacier (as
defined by its soil profile properties). Currently, the conditional command supports:
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• conditionals based upon HRU type (HRU_TYPE), where the type is one of (GLACIER, LAKE, ROCK,
WETLAND, or STANDARD)

• conditionals based upon land use type, e.g.,

:-->Conditional LAND_CLASS IS PEATLAND

where LAND_CLASS names are as defined in the :LandUseClasses command in the .rvp file

• conditionals based upon HRU group, e.g.,

:-->Conditional HRU_GROUP IS_NOT BURNED_FOREST

where the HRU_GROUPs are defined using the :HRUGroup command in the .rvh file.

The only available comparison operators are IS and IS_NOT.

Blended Forcing Functions

The calculation for potential evapotranspiration (PET) and potential melt can be done using a weighed
average of multiple algorithms respectively, which is referred to as a blended forcing. For PET, this is
done by specifying PET_BLENDED as the :Evaporation method, and specifying the selected PET
algorithms and weights in the following line with the :BlendedPETWeights command. For example,

:Evaporation PET_BLENDED
:BlendedPETWeights PET_GRANGERGRAY 0.333 PET_HAMON 0.333 ...
PET_PENMAN_MONTEITH 0.334

Equivalently, one fewer value than the number of required weights N can be specified, in which case
Raven treats the supplied values as weight-generating parameters, and uses the pie-sharing method of
Mai et al. (2022) to determine N weights from N − 1 values. For example,

:Evaporation PET_BLENDED
:BlendedPETWeights PET_GRANGERGRAY 0.5556 PET_HAMON 0.50 PET_OUDIN

Similarly, the potentialmelt blend can be specified by providing the potentialmeltmethod asPOTMELT_-
BLENDED, and using the :BlendedPotMeltWeights command in the following line. The associated
weights or weight-generating parameters follow the same syntax as for :BlendedPETWeights. For
example,

:PotentialMeltMethod POTMELT_BLENDED
:BlendedPotMeltWeights POTMELT_HMETS 0.75 POTMELT_RESTRICTED

A.1.6 Transport Commands

:Transport [constit_name]

(Optional) This command declares a new transport constituent named constit_name which can be
advected through the system. The constituent name is user-specified. If constit_name is one of the
reserved names TEMPERATURE, 18O, or 2H, the constituents are treated as enthalpy, Oxygen-18, and
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Deuterium, respectively, and additional processes are activated in the simulation. This command must
appear before any of the other transport-related commands in the .rvi file.

:FixedConcentration [constit_name] [compartment] [conc] {HRUgrp}

(Optional) This command applies a type one boundary condition in all water storage compartment state
variables of type compartment (taken from the state variable list of table D.1) in HRU group HRUgrp.
All water passing through this storage compartment will be assigned the specified concentration (conc,
in mg/l)for the constituent named constit_name. Note that the constituent name needs to be spec-
ified using the :Transport command prior to calling this command. If the optional HRU_group
is omitted, then the condition applies to all storage compartments of this type throughout the water-
shed. For synthetic tracers, it is useful to specify a concentration of 1.0 (unitless). For energy transport,
use the :FixedTemperature command. For a non-constant specified concentration condition, the
:FixedConcentrationTimeSeries command (in the .rvt file) should be used instead.

:FixedTemperature [compartment] [temp] {HRUgrp}

(Optional) This command applies a type one fixed concentration boundary condition in all water storage
compartment state variables of type compartment (taken from the state variable list of table D.1) in
(optional) HRU group HRUgrp. All water passing through this storage compartment will be assigned
the specified temperature (temp). Note that the TEMPERATURE constituent needs to be specified using
the :Transport command prior to calling this command. If the optional HRU_group is omitted, then
the condition applies to all storage compartments of this type throughout the watershed. The units of
temp are ◦C. A special flag is used to indicate that precipitation temperature should be equal to air
temperature:

:FixedTemperature ATMOS_PRECIP -9999

:MassFlux [compartment] [flux] {HRUgrp}

(Optional) This command applies a type three mass influx boundary condition in all water storage com-
partment state variables of type compartment (taken from the state variable list of table D.1) in (op-
tional) HRU group HRUgrp. The constant flux of constituent (specified in units of mg/m2/d) is unac-
companied by addition of water. This must exist after the corresponding :Transport command. If
the optional HRU_group is omitted, then the condition applies to all storage compartments of this type
throughout the watershed. For a non-constant flux, the :MassInfluxTimeSeries command (in the
.rvt file) should be used instead.

A.1.7 Geochemical Processes

The geochemical processes should bewithin a:GeochemcialProcesses-:EndGeochemicalProcesses
command block and must appear after the :Transport commands which define the constituents that
may participate in (bio)geochemical processes.

:GeochemicalProcesses
:ProcessName [ALGORITHM] [proc_name] [constit_1] {compart}
# or
:ProcessName [ALGORITHM] [proc_name] [constit_1] [constit_2] {comp}

:EndGeochemicalProcesses
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Each geochemical processmust have a corresponding process command:ProcessCommand (e.g., :Decay),
algorithm name ALGORITHM (e.g., DECAY_LINEAR), user-specified process name proc_name which
usually defines the physical process this represents (e.g., DENITRIFICATION) and the constituent name
constit_1 from a existing :Transport command. For processes that involve two constituents (two
different chemical species or sorbed/aqueous components of the same species), a second constituent name
constit_2 must be supplied. The optional parameter comp (e.g., SOIL[0]) refers to a water storage
compartment in which the process is enabled. If no compartment is specified, this process is applied in all
water storage compartments in all HRUs. Conditional application of processes in space should be handled
via local parameterization - for example, setting the decay coefficient equal to zero in soil class types or
storage compartments where decay should not occur.

All of the following commands are geochemical processes that would be specified within this command
block.

:Decay [ALGORITHM] [proc_name] [constit] {compart}

Supports the following ALGORITHM options, discussed in section 7.6.1:

• DECAY_LINEAR

• DECAY_DENITRIF

:Equilibrium [ALGORITHM] [proc_name] [constit1] [constit2] {compart}

Supports the following ALGORITHM options, discussed in section 7.6.1:

• EQUIL_FIXED_RATIO

• EQUIL_LINEAR

• EQUIL_LINEAR_SORPTION - note: constituent 1 should be aqueous, 2 should be sorbed

:Transformation [ALGORITHM] [proc_name] [constit1] [constit2] {compart}

Supports the following ALGORITHM options, discussed in section 7.6.3:

• TRANS_LINEAR

• TRANS_NONLINEAR

A.1.8 Other Control Commands

:RedirectToFile [filename]

(Optional) This treats the contents of file “filename” as if they were simply inserted into the .rvi file at
the location of the :RedirectToFile command. Both relative and absolute path names for the file
are accepted, where relative path names are relative to the location of the .rvi file (i.e., input/Weights.txt
would be a file one directory below the .rvi directory).

:ApplyManagementOptimization

(Optional) Enables management optimization. With this option management optimization is turned on
and the .rvm file is read. See section 4.5 for more details.
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:DisableHRUGroup [HRUgrp]

(Optional) This command disables all of the HRUs in the group, meaning that the model will not simulate
the mass/energy balance for any of the HRUs. For instance, if you had a large model and only wanted
to simulate a single headwater basin, you would create an HRU group that included HRUs not within
that basin, then apply the :DisableHRUGroup command to that single group of HRUs. In most cases,
it is desirable to disable entire subbasins - the model will not provide comprehensible results if random
assortments of individual HRUs are disabled.

:AssimilateStreamflow

(Optional) If this command is used, specified streamflow observations (indicated using the :Assim-
ilateStreamflow command in the .rvt file) are assimilated into model predictions as indicated in
section 6.1. Model output will then be a combination of data and model simulation; this is typically used
only in a forecasting environment. Note that streamflow assimilation manifests as mass balance errors
as reported in the WatershedStorage.csv output, because it necessarily adds or removes water to respect
observation data.

:AssimilateReservoirStage

(Optional) If this command is used, all available reservoir stage observations are assimilated into model
predictions as indicated in section 6.1. Model output will then be a combination of data and model sim-
ulation; this is typically used only in a forecasting environment. Note that stage assimilation manifests
as mass balance errors as reported in the WatershedStorage.csv output, because it necessarily adds or
removes water to respect observation data.

:ReservoirDemandAllocation [method]

(Optional) This command indicates how irrigation demand addressed using the :ReservoirDown-
streamDemand command is distributed to upstream reservoirs. Here, two methods are available:

• DEMANDBY_CONTRIB_AREA if demand is allocated proportionately to contributing area of each
reservoir

• DEMANDBY_MAX_CAPACITY if reservoir maximum storage capacity is used.

This command is only used if the _AUTO flag is used to specify the reservoirs supplying a single :Reser-
voirDownstreamDemand item.

:RandomSeed [seed]

Indicates the random seed to be used in any internal probabilistic calculations. Note that the internal
random seed is connected to the model start date, such that any probabilistic simulation with the same
random seed and model start date and time will give identical results.

:CallExternalScript [system command]

(Optional) This calls an external script or system command at the start of every time step. If the system
command includes the tags <model_time>, <date>, <version>, or <output_dir>, then these
tags in the command will be replaced with the model time (time from the start of the model, in days),
date string in ISO standard format, version number (e.g., 3.0.2), or output directory, respectively. This can
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be used, for instance, to assist in coupling multiple models, and would typically be used with the Raven
live (.rvl) file. Because Raven writes output files continuously throughout the simulation, current states
of the system may be read from the last line of any .csv file (or using the start of time step time stamp in
a NetCDF file), processed accordingly from the external script, with script output written to the live file
for Raven to ingest in time for the next time step of calculations. External scripting may support (e.g.),

• representing complex region-specific management plans by reading in flows and modifying diver-
sion quantities

• representing reservoir operations plans that incorporate economic optimization

• coupling to other earth systems models (e.g., glacier mass balance or hydraulic models)

• coupling to agricultural or urbanization models of changing land cover

:ReadLiveFile [frequency]

(Optional) Reads externally-generated live file (see appendix A.7) every frequency time steps.

:ChunkSize [size]

(Optional) Specifies memory buffer size for NetCDF files, in megabytes. Defaults to 10MB.

:Mode [mode character]
:IfModeEquals [mode character]
#...
:EndIfModeEquals

(Optional) A conditional statement which can be used to control which parts of any base input file
(.rvi,.rvp,.rvh,.rvt, or .rvc) are used in the simulation. If the mode character, as specified with the :Mode
command or the -m command line argument is not equal to the mode character in the :IfModeEquals
statement, the contents of the block are ignored. These work identically to if statements in a program-
ming language, but they cannot be nested and there is no if-else equivalent. The mode must be a single
alphanumeric character. Example usage:

:IfModeEquals A
:EndDate 2020-10-31 00:00:00 # full simulation, output suppressed
:SuppressOutput

:EndIfModeEquals
:IfModeEquals B

:EndDate 2016-10-31 00:00:00 # truncated simulation, full output
:WriteForcingFunctions
:WriteWatershedStorage

:EndIfModeEquals
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Table A.1: Hydrologic process commands for the .rvi file. Compartments with an asteriskmust be specified
within the command.
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Table A.2: Hydrologic process commands for the .rvi file. (cont’d)
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A.2 Classed Parameter Input file (.rvp)

The classed parameter input file stores a database of soil, vegetation, river, aquifer, and land class prop-
erties. Not all classes specified in the *.rvp file need to be included in the model. An example .rvp file is
shown below.

# --------------------------------------------
# Raven Example Classed Parameter File
# --------------------------------------------
# Class definition ---------------------------
:SoilClasses

:Attributes, %SAND, %CLAY, %SILT, %ORGANIC
:Units, none, none, none, none
SAND, 1, 0, 0, 0
LOAM, 0.5, 0.1, 0.4, 0.4

:EndSoilClasses
:VegetationClasses

:Attributes, MAX_HT, MAX_LAI, MAX_LEAF_COND
:Units, m, none, mm_per_s
CONIFER_FOREST, 25, 6.0, 5.3

BROADLEAF, 25, 5.0, 5.3
:EndVegetationClasses
:LandUseClasses

:Attributes, IMPERMEABLE_FRAC, FOREST_COVERAGE
:Units , fract, fract

GRASSLAND, 0, 0
SUBURBAN, 0.3, 0.3

:EndLandUseClasses
# Soil Profile definition -------------------
:SoilProfiles
# name, #horizons, hor1, th1, hor2, th2

LAKE, 0
GLACIER, 0

LOAM_SEQ, 2, LOAM, 0.5, SAND, 1.5
ALL_SAND, 2, SAND, 0.5, SAND, 1.5

:EndSoilProfiles
# Parameter specification -------------------
:GlobalParameter WET_ADIABATIC_LAPSE 0.5
:LandUseParameterList

:Parameters, MELT_FACTOR, MIN_MELT_FACTOR
:Units , mm/d/K, mm/d/K

[DEFAULT], 3.2, 1.3
GRASSLAND, 3.5, _DEFAULT

:EndLandUseParameterList

As with the *.rvi file, * or # denotes a comment.
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A.2.1 Required Commands

:SoilClasses
{soil_class_name}x[NSC]

:EndSoilClasses

or

:SoilClasses
:Attributes ,%SAND,%CLAY,%SILT, %ORGANIC
:Units , none, none, none, none
{soil_class_name,%sand,%clay,%silt,%organic}x[NSC]

:EndSoilClasses

Defines each soil class and (optionally) specifies the mineral and organic composition of the soil which can
be used to automatically generate some physical properties such as porosity or hydraulic conductivity.
These parameters are defined as follows:

• soil_class_name is the code (less than 30 characters) used to identify the soil class within the
.rvp file and in the .rvh file, discussed below. The namemay not contain spaces or special characters.

• %SAND,%CLAY,%SILT,%ORGANIC [0..1] are the percent sand, clay, and organic matter of the soil,
expressed in decimal form, between 0 and 1. The sand, silt, and clay fractions refer to the non-
organic component of the soil, i.e., specifying %SAND=0.5, %CLAY=0.3, %SILT=0.2, %ORGANIC=0.1
indicates a soil composition of 45% sand, 27% clay, 18%silt, and 10% organic matter. The sum of the
mineral components (%SAND, %CLAY, and %SILT) must be 1.

With the soil information provided, Raven can autogenerate many other physically-based (i.e., measur-
able) soil properties such as hydraulic and thermal conductivities, wilting pressure, etc. To override these
autogenerated parameters or to specify other soil parameters, an additional command (:SoilParameterList),
described in appendix A.2.3, may be added to the input file after the :SoilClasses command has been
called. For conceptual models, the soil composition will generally not be specified.

:SoilProfiles
{profile_name,num_horiz,{soil_class_name,thick.}x{#horizons}}x[NP]

:EndSoilProfiles

Defines all NP stored soil profiles, which is a collection of soil horizons with known depth and thickness,
each belonging to a soil class. Each profile includes a number of horizons (num_horiz) followed by
the soil class names and thicknesses of each horizon. The soil horizons should be specified from the top
downward. Because the parameter soil_class_name is required, this command must come after the
:SoilClasses command. The thickness (thick.) of each horizon is specified in meters.

In the case of conceptual hydrologic models, these soil horizons may correspond instead to conceptual
soil stores. These typically correspond to physically meaningful layers (e.g., topsoil, unsaturated zone, and
deep groundwater), but additional “soil” layers may represent routing stores or other temporary storage
reservoirs.

The special cases of lakes, exposed rock, wetlands, and glaciers (land surface elements with ’no’ surface
soils, or where it is not appropriate to simulate using soil infiltration and evaporation routines, are rep-
resented with the special profile names LAKE, WATER, ROCK, WETLAND, and GLACIER, all with zero
horizons. ANY soil profile that starts with these terms is not subject to soil-based process algorithms.
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Glaciers can have more than zero horizons to represent groundwater processes, but infiltration and evap-
otranspiration from the surface soil is disabled. HRUs with LAKE profiles have their canopy processes
disabled.

:VegetationClasses
:Attributes , MAX_HT,MAX_LAI,MAX_LEAF_COND
:Units , m, none, mm_per_s
{veg_class_name,MAX_CANOPY_HT,MAX_LAI,MAX_LEAF_COND}x[NVC]

:EndVegetationClasses

Defines the basic parameters for each vegetation class, which are used to optionally autogenerate many
canopy and root properties. Here,

• veg_class_name is the tag (less than 30 characters) used to identify the vegetation class within
the .rvp file and in the .rvh file, discussed below.

• MAX_CANOPY_HT [m] is the maximum canopy height reached during the year.

• MAX_LAI [m2/m2] is the maximum leaf area index (LAI) of the vegetation

• MAX_LEAF_COND [mm/s] is the maximum leaf conductance of the vegetation.

ThemaximumLAI andmaximum canopy height are used to deterimine the LAI and canopy height over the
course of the year, using the :SeasonalCanopyLAI and :SeasonalCanopyHeight commands.

:LandUseClasses
:Attributes ,IMPERMEABLE_FRAC, FOREST_COVERAGE
:Units , fract, fract
{LU_class_name,IMPERMEABLE_FRAC, FOREST_COVERAGE}x[NLU]

:EndLandUseClasses

Defines all NLU land use/land type classes in the model. Land use is assumed to determine many of the
surface roughness, albedo, and snow parameters. Here,

• LU_class_name is the tag (less than 30 characters) used to identify the land use class within the
.rvp file and in the .rvh file, discussed below.

• IMPERMEABLE_FRAC [0..1] is the percentage of the land surface that is considered impermeable.

• FOREST_COVERAGE [0..1] is the percentage of the land surface that is covered with a vegetation
canopy. It is recommended (but not required) to use either 0 (open) or 1 (fully forested), with partial
coverage handled via HRU definition.

A.2.2 Optional Classes and Objects

Terrain classes and channel profiles do not need to be included in all models.

:TerrainClasses
:Attributes , HILLSLOPE_LENGTH, DRAINAGE_DENSITY
:Units , m, km/km2
{terrain_class_name, HILLSLOPE_LENGTH, DRAINAGE_DENSITY}x[NTC]

:EndTerrainClasses
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Defines all NTC physiographic terrain classes in the model, ranging from flat to hilly to steep and moun-
tainous. Here,

• terrain_class_name is the tag (less than 30 characters) used to identify the terrain classwithin
the .rvp file and in the .rvh file, discussed below.

• HILLSLOPE_LENGTH [m] is the representative hillslope length within the terrain.

• DRAINAGE_DENSITY [km/km2] is the terrain drainage density.

If no terrain classes are specified, the tag [NONE] should be placed in the :HRUs command under terrain
class.

:ChannelProfile [channel_name]
:Bedslope [slope]
:SurveyPoints

{[x] [bed_elev]}x num survey points
:EndSurveyPoints
:RoughnessZones

{[x_zone] [mannings_n]} x num roughness zones
:EndRoughnessZones

:EndChannelProfile

Defines a channel profile with the unique name channel_name. The channel geometry is fully defined
by a number of survey points (at least 2) along a transect. At the leftmost and rightmost points along the
transect, it is assumed that the channel is bounded with infinitely steep sides. The x-coordinate system is
arbitrary. In the same coordinate system, at least one zone with one Manning’s n value must be specified.
The coordinate xzone is the leftmost boundary of the zone, and therefore the leftmost xzone must be to
the left of or equal to the leftmost (smallest) survey coordinate x. The channel configuration definitions
are depicted in figure A.1. A representative bedslope (expressed as the slope ratio) is also needed: this is
used to calculate flow rates using Manning’s equation.

Figure A.1: Channel Profile definition. Each channel is defined by a cross sectional profile and a number
of zones with different Manning’s n values.

As an example, the following profile command generates the channel shown in figure A.2.

:ChannelProfile Reach3
:Bedslope 0.08
:SurveyPoints

0.000 0.25
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1.000 0.00
1.750 0.00
2.000 0.25

:EndSurveyPoints
:RoughnessZones

0.000 0.07
0.500 0.02
1.875 0.08

:EndRoughnessZones
:EndChannelProfile

Note that it is undesirable to overly constrain the lateral extent of the channel, i.e., if there is any chance
that the water levels reach the leftmost or rightmost channel point. Also note that Manning’s n and slope
may both be overwritten for a specific subbasin via the :SubBasinProperties command in the .rvh
file.

Figure A.2: Example channel profile generated using example command.

:ChannelRatingCurves [channel_name]
:Bedslope [slope]
:StageRelations

{[stage] [area] [width] [flow]} x num curve points
:EndStageRelations

:EndChannelRatingCurves

Defines a channel profile with the unique namechannel_name, and is used as an alternative to:Chan-
nelProfile. Here, the stage-area, stage-top width, and stage-flow rating curves are explicitly provided.
The first data point should correspond to stage and flow equal to zero, with all values entered with in-
creasing stage. The units are stage [m], area [m2], width [m], flow [m3/s].

:TrapezoidalChannel [name] [bot_width] [bot_elev] [incline] [n] [slope]

An abbreviated alternative to the :ChannelProfile command. Defines a trapezoidal channel profile
with the unique name name, and is used as an alternative to :ChannelProfile. The parameters
are the bottom width bot_width (in [m]), bottom elevation bot_elev, incline incline (unitless),
Manning’s roughness coefficient n (unitless), and bed slope slope, expressed as a slope ratio. The bottom
elevation is only used as a datum for reporting water level. The incline should be interpreted as N in an
1:N slope, e.g., it is 0 for vertical channel sides, 1 for a 45◦ angle. Note that this option can be used to
represent a rectangular channel (incline=0) or a triangular channel (bot_width=0).
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:CircularConduit [name] [diameter] [bot_elev] [n] [slope]

An abbreviated alternative to the :ChannelProfile command. Defines a circular conduit (e.g., cul-
vert) profile with the unique name name, and is used as an alternative to :ChannelProfile. The
parameters are the diameter diameter (in [m]), bottom elevation bot_elev, Manning’s roughness
coefficient n (unitless), and bed slope slope, expressed as a slope ratio. The bottom elevation is only
used as a datum for reporting water level.

185



A.2.3 Parameter Specification

In addition to the required terms above, the following optional commands may be used to override auto-
generation of parameters and specify parameters that cannot be autogenerated. If these are not included,
either for an entire class or individual parameter, it is assumed that the parameter is to be autogenerated.

Soil Parameter Specification

The following command is used to specify parameters linked to each soil class:

:SoilParameterList
:Parameters , { par_name1, par_name1,..., par_nameNP}
:Units , {unit_type1,unit_type2,...,unit_typeNP}
[DEFAULT] , { def_val1, def_val2,..., def_valNP} [opt.]
{SOIL_CLASS} , { par_val1, par_val2,..., par_valNP}}x[<=NSC]

:EndSoilParameterList

where available soil parameter names (par_name) are described in the table A.3 and the soil class names
(with the exception of the special [DEFAULT] tag) must already have been declared in the :Soil-
Classes command.

The [DEFAULT] soil class name is used to specify parameter values for all classes not explicitly included
as rows in the parameter list. Only soil classes which have parameters different from the default soil
properties need to be specified in this list. If the user desires to autogenerate any of the parameters in
the list (if Raven has the capacity to autogenerate these parameters), the _AUTO flag should be placed
instead of a numerical value, as depicted in the example file. The _DEFAULT flag may be used if the
default property (which can also be _AUTO) should be applied.

Advice

Note that the units must be consistent with the native units of each parameter indicated in table
A.3 - this line is intended for user interface processing and readability; units will not be auto-

matically converted if alternative unit specifiers are used.

While many watershed model and algorithm parameters (e.g., hydraulic conductivity) have a physical
basis, certain algorithms, particularly for lumped models, abstract a physical process so that coefficients
in the relationships between storage and fluxes are completely conceptual. These conceptual parameters,
which cannot be automatically generated based upon soil type, need to be specified directly by the user,
and are often used as calibration (or ’tuning’) parameters. These parameters are described in the second
section of table A.3.
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Vegetation Parameter Specification

:VegetationParameterList
:Parameters , { par_name1, par_name1,..., par_nameNP}
:Units , {unit_type1,unit_type2,...,unit_typeNP}
[DEFAULT] , { def_val1, def_val2,..., def_valNP} [opt.]
{VEG_CLASS_NAME , { par_val1, par_val2,..., par_valNP}}x[<=NVC]

:EndVegetationParameterList

The :VegetationParameterList command operates in the same fashion as the :SoilParam-
eterList command described above. The available vegetation parameters in Raven are described in
table A.5. Note that the [DEFAULT] vegetation type is optional.

:SeasonalCanopyLAI
[DEFAULT] , J, F, M, A, M, J, J, A, S, O, N, D {optional}

{ veg_class_name, J, F, M, A, M, J, J, A, S, O, N, D}x[<=NVC]
:EndSeasonalCanopyLAI

The :SeasonalCanopyLAI command provides a monthly correction factor that can be used to adjust
leaf area indices as the seasons change or as harvesting occurs, i.e., LAI = LAImax · f , where f(t) is
the monthly correction factor specified here for time t. By default, no correction factor is applied. This
correction factor must be between zero and one for all months and will be interpolated based upon the
specification of the :MonthlyInterpolationMethod command in the .rvi file.

:SeasonalCanopyHeight
[DEFAULT] , J, F, M, A, M, J, J, A, S, O, N, D {optional}

{ veg_class_name, J, F, M, A, M, J, J, A, S, O, N, D}x[<=NVC]
:EndSeasonalCanopyHeight

The :SeasonalCanopyHeight command provides a monthly correction factor that can be used to
adjust vegetation height as the seasons change or as harvesting occurs, i.e., hveg = hmax · f , where f(t)
is the monthly correction factor specified here for time t. By default, no correction factor is applied. This
correction factor must be between zero and one for all months and will be interpolated based upon the
specification of the :MonthlyInterpolationMethod command in the .rvi file.
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Land Use / Land Type Parameter Specification

:LandUseParameterList
:Parameters , { par_name1, par_name1,..., par_nameNP}
:Units , {unit_type1,unit_type2,...,unit_typeNP}
[DEFAULT] , { def_val1, def_val2,..., def_valNP} [opt.]
{LULT_CLASS} , { par_val1, par_val2,..., par_valNP}}x[<=NLC]

:EndLandUseParameterList

The:LandUseParameterList command operates in the same fashion as the:SoilParameterList
command described above. The available land use parameters in Raven are described in table A.4
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Global Parameter Specification

The following global parameters can also be specified, anywhere in the .rvp file. Note that the preferred
format for single-value parameters (i.e., not vectors of parameters) is to use the :GlobalParameter
command. Many of the below commands are equivalent to this command, retained only for backwards
compatibility with earlier versions of Raven.

:GlobalParameter [PARAM_NAME] [value]

Can be used to specify the value of any scalar global parameter, where the list of global parameter names
is in table A.6.

Please note that the :GlobalParameter command is the only one truly needed to specify
single-valued global parameters in table A.6. The remainder of the commands shown below have
been deprecated, and are only provided as a reference for those using older models which may in-
clude these commands. The only exception to this are the global parameters which includemonthly
sequences (e.g., :UBCNorthSWCorr)

:AdiabaticLapseRate [rate]
# is equivalent to (the preferred option)
:GlobalParameter ADIABATIC_LAPSE [rate]

The base adiabatic lapse rate [ ◦C/km].

:PrecipitationLapseRate [rate]
# is equivalent to (the preferred option)
:GlobalParameter PRECIP_LAPSE [rate]

The simple linear precipitation lapse rate [mm/d/km], as used in the OROCORR_SIMPLELAPSE oro-
graphic correction algorithm.

:RainSnowTransition [rainsnow_temp] [rainsnow_delta]| \\ %
# equivalent to (the preferred option)
:GlobalParameter RAINSNOW_TEMP [rainsnow_temp]
:GlobalParameter RAINSNOW_DELTA [rainsnow_delta]

Specifies the range of temperatures (rainsnow_delta, [ ◦C]) over which there will be a rain/snow
mix when partitioning total precipitation into rain and snow components. The midpoint of the range is
rainsnow_temp.

:IrreducibleSnowSaturation [saturation]
# equivalent to (the preferred option)
:GlobalParameter SNOW_SWI [saturation]

Maximum liquid water content of snow, as percentage of SWE [0..1]. Usually ∼0.05.

:AvgAnnualRunoff [runoff]
# equivalent to (the preferred option)
:GlobalParameter AVG_ANNUAL_RUNOFF [runoff]
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This parameter should be the average annual runoff for the entire simulatedwatershed, [mm/yr]. It is used
to autogenerate initial flows and reference flows in the channel network. While the resultant estimates of
initial flows will wash out with time, reference flows may be critical and modelers may wish to overwrite
these by specifying the Q_REFERENCE parameter for each channel in the :SubBasinProperties
command of the .rvp file.

:WetAdiabaticLapseRate [rate] [A0PPTP]
# equivalent to (the preferred option)
:GlobalParameter WET_ADIABATIC_LAPSE [rate]
:GlobalParameter UBC_A0PPTP [A0PPTP]

The wet adiabatic lapse rate [ ◦C/km] and the UBCWM threshold precipitation, A0PPTP, for temperature
lapse rate [mm/d] (usually ∼5 mm/d).

:ReferenceMaxTemperatureRange [range]
# equivalent to (the preferred option)
:GlobalParameter UBC_MAX_RANGE_TEMP [range]

A parameter (A0TERM) used in the UBC watershed model orographic corrections for temperature [ ◦C].

:UBCTempLapseRates [A0TLXM A0TLNM A0TLXH A0TLNH P0TEDL P0TEDU]

Parameters used in the UBC watershed model orographic corrections for temperature. A0TLXM and
A0TLXH [ ◦C/km] are the low and high elevation lapse rates of the maximum daily temperature; A0TLNM
and A0TLNH [ ◦C/km] are the low and high elevation lapse rates of the minimum daily temperature;
P0TEDL and P0TEDU [ ◦C/km] are the low and high elevation lapse rates of the maximum temperature
range. Low and high elevation refer to below or above 2000 masl.

:UBCPrecipLapseRates [E0LLOW E0LMID E0LHI P0GRADL P0GRADM P0GRADU A0STAB]

Parameters used in the UBC watershed model orographic corrections for precipitation. E0LLOW E0LMID
and E0LHI, are the low, medium, and high reference elevations [m]; P0GRADL, P0GRADM, and P0GRADU
are the precipitation gradient factors (%) applied below E0LMID, between E0LMID and E0LHI, and above
E0LHI, respectively; A0STAB is a precipitation gradient modification factor.

:UBCEvapLapseRates [A0PELA]

The PET lapse rate in the UBCWM PET orographic correction algorithm [ ◦C/km].

:UBCNorthSWCorr [J F M A M J J A S O N D]

Monthly correction factors (unitless) for shortwave radiation on north-facing slopes, used in the UBC
shortwave generation routine.

:UBCSouthSWCorr [J F M A M J J A S O N D]

Monthly correction factors (unitless) for shortwave radiation on south-facing slopes, used in the UBC
shortwave generation routine.
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:UBCSnowParams [P0ALBMIN P0ALBMAX P0ALBREC P0ALBASE P0ALBSNW P0ALBMLX]

Parameters used in the UBCWM-style snow albedo evolution algorithm. P0ALBREC [-] is the recessional
constant for albedo decay of new snow (∼0.9); P0ALBSNW [mm] is the daily snowfall required to bring
albedo to that of new snow; P0ALBMAX is the albedo of fresh snow (∼0.95); P0ALBMIN is the albedo of
an aged snowpack or glacier (∼0.30); P0ALBMLX [mm] is a constant on the order of total snowmelt in
one year; P0ALBASE is the albedo initial decay value (∼0.65).

:UBCGroundwaterSplit [value]

The UBCwatershedmodel deep zone share, which controls howmuch infiltration goes to deep vs. shallow
storage.

:UBCExposureFactor [value]

The UBCWM sun exposure factor for forested areas (∼0.01), indicating the percentage of forested areas
exposed to solar radiation. Used in the SW_CANOPY_CORR_UBCWM canopy correction algorithm.

:UBCCloudPenetration [value]

The UBCWM fraction of solar radiation penetrating cloud cover [0..1], as used in the SW_CLOUD_-
CORR_UBCWM cloud cover correction algorithm.

:UBCLWForestFactor [value]

The UBCMW Longwave correction factor for forests [mm/d/K](∼0.75), as used in the LW_RAD_UBCWM
longwave radiation estimation routine.

:AirSnowCoeff [value]

This is the air/snow heat transfer coefficient in units of [1/d], as used in the SNOTEMP_NEWTONS snow
temperature evolution routine.

:AvgAnnualSnow [value]

This parameter is the average annual snow for the entirewatershed inmmSWE. It is used in theCEMA_NEIGE
snowmelt algorithm.

In addition to the above specifications for global parameters, Raven can also override ‘global’ parameters
in specific subbasins through the use of subbasin groups. These are detailed below.

:GlobalParameterOverride [param_name] [group_name] [value]

This command allows the user to override the global parameter specified for a specific subbasin group,
in effect allowing for a distributed set of global parameters. Here, the group_name refers to a subbasin
group created using the :SubBasinGroup command, the param_name is one of the global parameters
named in table A.6. Note that this override should be using sparingly, as it overrides the global parameter
of the relevant HRUs in each time step, and can increase the computational cost of themodel substantially.

:SBGroupOverrideWeights [param_name] [group_name] [w1] ... [wN]
:SBGroupOverrideWeights [param_name] [group_name] [u1] ... [u{N-1}]

191



This command is typically used for calibration, allowing the user to specify blended forcing weights (cur-
rently for either potential melt or potential evapotranspiration) for a specific subbasin group, overriding
the global blended forcing weights specified in the .rvi file. The group_name refers to a subbasin group
created using the :SubBasinGroup command, the param_name is one of the parameters PET_-
BLEND_WTS or POTMELT_BLEND_WTS, and either the user can either specify N weights or N − 1
independent uniform numbers (weight-generating parameters) used to calculate weights (see :Pro-
cessGroup command for more information on calculatingN weights fromN −1 independent uniform
numbers in blended models).

Transport/Geochemical Parameters

:GeochemParameter [pname] [c1] {c2} [process] {comp.} {class} [value]
# e.g.,
:GeochemParameter DECAY_COEFF NITRATE DENITRIFICATION SOIL[1] 0.0099
:GeochemParameter DECAY_COEFF STRONTIUM RAD_DECAY 0.000066

Can be used to specify the value of any scalar geochemical parameter, where the list of parameter names
(pname) is in table A.7. The c1 argument is the name of the constituent, the (optional) c2 is the name
of the 2nd constituent for transformation parameters, process is the same process name as indicated
in the corresponding geochemical process definition in the .rvi file, (optional) comp. is a state variable
water storage (e.g., SOIL[0]), (optional) class is the soil class the parameter is linked to. value is the
value of the parameter, with units identified in table A.7.

:StochiometricRatio [c1] [c2] [value]

The ratio of mass produced of constituent 2 to mass lost of constituent 1.
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Special Commands

The following special commands can be used for temporally variable landscape change (e.g., to simulate
urbanization, glacial retreat, forest fire impacts, or changes in agricultural practices).

:LandUseChange [HRU group] [new LULT tag] [YYYY-mm-dd]

The land use for the specified HRU group is changed to the new LULT type (as specified in the :Lan-
dUseClasses-:EndLandUseClasses block) on the specified date in ANSI YYYY-mm-dd format.
The change occurs just after midnight of the night before. Note that all parameters from the new land
use class are applied to all of the specified HRUs in the group. There is no limit to the number of land use
changes in the model. All land use changes prior to the model start date are processed at the start of the
simulation, so if land use change occurs prior to t=0, the most recent will be treated as the initial HRU
land cover. Any series of :LandUseChange commands should be input in chronological order.

:VegetationChange [HRU group] [new vegetation tag] [YYYY-mm-dd]

The vegetation for the specified HRU group is changed to the new vegetation type (as specified in the
:VegetationClasses-:EndVegetationClasses block) on the specified date in ANSI YYYY-
mm-dd format. The change occurs just after midnight of the night before. Note that all parameters
from the new vegetation class are applied to all of the specified HRUs in the group. There is no limit to
the number of vegetation changes in the model. All vegetation changes prior to the model start date are
processed at the start of the simulation, so if vegetation change occurs prior to t=0, the most recent will
be treated as the initial HRU vegetative cover. Any series of :VegetationChange commands should
be input in chronological order.

:HRUTypeChange [HRU group] [new type tag] [YYYY-mm-dd]

The HRU type vegetation for the specified HRU group is changed to the new HRU type (GLACIER, ROCK,
WETLAND, STANDARD, or LAKE) on the specified date in ANSI YYYY-mm-dd format. This command is
mostly used to represent conversion from glacier to non-glacier. The change occurs just after midnight of
the night before. There is no limit to the number of HRU type changes in the model. All HRU type changes
prior to themodel start date are processed at the start of the simulation. Any series of :HRUTypeChange
commands should be input in chronological order.

:TransientParameter [PARAM_NAME] [class] {(optional) ClassName}
[date yyyy-mm-dd] [time hh:mm:ss.0] [interval] [N]
{double value} x N

:EndTransientParameter

This command may be used to replace any (usually fixed) parameter specified in the .rvp file with a
time series of user-specified parameter values. This is often used to represent the influence of chang-
ing land use, seasonal impacts of agriculture, or unmodeled hydrologic processes such as frozen soils.
Here, interval is the time interval of the supplied time series and N is the total number of entries.
PARAM_NAME corresponds to one of the parameters included in tables A.3, A.4, A.5, or A.6. class is
one of SOIL, VEGETATION, LANDUSE, TERRAIN or GLOBALS. The optional ClassName specifies the
particular soil/vegetation/land use class to override; if not included, the parameter will be overridden for
all soil/vegetation/land use classes. Note that the specified transient parameter completely overwrites the
static value specified earlier in the .rvp file. It is common to put this time series in another file and point
to it via the :RedirectToFile command.
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:RedirectToFile [filename]

This treats the contents of file “filename” as if they were simply inserted into the .rvp file at the location of
the:RedirectToFile command. This is useful for storing individual sets of commands in an organized
format (e.g., the :TransientParameter time series). If no path is specified, the filename must be
reported relative to the working directory. This command must be provided in the main model .rvp file
and not within nested files. Note that this command cannot work within data blocks (e.g., a the entire
:SoilParameterList-:EndSoilParameterList block would have to be in a single file, not just
the tabular data in that block).
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Table A.3: Soil Parameters. The top section described autocalculable parameters which may be generated
automatically using only the base soil class information (sand, clay, silt, and organic content). The bottom
section must be user-specified.

Name Definition Units Range

Ph
ys
ic
al
Pa

ra
m
et
er
s

SAND_CON percent sand content of mineral soil (sand+clay+silt=1) [0..1] 0.0-1.0
CLAY_CON percent clay content of mineral soil [0..1] 0.0-1.0
SILT_CON percent silt content of mineral soil [0..1] 0.0-1.0
ORG_CON percent organic content of soil (mineral+org.=100%) [0..1] 0.0-0.8

POROSITY effective porosity of the soil [0..1] 0.1-0.6
STONE_FRAC stone fraction of the soil [0..1] 0.0-0.5
SAT_WILT hydroscopic minimum saturation [0..1] 0.0-0.9
FIELD CAPACITY field capacity saturation of the soil [0..1] 0.0-1.0
BULK_DENSITY bulk dry density of the soil [kg/m3]
HYDRAUL_COND saturated hydraulic conductivity of the soil [mm/d]
CLAPP_B Clapp-Hornberger exponent [-]
CLAPP N,CLAPP M Clapp-Hornberger transition parameters [-],[mm]
SAT_RES residual saturation [0..1]
AIR_ENTRY_PRESSURE (positive) air entry pressure (?ae) [-mm]
WILTING_PRESSURE (positive) wilting pressure [-mm]
HEAT_CAPACITY saturated volumetric heat capacity [MJ/m3/K]
THERMAL_COND saturated soil thermal conductivity [MJ/d/m/K]
WETTING_FRONT_PSI Green-Ampt wetting front pressure [-mm]
EVAP_RES_FC soil evaporation resistance at Field capacity [d/mm]
SHUTTLEWORTH_B Shuttleworth b expon. relating resistance to pressure [-]
ALBEDO_WET albedo of the soil when fully saturated [-]
ALBEDO_DRY albedo of the soil when dry [-]

VIC_ZMIN Xinanjiang parameters for VIC model [mm]
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VIC_ZMAX Xinanjiang parameters for VIC model [mm]
VIC_ALPHA [-] Xinanjiang parameters for VIC model [-]
VIC_EVAP_GAMMA power law exponent for VIC soil evaporation [-]
MAX_PERC_RATE VIC/ARNO/GAWSER percolation rate [mm/d] 0.01 - 1000
PERC_N VIC/ARNO percolation exponent [-] 1.00 - 20
PERC_COEFF linear percolation coefficient [1/d]
SAC_PERC_ALPHA Sacramento percolation multiplier [-] 1.0 - 250.0
SAC_PERC_EXPON Sacramento percolation exponent [-] 1.00 - 5.0
HBV_BETA HBV infiltration exponent [-] 0.0 - 7.0
MAX_BASEFLOW_RATE maximum baseflow rate [mm/d] 0.001 - 1000
BASEFLOW_N VIC/ARNO baseflow exponent [-] 1.0 - 10.0
BASEFLOW_COEFF linear baseflow storage/routing coefficient [1/d]
BASEFLOW_COEFF2 linear baseflow storage/routing coefficient [1/d]
BASEFLOW_THRESH threshold saturation for onset of baseflow [0..1]
BF_LOSS_FRACTION percentage of baseflow directed to deep GW [0..1]
STORAGE_THRESHOLD threshold water content for onset of baseflow [mm] 0-100
MAX_CAP_RISE_RATE HBV max capillary rise rate [mm/d]
MAX_INTERFLOW_RATE PRMS max interflow rate [mm/d]
INTERFLOW_COEFF linear interflow storage/routing coefficient [1/d]
UBC_EVAP_SOIL_DEF UBC model evaporation reference soil deficit [mm]
UBC_INFIL_SOIL_DEF UBC watershed model infiltration reference soil deficit [mm]
GR4J_X2 GR4J Maximum groundwater exchange rate [mm/d]
GR4J_X3 GR4J reference storage for baseflow/GW exchange [mm]
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Table A.4: Land use parameters. The parameters with an asterisk can be autogenerated by Raven or
overriden by the model user.
Name Definition Units Range
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FOREST_COVERAGE fraction of land covered by vegetation canopy [0..1] 0-1
IMPERMEABLE_FRAC fraction of surface that is impermeable [0..1] 0-1

ROUGHNESS* roughness of ground surface [m] 0-10
FOREST_SPARSENESS* sparseness of canopy in land covered by forest [0..1] 0-0.99
DEP_MAX maximum amount of water that can be stored in depressions [mm] 0-1000
MAX_DEP_AREA_FRAC percentage of landscape covered by depressions when full [0..1] 0-0.8
DD_MELT_TEMP melting temperature for degree day methods [ ◦C] 0.0

MELT_FACTOR* maximum snow melt factor used in degree day models [mm/d/ ◦C] 3.5
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DD_REFREEZE_TEMP* degree day reference (freezing) temperature [ ◦C] 0.0
MIN_MELT_FACTOR* minimum snow melt factor used in degree day models [mm/d/ ◦C] 2
REFREEZE_FACTOR maximum refreeze factor used in degree day models [mm/d/ ◦C] 3
REFREEZE_EXP exponent used in HMETS_SNOWBAL refreeze relationship [-] 0.5
DD_AGGRADATION degree day increase rate with cumulative melt (HMETS pot. melt.) [1/mm] 0.1
SNOW_PATCH_LIMIT* SWE limit below which snow does not completely cover ground [mm] 0-100
HBV_MELT_FOR_CORR* HBV snowmelt forest correction (MRF in HBV-EC) [-] <1
HBV_MELT_ASP_CORR* HBV snowmelt aspect correction (AM in HBV-EC) [-] 0-1

GLAC_STORAGE_COEFF maximum linear storage coefficient for glacial melt [-]
HBV_MELT_GLACIER_CORR degree day correction factor for glacial melt (MRG in HBV-EC) [-]
HBV_GLACIER_KMIN minimum linear storage coefficient for glacial melt [-]
HBV_GLACIER_AG extinction coefficient for diminishing storage coefficient [1/mm]
CC_DECAY_COEFF linear decay coefficient for decreasing cold content [1/d]

SCS_CN SCS curve number (for antecedent wetness condition II) [0-100] 1-100
SCS_IA_FRACTION* fraction of rainfall initially abstracted to depression storage [0..1] 0-0.2
PARTITION_COEFF simple rational method partitioning coefficient [0..1] 0.5
MAX_SAT_AREA_FRAC PRMS maximum saturated area (pct)- [0-1]
B_EXP ARNO/VIC b exponent [-] 0.001-3.0
ABST_PERCENT percentage of rainfall which is abstracted to depression storage [0-1]
DEP_MAX_FLOW outflow rate with full depression storage [mm/d]
DEP_N power law coefficient for depression outflow [-] 0.5-3
DEP_SEEP_K depression linear seepage constant [1/d] 0.001-0.5
DEP_K depression linear overflow constant [1/d] 0.01-0.5
DEP_THRESHOLD threshold storage at which flow commences [mm]
PDM_B soil pareto distribution parameter [-]
PDMROF_B wetland pareto distribution parameter [-]
PONDED_EXP exponent used in SOILEVAP_HYPR model [-] 1-5

OW_PET_CORR* fraction of PET to apply to open water evaporation [-] 0.2-1.2
LAKE_PET_CORR* fraction of PET to apply to lake evaporation [-] 0.8-1.2
LAKE_REL_COEFF linear lake storage coefficient [1/d] 0.001-0.5
FOREST_PET_CORR* fraction of PET to apply to forest evapotranspiration [-] 0.1-1.2
GAMMA_SCALE{2} Gamma unit hydrograph scale parameters [1/d] 0.1-20
GAMMA_SHAPE{2} Gamma unit hydrograph shape parameters [-] 0.5-5
HMETS_RUNOFF_COEFF HMETS runoff coefficient [0..1] 0.3-1 (<1)
AET_COEFF SOILEVAP_LINEAR proportionality constant [1/d] 0.05
HYMOD2_G SOILEVAP_HYMOD2 ET lower resistance parameter [0..1]
HYMOD2_KMAX SOILEVAP_HYMOD2 ET resistance parameter [0..1] 1
HYMOD2_EXP SOILEVAP_HYMOD2 ET exponent [-] 1

GR4J_X4 GR4J time routing parameter [d] 0-100
UBC_ICEPT_FACTOR* UBC Interception factor [-]
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Table A.5: Vegetation Parameters. The parameters with an asterisk can be automatically generated by
Raven or overridden by the model user.

Name Definition Units Range
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MAX_HEIGHT maximum vegetation height [m]
MAX_LEAF_COND maximum leaf conductance [mm/s]
MAX_LAI maximum leaf area index [m2/m2]

SVF_EXTINCTION* extinction coefficient used to calculate skyview factor [-] 0.5
RAIN_ICEPT_PCT* relates percentage of throughfall of rain to LAI+SAI [-] 0.02-0.20
SNOW_ICEPT_PCT* relates percentage of throughfall of snow to LAI+SAI [-] 0.02-0.20
RAIN_ICEPT_FACT* percentage of rain intercepted (maximum) [0..1] 0.06
SNOW_ICEPT_FACT* percentage of snow intercepted (maximum) [0..1] 0.04
SAI_HT_RATIO* ratio of stem area index to height [m2/m3]
TRUNK_FRACTION* fraction of canopy attributed to tree trunk [0..1]
STEMFLOW_FRAC* [0..1] 0.03
ALBEDO* visible/near-infrared albedo of leaf [-] 0.15
ALBEDO_WET* albedo of wet leaf [-]
MAX_CAPACITY* maximum canopy storage capacity [mm]
MAX_SNOW_CAPACITY* maximum canopy snow (as SWE) storage capacity [mm]
ROOT_EXTINCT extinction coefficient for roots, exp(-ext*z) []-
MAX_ROOT_LENGTH root length per unit canopy area [mm/m2]
MIN_RESISTIVITY 1.0/max_conductivity [d/mm]
XYLEM _FRAC fraction of plant resistance in xylem [0..1]
ROOTRADIUS average root radius (used to calculate cowan alpha) [mm]
PSI_CRITICAL minimum plant leaf water potential [-mm]

DRIP_PROPORTION drip proportion for bucket drip model [1/d]
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MAX_INTERCEPT_RATE maximum rate of rainfall interception [mm/d]
CHU_MATURITY crop heat unit maturity; level at which PET is maximized [-]
PET_VEG_CORR vegetation multiplier for PET [-]

197



Table A.6: Available global parameters in Raven.
Name Definition Units Range
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ADIABATIC_LAPSE adiabatic temperature lapse rate ◦C/km 0-7
WET_ADIABATIC_LAPSE wet adiabatic temperature lapse rate ◦C/km 0-7
PRECIP_LAPSE precipitation lapse rate for orographic correction mm/d/km 0-100
RAINSNOW_TEMP rain/snow halfway transition temperature ◦C -1.0-1.0
RAINSNOW_DELTA range of rain-snow transition zone (about RAINSNOW_TEMP) ◦C 0-4
SNOW_SWI water saturation fraction of snow 0..1 0.04-0.07
SNOW_SWI_MIN minimum water saturation fraction of snow 0..1 0.04-0.05
SNOW_SWI_MAX maximum water saturation fraction of snow 0..1 0.05-0.15
SNOW_TEMPERATURE default snow temperature if not explicitly simultated ◦C -2.0-0.0
SNOW_ROUGHNESS roughness height of snow mm 0-5.0
AVG_ANNUAL_SNOW avg annual snow as SWE mm 0-100
AVG_ANNUAL_RUNOFF avg annual runoff from basin mm 0-1000
MAX_SNOW_ALBEDO albedo of fresh snow 0..1 0.95
MIN_SNOW_ALBEDO very old snow/glacier albedo 0..1 0.3
BARE_GROUND_ALBEDO bare ground albedo 0..1 0.1-0.4

MAX_REACH_SEGLENGTH maximum reach segment length km
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AIRSNOW_COEFF air/snow heat transfer coefficient 1/d
UBC_GW_SPLIT UBC groundwater split parameter 0..1 0.4
UBC_EXPOSURE_FACT UBC Sun exposure factor of forested areas 0..1
UBC_CLOUD_PENET UBC Fraction of solar radiation penetrating cloud cover 0..1
UBC_LW_FOREST_FACT UBC temperature factor to estimate LW radiation in forests mm/d/K
UBC_FLASH_PONDING UBC ponding threshold for flash factor mm

UBC_ALBASE albedo exponential decay threshold value - 0.65
UBC_ALBREC albedo decay constant 1/d 0.9
UBC_ALBSNW daily snowfall required to bring albedo to that of new snow mm 15
ALB_DECAY_COLD linear albedo decay rate for cold conditions 1/d 0.008
ALB_DECAY_MELT linear albedo decay rate for melting conditions 1/d 0.12
SNOWFALL_ALBTHRESH threshhold snowfall rate to refresh albedo to fresh snow mm/d 10
UBC_MAX_CUM_MELT estimate of maximum annual snowmelt mm 4000
SWI_REDUCT_COEFF rate of SWI reduction with increasing cumulative melt 1/mm 0.02
MOHYSE_PET_coeff PET coefficient for MOHYSE PET algorithm - 1.0

ASSIMILATION_FACT degree of assimilation (=0 for none, =1 for full insertion) 0..1 1
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ASSIM_TIME_DECAY controls degree of assimilation after observations end 1/d 0.2
ASSIM_UPSTREAM_DECAY controls degree of assimilation upstream of observation 1/km 0.1
RESERVOIR_RELAX relax. factor for reservoir simulation of target stage/flow 0..1 0.4
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Table A.7: Available geochemical parameters in Raven.
Name Definition Units Reasonable range

DECAY_COEFF linear decay coefficient 1/d >0
TRANSFORM_COEFF transformation coefficient 1/d >0

(mg/L)$-̂n$/d for n$\neq$1
TRANSFORM_N non-linear transformation exponent - >0
EQFIXED_RATIO fixed equilibrium ratio ($a$ in $C_1=aC_2$) - >0
EQUIL_COEFF linear equilibrium coefficient ($k$ in $k(C_1-aC_2)$) 1/d >0
SORPT_COEFF linear sorption coefficient, $K_d$ L/kg >0
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A.3 HRU / Basin Definition file (.rvh)

The HRU/basin definition file describes the topology of the basin network and the class membership of
all constituent HRUs. An example .rvh file is shown below:

Example File: modelname.rvh

# --------------------------------------------
# Raven HRU Input file
# --------------------------------------------
:SubBasins
:Attributes, NAME, DOWNSTREAM_ID, PROFILE, REACH_LENGTH, GAUGED
:Units, none, none, none, km, none

1, Downstream, -1, DEFAULT, 3.0, 1
2, Upstream, 1, DEFAULT, 3.0, 0

:EndSubBasins
:HRUs
:Attributes, AREA, ELEVATION, LATITUDE, LONGITUDE, BASIN_ID, LAND_USE_CLASS,

...VEG_CLASS,SOIL_PROFILE, AQUIFER, TERRAIN_CLASS, SLOPE, ASPECT
:Units, km2, m, deg, deg, none,

none, ...
none, none, none, none, deg, degN

101,10,143, 43,-80,1,FORESTED,BROADLEAF, ALL_SAND,SAND_AQ,[NONE],0.0,0.0
102,10,145, 43,-80,1,URBAN ,BROADLEAF, ALL_SAND,SAND_AQ,[NONE],0.0,0.0
103,10,143, 43,-80,2,FORESTED,BROADLEAF, TILL,SAND_AQ,[NONE],0.0,0.0
104,10,147, 43,-80,2,FORESTED,BROADLEAF, TILL,SAND_AQ,[NONE],0.0,0.0

:EndHRUs
:HRUGroup ForestedHRUs
101,103,104

:EndHRUGroup
:RedirectToFile Reservoirs.rvh
:RedirectToFile SubBasinParams.rvh

Due to the length of each line above, the :Attributes and :Units headers of the :HRUs command
are shown using line wrapping (denoted by ’...’).

Note that, as with the .rvi file, comments may be included on individual lines using the * or # characters
as the first word on the line.

A.3.1 Required Commands

The .rvh file consists of the following required commands:

:SubBasins
:Attributes, ID, NAME, DOWNSTREAM_ID, PROFILE, REACH_LENGTH, GAUGED,
:Units , none, none, none, none, km, none,
{ID,name,downstream_ID profile,reach_length,gauged}x[number of subbasins]

:EndSubBasins
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To specify an array of subbasins of the watershed and the connectivity between subbasins. Each subbasin
may only have one outlet subbasin, specified by ID (a unique positive integer). The subbasin-specific
parameters are defined as follows:

• ID - A positive integer unique to this subbasin. Used to refer to the subbasin in other parts of the
input file.

• name - The nickname for the basin (cannot include commas or spaces). Can be non-unique. This
value is used for labelling output.

• downstream_ID - The ID of the subbasin (or conduit) that receives the outflow from this basin.
If the drainage for this subbasin leaves the simulated watershed, a value of -1 for the downstream
ID should be specified.

• profile - The representative channel profile code (channel profiles specified in the .rvp file)

• reach_length - The length of the primary reach channel in the basin (in km). If this is a headwa-
ter basin, in-channel routing can be avoided by setting reach_length to zero. If set to _AUTO,
the reach length will be estimated from total subbasin area.

• gauged - Flag which determines whether simulated hydrographs for this subbasin are generated
as output from the model (either 1 or 0, true or false)

:HRUs
:Attributes,AREA,ELEVATION,LATITUDE,LONGITUDE,BASIN_ID,LAND_USE_CLASS,
...VEG_CLASS,SOIL_PROFILE,AQUIFER_PROFILE,TERRAIN_CLASS,SLOPE,ASPECT

:Units , km2, m, deg, deg, none, none,
... none, none, none, none, deg, degN

{ID,area,lat,long,basin_ID,
...LU/LT,veg_class_name,soil_profile_name,

...terrain_class_name,slope,aspect}x[number of HRUs]
:EndHRUs
# NOTE: the ’...’ above denotes line wrapping

A table of data used to specify an array of HRUs within the subbasins defined in the :SubBasins
command block. The HRU-specific parameters are defined as follows:

• ID - A positive integer unique to this HRU. Used to refer to the HRU in other parts of the input
file.

• AREA - the total HRU area (in km2)

• ELEVATION - the mean HRU elevation (in m.a.s.l)

• LATITUDE - Latitude of the HRU centroid (in decimal degrees). Used primarily for interpolation
and estimation of solar radiation.

• LONGITUDE - Longitude of the HRU centroid (in decimal degrees). Used primarily for interpolation
and estimation of solar radiation.

• BASIN_ID - the ID of the basin in which the HRU is located (as defined in the :SubBasins
command ID column)

• LAND_USE_CLASS - the representative land use class of the HRU (defined in the .rvp file)

• VEG_CLASS - the representative vegetation class of the HRU (defined in the .rvp file)
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• SOIL_PROFILE - the representative soil profile of the HRU (defined in the .rvp file)

• AQUIFER_PROFILE - unused. use [NONE]

• TERRAIN_CLASS - (optional) the representative terrain class of the HRU (defined in the .rvp file).
If terrain classes not used use [NONE]

• SLOPE - mean HRU slope, in degrees from horizontal

• ASPECT - mean aspect (in degrees counter-clockwise from north - i.e., a western aspect would be
90 ◦). Note: this convention is opposite that used by most GIS terrain analysis tools.

If terrain classes or aquifer profiles are not used in the model (as is common), the flag [NONE] goes in
the place of the class specifier.

A.3.2 Optional Commands

:Conduits
:Attributes, ID, NAME, DOWNSTREAM_ID, XSECT, REACH_LENGTH, GAUGED,
:Units , none, none, none, none, km,

none,
{ID,name,downstream_ID,xsect,reach_length,gauged}x[number of conduits]

:EndConduits

This command is nearly identical to the :SubBasins-:EndSubBasins command block, and also in-
dicates flow connectivity. However, it is used to represent the subsurface sewer network, aqueducts, or
subsurface rivers in karst. Unlike subbasins, conduits do not have corresponding HRUs or areal extent.
Rather, the only process simulated in a conduit connection is in-reach routing. The indexing system is
the same as that used for subbasins, i.e., a conduit and subbasin cannot share the same ID. Conduits can
outflow to other conduits or to other subbasins, but is not allowed to form a cyclical network. The xsect
will typically be a :CircularConduit cross section or similar.

:SubBasinProperties
:Parameters, {PARAM_1, PARAM_2, .. , PARAM_N}
:Units , {UNITS_1, UNITS_2, .. , UNITS_N}
{[basin ID], [p_1] , [p_2] , .. , [p_N] }} x NSB

:EndSubBasinProperties

Subbasin properties are used to control the in-catchment routing behaviour of individual subbasins. Here,
PARAM_i represents the name of a subbasin parameter (the full list of valid parameters can be found in
table D.3), UNITS_i is the units tag (not used by Raven), p_i refers to numeric values of each parameter,
basin id is the subbasin ID as defined in the :SubBasins command, and NSB is the number of
subbasins in the model.

:HRUGroup [group_name]
17,18,30-37

:EndHRUGroup

HRUGroups are used for a number of reasons: to generate custom output only for a select set of HRUs (or
organize/aggregate output for multiple sets) or to control which processes are applied in what locations.
Group names are typically specified using the :DefineHRUGroups command in the .rvi file; this com-
mand populates the memberships of these predefined groups. Individual HRUs are specified with their
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ID numbers (as defined in the :HRUs command), separated by commas. Ranges of HRUs can be specified
using the hyphen, as shown above.

:PopulateHRUGroup [HRUgroup] With [con_base] [condition] [con_data]

An alternative to the :HRUGroup command which automatically populates the HRU group based upon
certain criteria. The cond_base command indicates the basis for the criterion, one of (HRUS, LANDUSE,
VEGETATION, or ELEVATION). The condition indicates the means of evaluating the criterion, one
of (NOTWITHIN, WITHIN_SBGROUP, BETWEEN, EQUALS, NOTEQUALS). The con_data is dependent
upon the condition. For the NOTWITHIN condition, the condition data is another HRU group name
and the criterion must be HRUS. For the BETWEEN condition, the condition data is a range of elevations,
and the only currently valid criterion basis is the elevation. For the EQUALS and NOTEQUALS conditions,
the vegetation or land use names are specified, to group HRUs based upon class membership (or non-
membership). For the WITHIN_SBGROUP condition, the name of a valid subbasin group is used. For
example, the following commands are valid:

:PopulateHRUGroup CroplandHRUs With LANDUSE EQUALS CROPLAND
:PopulateHRUGroup NonCroplandHRUs With LANDUSE NOTEQUALS CROPLAND
:PopulateHRUGroup BroadleafHRUs With VEGETATION EQUALS BROADLEAF
:PopulateHRUGroup NotRock With HRUS NOTWITHIN RockHRUGroup
:PopulateHRUGroup LowBand With ELEVATION BETWEEN 0 500
:PopulateHRUGroup GrandRiverHRUs With HRUS WITHIN_SBGROUP GrandBasins

:IntersectHRUGroups [HRUGroup] From [HRUGroup1] And [HRUGroup2]

This command populates theHRUgroupHRUGroupwith anyHRUs shared byHRUGroup1 andHRUGroup2.
These two groups need to have already been defined and populated before this command is called.

:MergeHRUGroups [HRUGroup] From [HRUGroup1] [HRUGroup2] ... [HRUGroupN]

This command populates the HRU group HRUGroup with any HRUs that exist in the list of HRU groups
HRUGroup1 to HRUGroupN. It will not duplicate group members if they are present in multiple groups.
The list of groups need to have already been defined and populated before this command is called.

:DisableHRUGroup [group_name]

This command disables the HRU group specified, and has to be included after the HRU group has been
defined (in the .rvi file via :DefineHRUGroup) or populated (in the .rvh file via :HRUGroup). All
disabled HRUs are not included in the simulation, and all subbasins comprised entirely of disabled HRUs
are likewise not simulated.

:SubBasinGroup [group_name]
2118, 3024, 3056, 4567

:EndSubBasinGroup

Subbasin groups are used for a number of reasons: to generate custom output only for a select set of basins
(or organize/aggregate output for multiple sets of basins) or to control parameterization of a large number
of basins (for instance, to set or adjust the Manning’s n parameter for a set of geomorphologically similar
river reaches). Individual subbasin members of the group are specified with their ID numbers (as defined
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in the :SubBasins command), separated by commas. Unlike the :HRUGroup command, ranges are
not supported.

:PopulateSubBasinGroup [SBgroup] With [con_base] [condition] [con_data]

An alternative to the :SubBasinGroup command which automatically populates the subbasin group
based upon certain criteria. The cond_base command indicates the basis for the criterion, currently
only SUBBASINS. The condition indicates the means of evaluating the criterion, either WITHIN,
NOTWITHIN, UPSTREAM_OF or DOWNSTREAM_OF. The con_data is dependent upon the condi-
tion. For the NOTWITHIN condition, the condition data is another subbasin group name and the crite-
rion must be SUBBASINS. For the UPSTREAM_OF and DOWNSTREAM_OF, the con_data indicates a
subbasin ID. For example, the following commands are valid:

:PopulateSubBasinGroup NotErie With SUBBASINS NOTWITHIN Erie
:PopulateSubBasinGroup UpstreamOfBasin2 With SUBBASINS UPSTREAM_OF 2
:PopulateSubBasinGroup DownFromBasin35 With SUBBASINS DOWNSTREAM_OF 35

The UPSTREAM_OF query includes the subbasin indicated (i.e., it is all subbasins upstream of the indi-
cated subbasin outlet), while the DOWNSTREAM_OF does not (i.e., it is all subbasins directly downstream
of the indicated subbasin outlet). Note that this command can be called iteratively to add subbasins to
an existing subbasin group.

:IntersectSubBasinGroups [SBgroup] From [SBgroup1] And [condition] [SBgroup2]

An additional method logic for building subbasin groups which intersects two subbasin groups. The
condition indicates the means of intersection, either WITHIN or NOTWITHIN. In this command, both
conditions must be satisfied to add the given subbasin to the new group (i.e. if NOTWITHIN is used, a
subbasin must exist in SBGroup1 and explicitly not exist in SBGroup2 to be added to the new subbasin
group).

:MergeSubBasinGroups [SBgroup] From [SBgroup1] ... [SBgroupN]

This command populates the subbasin group SBgroup with any subbasins that exist in the list of sub-
basin groupsSBgroup1 toSBgroupN. It will not duplicate groupmembers if they are present inmultiple
groups. The list of groups need to have already been defined and populated before this command is called.

:DisableSubBasinGroup [group_name]

This command disables the subbasin group specified, and has to be included after the subbasin group
has been defined and populated (in the .rvh file via :SubBasinGroup). All disabled subbasins are not
included in the simulation, and all HRUs within these subbasins are also disabled and not simulated.

Advice

This command may be used to simulate or calibrate only a subset of the model domain. Sub-
domains in the middle of a watershed may also be simulated if all inflows to the subbasins are
proscribed using the :BasinInflowHydrograph command.

:GaugedSubBasinGroup [group_name]
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This command overrides the “gauged” status of subbasins that were indicated in the :SubBasins-
:EndSubBasins command block. All subbasins within the subbasin group group_name are set as
“gauged” basins where hydrograph and other output is generated. All subbasins not in this group have
their basin-specific output disabled.

:SBGroupPropertyOverride [group_name] [parameter_name] [value]

This command simultaneously sets the parameter values for all subbasinswithin a group. Thegroup_name
refers to a subbasin group created using the :SubBasinGroup command, the parameter_name is
one of the parameters named in table D.3, and value is the value of the parameter being specified. Units
have to be consistent with those in table D.3.

:SBGroupPropertyMultiplier [group_name] [parameter_name] [mult]

This command is typically used for calibration, allowing the user to simultaneously adjust the parameter
values for a large number of subbasins simultaneously. The group_name refers to a subbasin group cre-
ated using the :SubBasinGroup command, the parameter_name is one of the parameters named in
table D.3, and mult is the multiplier used to adjust the parameters (base values should already have been
specified using the :SubBasinProperties command; this multiplier will not work for parameters
which do not appear in .rvh files and are instead automatically calculated).

:SBGroupOverrideWeights [group_name] [parameter_name] [w1] ... [wN]
:SBGroupOverrideWeights [group_name] [parameter_name] [u1] ... [u{N-1}]

This command is typically used for calibration, allowing the user to specify blended forcing weights (cur-
rently for either potential melt or potential evapotranspiration) for a specific subbasin group, overriding
the global blended forcing weights specified in the .rvi file. The group_name refers to a subbasin group
created using the :SubBasinGroup command, the parameter_name is one of the parameters PET-
BlendedWeights or POTMELTBlendedWeights, and either the user can either specify N weights
or N − 1 independent uniform numbers (weight-generating parameters) used to calculate weights (see
:ProcessGroup command for more information on calculating N weights from N − 1 independent
uniform numbers in blended models).

:RedirectToFile [filename]

This treats the contents of file “filename” as if they were simply inserted into the .rvh file at the location of
the:RedirectToFile command. This is useful for storing individual sets of commands in an organized
format (e.g., redirecting to a separate file with a number of :Reservoir blocks). If no path is specified,
the filename must be reported relative to the working directory. This command must be provided in the
main model .rvh file and not within nested files. Note that this command cannot work within data blocks
(e.g., a the entire :SubBasins-:EndSubBasins block would have to be in a single file, not just the
tabular data in that block).

A.3.3 Reservoirs and Lakes

# Man-made reservoir
:Reservoir [name]
:SubBasinID [SBID]
:HRUID [HRUID] # optional
:StageRelations
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[number of points (N)]
h_1, Q_1, V_1, A_1, {U_1}
h_2, Q_2, V_2, A_2, {U_2}
...
h_N, Q_N, V_N, A_N, {U_N}

:EndStageRelations
:MaxCapacity {capacity, in m^3} # optional
:SeepageParameters [K_seep] [h_ref] # optional
:OutflowControlStructure #optional
# ...
:EndOutflowControlStructure

:EndReservoir

This command creates a reservoir at the outlet of the subbasin referenced by SBID characterized by N
points on the indicated stage-discharge, stage-volume, and stage-area curves. Here, stage (h_i) is in
meters, flow (Q_i) and underflow (U_i, optional) are in m3/s, volume stage (V_i) is in m3, and area
stage (A_i) is in m2. The stage increments can be unevenly spaced but must be increasing from h_1
to h_N. Area and volume both must be monotonically increasing with increasing stage. For numerical
stability, it is expected that changes in volume with stage increments are approximately equal to the area
times the change in stage (i.e., a useful test is to compare∆V to A∆h).

Evaporation from the reservoir surface is obtained from the HRU referenced by HRUID (this is the only
purpose for this; a special HRU for the reservoir is not strictly required, though often appropriate if the
reservoir is relatively large). If no HRU ID is provided, evaporation from the reservoir is presumed neg-
ligible. The reservoir volume, outflow, and net precipitation to the reservoir surface are obtained by in-
terpolating their value from the specified stage-dischargeQ(h), stage-areaA(h), and stage-volume V (h)
relations, defined here by N points along the rating curves. The underflow relation Qu(h) is optional,
and is assumed to be zero if omitted; if included, the total flow from the reservoir will be Q(h) +Qu(h).
Note that the minimum stage supplied in the :StageRelations should be the minimum expected
stage (usually the bottom of the reservoir), and the maximum should be above the expected maximum
stage. See figure 4.1b for additional clarification of terms. Note that multiple operational constraints upon
stage and flow for reservoirs may be specified as time series in the .rvt file using commands such as the
:ReservoirMaxStage command. The optional :MaxCapacity item the maximum storage capac-
ity of the reservoir in m3, but is only used to inform the :ReservoirDemandAllocation operation;
it does not constrain the stage or outflow from the reservoir - this should be handled via maximum stage
constraints or via the stage-discharge curve of the reservoir.

Groundwater seepage parameters K_seep (m3/s/m) and h_ref (m) can be used to represent ground-
water seepage from the reservoir, where the losses are calculated as Qloss = Kseep · (h − href ). If the
reference groundwater head (href ) is larger than the reservoir stage, the reservoir gains water, otherwise
it loses water. By default,Kseep is zero, and no groundwater losses/gains are considered.

The details of the :OutflowControlStructure commands are outlined below in section A.3.4. Each
reservoir may have multiple outflow control structures governed by very general rules. If controlling
outflow exclusively with control structures, the discharge values in the :StageRelations table should
all be set to zero. Otherwise, the outflows from the control structure will be in addition to the primary
outflow indicated by the :StageRelations relationship.

# Lake-like reservoir
:Reservoir [name]
:SubBasinID [SBID]
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:HRUID [HRUID]
:WeirCoefficient [C]
:CrestWidth [width [m]]
:MaxDepth [depth [m]]
:LakeArea [area [m2]]
:AbsoluteCrestHeight [elevation [masl]] {optional}

:EndReservoir

This command creates a lake-like reservoir at the outlet of the subbasin referenced by SBID, and is the
preferred option for natural reservoirs. Evaporation from the reservoir surface are obtained from the HRU
referenced by HRUID, as with the above :Reservoir command. Here, the discharge-stage, volume-
stage, and area-stage relations are generated using the following overflow weir formulae for a prismatic
lake:

Q(h) =
2

3

√
2gC · L · s3/2

A(h) = A

V (h) = A · (s+D)

where s is the stagemeasured with reference to the crest height (which can be negative),D is the specified
maximum lake depth (:MaxDepth [m]), g is the gravitational constant [m/s2], C is the weir coefficient
(:WeirCoefficient), A is the constant lake areas (:LakeArea), [m2], and L is the crest width
(:CrestWidth, [m]). See figure 4.1a for additional clarification of terms. Typically the weir coefficient
is held fixed at a value of about 0.6, and the crest width is calibrated to represent the unknown crest
width and overflow resistance. :AbsoluteCrestHeight may be supplied to reference stages to real
lake stage; by default stage is with reference to the crest height, i.e., a zero stage would be just at the
crest. Note that when many reservoirs and lakes are supplied, they would usually be kept in one or
more separate files via the :RedirectToFile command. You can override the calculated area and
volume relationships using the :AreaStageRelation and :VolumeStageRelation commands,
respectively.

:MinStageConstraintDominant

Usedwithin the :Reservoir-:EndReservoir block, this command is used to override the default or-
dering of outflow constraints for reservoirs. With this command, theminimum stage constraint defined by
:ReservoirMinStage will override minimum flow, overrriden flow, and maximum flow constraints,
changing the order of constraints indicated in section 4.3 but only in this reservoir. This will likewise
override minimum demand flow calculated from the use of the :ReservoirDownstreamDemand
command, such that the reservoir will not meet downstream demands if the stage is at minimum.

:DemandMultiplier [value]

Used within the :Reservoir-:EndReservoir block, this command is used to modify the percentage
of downstream irrigation demand met by this reservoir. The :ReservoirDownstreamDemand com-
mand is used to allocate irrigation demand from downstream subbasins of a reservoir, thus increasing the
minimum flow from that reservoir. The calculated minimum flow is multiplied by this demand multiplier.
If set to 1.0, the reservoir completely respects the constraints from the downstream demand calculations.
If set to 0.0, the reservoir will not be constrained in any way by downstream irrigation demand. This
command may be used to help evaluate a range of water management strategies.

:LakebedThickness [value]
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Used within the :Reservoir-:EndReservoir block, this command specifies the thickness of the
lake bed beneath the lake or reservoir, in meters. This quantity is only used for thermal and contaminant
transport, where mass or energy may be exchanged with this stationary soil layer. If not specified, the
lake bed thickness is set to 2m.

:LakebedThermalConductivity [value]

Used within the :Reservoir-:EndReservoir block, this command specifies the lake bed thermal
conductivity, in units of [MJ/m/K/d]. This quantity is only used for thermal transport, to control conduc-
tive heat exchange between the lake and its bed materials. If not specified, the lake bed thickness is set
to zero, such that no conductive heat exchange occurs

:LakeConvectionCoeff [value]

Used within the :Reservoir-:EndReservoir block, this command specifies the constant lake sur-
face convection coefficient, in units of [MJ/m2/K/d]. This quantity is only used for thermal transport, to
control conductive heat exchange between the lake surface and atmosphere. It defaults to a value of zero,
such that convective heat exchange is ignored.

:DZTRReservoirModel
:MaximumStorage [Vmax]
:MaximumChannelDischarge [Qmax]
:MonthlyMaxStorage J F M A M J J A S O N D
:MonthlyNormalStorage J F M A M J J A S O N D
:MonthlyCriticalStorage J F M A M J J A S O N D
:MonthlyMaxDischarge J F M A M J J A S O N D
:MonthlyNormalDischarge J F M A M J J A S O N D
:MonthlyCriticalDischarge J F M A M J J A S O N D

:EndDZTRReservoirModel

Usedwithin the:Reservoir-:EndReservoir block, this command overrides the default stage-discharge
relationship used to determine reservoir outflow with the time-variable volume-discharge relationship
that is defined in Yassin et al. (2019). Historical volume-storage observations can be used to estimate
these parameters to emulate historical (but unknown) reservoir outflow operational rules. All monthly
storages (e.g., :MonthlyMaxStorage) are in m3 and all flows (e.g., :MonthlyMaxDischarge) are
in m3/s; each row gets 12 monthly values. The order of the above commands must be respected and
no comments are allowed between commands in this block. The details of operation are to be found in
the Yassin et al. (2019) paper. With this command, any stage-discharge curve indicated in the command
structure is ignored.

:VolumeStageRelation
[number of points (N)]
h_1 V_1
h_2 V_2
...
h_N V_N

:EndVolumeStageRelation

Used within the :Reservoir-:EndReservoir block, this command is used to override Raven’s de-
fault calculation of the volume-stage relationship for a lake-like reservoir. The relationship is specified
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using N (h_i,V_i) pairs, which don’t need to be evenly spaced. Stage is in units of meters, and volume
is in cubic metres. Volumes must monotonically increase with increasing stage.

:AreaStageRelation
[number of points (N)]
h_1 A_1
h_2 A_2
...
h_N A_N

:EndVolumeStageRelation

Used within the :Reservoir-:EndReservoir block, this command is used to override Raven’s de-
fault calculation of the surface area-stage relationship for a lake-like reservoir. The relationship is speci-
fied using N (h_i,V_i) pairs, which don’t need to be evenly spaced. Stage is in units of meters, and lake
surface area is in square metres. Areas must monotonically increase with increasing stage.

A.3.4 Outflow Control Structures

Multiple outflow control structures may be simulated with user-specified operating regimes for any
:Reservoir entity.

:OutflowControlStructure
:TargetSubbasin [SBID] #optional
:DownstreamReferenceElevation [elev] #optional

# Outflow relations: -------------------------
:StageDischargeTable [curve_name1]

[number of points(N)]
{h_n Q_n} x N

:EndStageDischargeTable
:StageDischargeTable [curve_name2]

[number of points(N)]
{h_n Q_n} x N

:EndStageDischargeTable
:BasicWeir [curve_name3] [elev] [crestwidth] [coeff]

# Operating Regime Definitions----------------
:OperatingRegime [regime_name]

:UseCurve [curve_name]
:Condition [condition definition]
:Constraint [constraint definition]

:EndOperatingRegime
:EndOutflowControlStructure

The :OutflowControlStructure command describes an outflow control structure which releases
water from a reservoir to a target subbasin (usually the subbasin directly downstream of the reservoir).
This command must be located inside of a :Reservoir-:EndReservoir command block. Each out-
flow control structure is defined by (1) one or more outflow relations (2) one or more operating regimes
determining under what conditions each outflow relation is applied. If no conditions are valid, then out-
flow from the control structure is zero (the default operating regime). The optional element :Target-
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Subbasin is used to specify the recipient subbasin of the outflow. If not present, the target subbasin is
the downstream basin, as indicated in the :SubBasins block. The optional element :Downstream-
ReferenceElevation [m] is the reference elevation of the thalweg of the recipient subbasin reach.
This elevation is needed if regime constraints are conditional upon downstream water level, calculated as
the sum of the water depth in the channel plus the reference elevation.

Outflow relations

Raven supports five basin outflow relations:

:StageDischargeTable [name]
[number of points(N)]
{h_n Q_n} x N

:EndStageDischargeTable

A basic stage-discharge relationship described by a lookup table of discharge (Q_n, in m3/s) with respect
to stage (h_n, in m). The flows must monotonically increase with stage. Turning off the flow above a
certain stage is accomplished using constraints. The namemust be unique, as it links this relationship to
specific regimes using the :UseCurve command described below.

:BasicWeir [name] [elev] [width] [coeff]

A simple weir or overflow gate with crest elevation hcrest (elev, in m), widthW (width, in m), discharge
coefficient Cd (coeff, dimensionless). The outflow from the structure is calculated as:

Qout =
2

3
Cd
√
2g ·W · (max(h− hcrest, 0.0))

3/2

where g is the gravitational constant. For a sharp-crested weir, the discharge coefficient should be 0.4.

:SluiceGate [name] [elev] [width] [r_height] [coeff] [NG]

A set of broad-crested sluice gates with bottom elevation hcrest (elev, in m), width W (width, in m),
raised height hr (r_height, in m), discharge coefficient Cd (coeff, dimensionless, typically 0.5-0.7),
and number of gatesNG (NG). The outflow from the structure is calculated under free-flowing conditions
as:

Qout = NG · Cd ·
√
2g ·W · hr (max(h− hcrest, 0.0))

1/2

where g is the gravitational constant. It is assumed that hr < h− hcrest.

:Orifice [name] [elev] [diameter] [coeff] [NO]

A set of circular orifices with bottom elevation hb (elev, in m), diameterD (diameter, in m), discharge
coefficient Cd (coeff, dimensionless, typically 0.5-0.7), and number of orifice openings NO (NO). The
outflow from the structure is calculated under free-flowing conditions as:

Qout = NO · Cd
√
2g · πD

2

4
· (h− hb)

1/2

where g is the gravitational constant. It is assumed that orifices are fully submerged at all times.

:BasicPump [name] [flow] [on_stage] [off_stage]
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A pump which operates when the reservoir stage exceeds the stage on_stage [m] and turns off when
the stage falls below the stage off_stage [m], where on_stage>off_stage. The second threshold
is to stop the pump from repeatedly turning on and off. The discharge is equal to the specified discharge
rate (flow, in m3/s) within this stage range. The basic pump does not have flow ramping, but this may
be achieved with flow operating constraints, described below.

Operating Regimes

:OperatingRegime [regime_name]
:UseCurve [curve_name]
:Condition [condition definition #1]
:Condition [condition definition #2]
:Constraint [constraint definition #1]
:Constraint [constraint definition #2]

:EndOperatingRegime

Each operating regime defines conditions under which a given outflow relation is used for a specific
control structure. Typical reservoirs would have different regimes based upon season and stage, where
different outflow strategies are used under high stage conditions than low stage conditions. Regime rules
can therefore be linked to stage, flow, time of year, or specific dates. The :UseCurve specifies the name
of the outflow relation used (e.g., a :StageDischargeTable or :Orifice relation within the same
:OutflowControlStructure command block). These are accompanied by lists of conditions under
which the operating regime exists, and lists of constraints to put on the outflow relation. If multiple
operating regimes are present, the first in the list whose conditions are satisfied will be applied (i.e., the
first regime will be highest priority).

:Condition [variable] [comparison] [value] {val2}
# or
:Condition [variable] [comparison] [value] {val2} {IN_BASIN SBID}

A condition indicating the operating regime should be active. ALL conditions must be met in order for
the operating regime to be active. The variable term must be one of:

• STAGE - the stage of the reservoir, in m

• STAGE_CHANGE - the rate of change in stage of the reservoir, in m/d

• FLOW - the total outflow from a reservoir or stream, in m3/s

• RIVER_DEPTH - the depth of water in a specified subbasin

• DAY_OF_YEAR - the Julian date

• DATE - a date in yyyy-mm-dd format

if the IN_BASIN clause is not used, STAGE and FLOW refer to the stage and total discharge from this
reservoir. If not, this indicates that the stage, flow, or river depth is evaluated in a basin other than the
one containing the reservoir. The comparison string is one of

• IS_LESS_THAN

• IS_GREATER_THAN

• IS_BETWEEN - this requires that val2 is present

211



The values of value and val2 (for the IS_BETWEEN conditional) are the basis for comparison. Example
conditions:

:Condition STAGE IS_LESS_THAN 373.3
:Condition STAGE IS_LESS_THAN 273 IN_BASIN 43
:Condition FLOW IS_GREATER_THAN 32.3
:Condition DAY_OF_YEAR IS_BETWEEN 120 242 #May-Aug
:Condition DAY_OF_YEAR IS_BETWEEN 243 119 #Sep-Apr
# note the IS_BETWEEN works with date wrapping around Jan 1
:Condition RIVER_DEPTH IS_LESS_THAN 484.5 IN_BASIN 5
:Condition DATE IS_BETWEEN 2010-07-01 2012-06-31

:Constraint [variable] [comparison] [value] {val2}

Constraints are used tomodify the flow directly calculated from the outflow relation. Here, thevariable
can either be FLOW or FLOW_DELTA, the comparison is one of IS_LESS_THAN, IS_GREATER_THAN,
or IS_BETWEEN and value and val2 are the basis of the comparison; for flow, the units of these values
are m3/s, and for flow ramping, the units are m3/s/d. The calculated flow will be modified to satisfy the
constraints. If multiple constraints are supplied, the order determines the priority of constraints, with the
first constraint being dominant over the second, and so on. Example constraints:

:Constraint FLOW IS_LESS_THAN 100
:Constraint FLOW_DELTA IS_LESS_THAN 12
:Constraint FLOW_DELTA IS_BETWEEN -12 12

The last constraint indicates that the flow cannot be increased or decreased by more than 12 m3/s over
the course of a day, which would stabilize flows.

Example Control Structures

:OutflowControlStructure
:SluiceGate 1open 423.2 2.0 0.5 0.6 1
:SluiceGate 2open 423.2 2.0 0.5 0.6 1
:SluiceGate 3open 423.2 2.0 0.5 0.6 1
:BasicWeir overflow 430 4.0 0.4

# Operating Regime Definitions----------------
:OperatingRegime winter

:UseCurve 1open
:Condition DAY_OF_YEAR IS_BETWEEN 304 90 #Nov-Mar

:EndOperatingRegime
:OperatingRegime summer

:UseCurve 2open
:Condition DAY_OF_YEAR IS_BETWEEN 91 303 #Apr-Oct
:Condition STAGE IS_LESS_THAN 426

:EndOperatingRegime
:OperatingRegime summer_high

:UseCurve 3open
:Condition DAY_OF_YEAR IS_BETWEEN 91 303 #Apr-Oct
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:Condition STAGE IS_GREATER_THAN 426
:EndOperatingRegime
:OperatingRegime overflowing

:UseCurve overflow
:Condition STAGE IS_GREATER_THAN 430

:EndOperatingRegime
:EndOutflowControlStructure

The first three regimes are exclusive - the conditions for each cannot be simultaneously satisfied, so the
reservoir will operate with either 1, 2, or 3 sluice gates open based upon time of year and stage. Upon
very high stage conditions, the overflowing regime can activate (in addition to the outflow from 1 sluice
in the winter or 3 in the summer).

The order of regimes does not matter, but the user must be careful to not allow conditions that would lead
to duplication of outflows from the same structure (e.g., two regimes representing the same structure with
one conditions of ’greater than 300’ and one condition of ’greater than 301’). Raven cannot identify these
duplicate outflows.
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A.4 Time Series Input file (.rvt)

The time series input file is used to store time series of forcing functions (precipitation, temperature, etc.).
It also may include additional commands for handling irrigation and diversions (i.e., any control systems).
An .rvt file is structured as follows:

#--------------------------------------------
# Raven Time Series Input file
#--------------------------------------------
:Gauge Stratford MOE (ID:6148105)

:Latitude 43.37250
:Longitude -80.55360
:Elevation 53
:RedirectToFile StratfordMOEData.rvt

:EndGauge
:Gauge WaterlooWeatherStation

:Latitude 43.37
:Longitude -80.55
:Elevation 57
:RedirectToFile WaterlooWeatherStationData.rvt

:EndGauge
:RedirectToFile UpstreamInflow.rvt
:RedirectToFile LandCoverChange.rvt
:RedirectToFile ObservedHydrograph.rvt

Note that standard practice is to have a single master modelname.rvt file that ’points to’ a number of
other .rvt files which contain unique data sets, i.e., an individual .rvt file for meteorological forcing data at
a single meteorological gauge, another for observed stream flow at a stream gauge, and another reporting
pumping from one reservoir. The ’pointing’ is done using the :RedirectToFile command as shown
in the above example file. All of the redirected files are treated as if their contents have been inserted into
the master .rvt file.

Please note that all of Raven’s inputs and internal calculations use the standard proleptic Gregorian
calendar with leap years included by default. If input data ignores leap years, Raven can handle
some alternate calendar types by using the :Calendar command.
All hourly data referenced to GMT (Greenwich Mean Time) or another time zone outside the wa-
tershed will need to be shifted to the local time zone to be consistent with the solar calculations,
which assume solar noon is at 12:00PM. Raven does not perform time zone shifts automatically.

A.4.1 Meteorological Gauge Data Commands

The entries in the .rvt file are predominantly meteorological gauge locations (either real or hypothetical)
that provide time series of needed precipitation, temperature and other atmospheric forcings used by the
model (see appendix A.4.7 for information about using gridded model inputs instead of gauges). This is
supplemented by information about other time series needed for simulation. Each gauge entry is specified
within a bracketed statement,

:Gauge [gaugename]
:Latitude [latitude]
:Longitude [longitude]
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:Elevation [elevation]
[other gauge data and time series information here]

:EndGauge

andmust contain the latitude/longitude (using the :Latitude, :Longitude commands) and typically
contain a number of time series. Two formats, :Data (for a single time series) and :MultiData (for
multiple time series), may be used to specify collections of forcing functions measured at the gauge. These
are often stored in their own individual file and accessed via the :RedirectToFile command.

:Data [forcing type] {units}
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
v_1
v_2
v_3
...
v_N

:EndData

where here, v_i are the ith time series values and the forcing_type term is one of the forcings listed
in table D.2 (e.g., PRECIP, TEMP_MIN. etc.). N is the total number of data points provided, evenly spaced
at the specified time interval. Note that this is the default format for most of the regularly spaced time
series commands in Raven.

It is assumed that the array of values specified are time-averaged values over the specified time interval.
All forcings are in period-starting format, so that if the start date is 2002-10-01 00:00:00 with a time in-
terval of 1.0 days, then the first data item represents the average forcing value on October 1st. Note that
the terms may be space-, comma-, or tab-delimited and would typically be entered as a single column.
Multiple data points may be included on a single line, though the single-column format makes this easier
to use in other program utilities. Also note that the time interval must be specified as a double, and cannot
be specified using a format of 00:00:00.

IMPORTANT: The default units of the forcing functions (as tabulated in D.2) must be respected.
Though non-intuitive to many hydrologists, precipitation intensity (in mm/d) must be specified
even for hourly data intervals, e.g., 1 cm of rain in an hour would be specified as a rainfall rate of
240 mm/d.

:MultiData
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
:Parameters PARAMETER_1 PARAMETER_2 ... PARAMETER_J
:Units units_tag_1 units_tag_2 ... units_tag_J
v_11, v_12, v_13
v_21, v_22, v_23
...
v_N1, v_N2, v_N3

:EndMultiData

This command is an alternate to the :Data approach, allowing multiple data to be included as a single
data table using the :MultiData command, with columns corresponding to individual data types. Here,
PARAMETER_i corresponds to the name of the input parameter (one of the forcing values in table D.2),
and the units tags should be consistent with the actual desired units in table D.2.
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Again, note that the time interval must be specified as a double, and cannot be specified using a format of
00:00:00. Raven will not perform units conversions for you if alternate units are specified in the :Units
header.

Other additional termsmay be associated with each gauge, contained between the :Gauge-:EndGauge
brackets:

:Elevation [elevation]

The elevation of the gauge, typically in meters above mean sea level. This is used both in interpolation and
in orographic correction of gauge data when mapped to HRUs at different elevations. Must be between
the :Gauge-:EndGauge brackets

:Latitude [latitude]

The latitude of the gauge, in degrees. This is used in interpolation of gauged forcings.

:Longitude [longitude]

The longitude of the gauge, in degrees. This is used in interpolation of gauged forcings.

:MeasurementHeight [height]

The height of the gauge relative to the ground surface, in meters. This is particularly important for wind
velocitymeasurements to calculate (e.g.) atmospheric conductance and other parameters dependent upon
vertical wind speed distribution, but may typically be ignored in temperature-only gauges.

:RedirectToFile [filename]

This treats the contents of file “filename” as if they were simply inserted into the .rvt file at the location
of the :RedirectToFile command. This is useful for storing individual time series at a gauge in
separate files. If no path is specified, the filename must be reported relative to the working directory.
This command must be provided in the main model .rvt file and not within nested files. Note that this
command can work within a :Gauge-:EndGauge structure, but not within other structures (e.g., a
:Multidata entry cannot be split into multiple files in this manner).

:RainCorrection [value]

A multiplier (hopefully near 1.0) applied to all reported rainfall rates at this gauge; often used as a correc-
tion factor for estimating proper rainfall volumes at gauges prone to undercatch or otherwise not expected
to be representative of local conditions. Must be between the:Gauge-:EndGauge brackets (or between
:GriddedForcings-:EndGriddedForcings brackets for gridded rainfall data).

:SnowCorrection [value]

A multiplier (hopefully near 1.0) applied to all reported snowfall rates at this gauge; often used as a
correction factor for estimating proper snow volumes at gauges prone to undercatch or otherwise not
expected to be representative of local conditions. Must be between the :Gauge-:EndGauge brackets
(or between :GriddedForcings-:EndGriddedForcings brackets for gridded snowfall data).
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:TemperatureCorrection [value]

An additive correction (hopefully near 0.0) in ◦C, applied to reported temperatures at this gauge (specif-
ically, TEMP_AVE, TEMP_DAILY_MIN, TEMP_DAILY_MAX, and TEMP_DAILY_MIN); may be used in
bias correction of measured temperatures. Must be between the :Gauge-:EndGauge brackets (or be-
tween :GriddedForcings-:EndGriddedForcings brackets for gridded temperature data).

:MonthlyAveTemperature [J F M A M J J A S O N D]

A list of 12 representative monthly average temperatures at the gauge, from Jan to Dec, in ◦C. Must
be between the :Gauge-:EndGauge brackets. Predominantly used for the PET_FROMMONTHLY PET
estimation method, not otherwise needed.

:MonthlyMinTemperature [J F M A M J J A S O N D]
:MonthlyMaxTemperature [J F M A M J J A S O N D]

A list of 12 representative monthly minimum and maximum temperatures at the gauge, from Jan to Dec,
in ◦C. Must be between the :Gauge-:EndGauge brackets. Predominantly used for the PET_HARG-
REAVES PET estimation method, not otherwise needed.

:MonthlyAveEvaporation [J F M A M J J A S O N D]

A list of 12 representative monthly average potential evapotranspiration rates at the gauge, from Jan to
Dec, in mm/d. Must be between the :Gauge-:EndGauge brackets. Predominantly used for the PET_-
FROMMONTHLY PET estimation method, not otherwise needed.

:MonthlyEvapFactor [J F M A M J J A S O N D]

A list of 12 monthly evaporation factors [mm/d/K]. This is used in the PET_MONTHLY_FACTOR estima-
tion routine, not otherwise needed. Must be between the :Gauge-:EndGauge brackets.

:CloudTempRanges [cloud_temp_min] [cloud_temp_max]

Temperature ranges (in ◦C) used for estimation of cloud cover using the CLOUDCOV_UBCWM UBCWM
model approach, not otherwise needed. Must be between the :Gauge-:EndGauge brackets.

:EnsimTimeSeries [filename]

A table of time series (similar to the :MultiData command) may be specified using the Ensim .tb0
format. The input parameter names are the same which are provided in table D.2. This must be between
the :Gauge-:EndGauge brackets when providing gauge meteorological data. An example is provided
below:

#####################################################################
:FileType tb0 ASCII EnSim 1.0
#--------------------------------------------------------------------
:ColumnMetaData

:ColumnName TEMP_MAX TEMP_MIN PRECIP
:ColumnUnits DegC DegC mm/d
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:ColumnType float float float
:EndColumnMetaData
#
:StartTime 1983/02/01 00:00:00.000
:DeltaT 24:00:00.000
#
:EndHeader
4.4 -0.6 0
5.0 -2.5 0.6
...
5.6 -3.0 0.3
4.4 -4.6 0.0
1.1 -4.4 0.0

Any individual time series can also be read fromNetCDF files using a:ReadFromNetCDF-:EndReadFromNetCDF
block. This commandworks with ALL of the time series in format similar to the:Data-:EndData block,
and replaces the date/time/interval/data vector contents,e.g.,

:Data [forcing type] [unit]
:ReadFromNetCDF

:FileNameNC [path/filename of .nc file]
:VarNameNC [name of variable in .nc file]
:DimNamesNC [stations_name] [time_name] # (2-D) or
:DimNamesNC [time_name] (1-D)
:StationIdx [ID of station of interest (starts with 1)]
#OR
:StationIdx FROM_STATION_VAR
:TimeShift [time stamp shift in days] #optional
:LinearTransform [slope] [intercept] #optional

:EndReadFromNetCDF
:EndData

This optional internal contents of the :Data-:EndData block can be used to generate forcing time
series from NetCDF data. As indicated in documentation of the :Data command, the forcing_-
type is chosen from the options in table D.2. The NetCDF variables need to be either one-dimensional
(time) or two-dimensional (time x stations or stations x time). Raven readily supports NetCDF input
with an UNLIMITED time dimension. It is suggested that all NetCDF files follow the CF conventions
(https://cfconventions.org/).

If the data are two-dimensional, the user needs to specify which station time series should be read in using
the :StationIdx command. Alternately, as done with the Deltares-FEWS adaptor, users may specify
the FROM_STATION_VAR flag, which requires that there is a station_id array attribute array in the
NetCDF file containing gauge names consistent with the names in the :Gauge command and in the same
order as the station data. Raven will identify the appropriate index from this mapping. For other time
series which are not associated with meteorological gauges (e.g., observation data or reservoir operational
rules), the FROM_STATION_VAR command requires that the station_id attribute includes either
HRU or subbasin IDs instead of gauge names, as is appropriate for the time series. Therefore, gauge,
subbasin, and HRU data must be stored in separate NetCDF input files.

For standard applications, neither the :FileNameNC or :VarNameNC should include an asterisk char-
acter. This wildcard character is replaced with the ensemble ID when Raven is running in ensemble mode,
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including ensemble Kalman filter. In such a case, a different file name or variable name (respectively) will
be used by each ensemble member. This asterisk/wild card usage is also only allowed in the auxiliary .rvt
file specified using the :ExtraRVTFile command in the .rve file.

The:ReadFromNetCDF block also allows for the specification of a time shift:TimeShift in fractional
days. For example, a time shift

:TimeShift -0.25

will shift all data earlier by 6 hours. Hence, a data point that was read for 8:00 am will be handled as 2:00
am in the model. The time shift only applies when the input data are sub-daily. Otherwise data can only
be shifted by whole days.

The data read can also be linearly transformed using :LinearTransform. The slope and intercept
specified will be applied to the data right after reading. The :LinearTransform can be used to apply
unit conversions of the data. For example, the linear transformation

:LinearTransform 1.0 -273.15

would convert temperature data that were read in Kelvin into Celsius.

Advice

The :LinearTransform command is very useful for converting precipitation data that is na-
tively in units of mm/data interval rather than mm/d, as Raven requires. If the NetCDF precipi-
tation data is accumulated data, the :Deaccumulate command may be added to the :Read-
FromNetCDF block, which will deaccumulate the data.
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A.4.2 Observation Time Series

Time series of known flows or other model states may also be specified to support the model, either
by calculating diagnostic metrics which report the fit of observed to simulated states, or to override
stream discharge or reservoir levels with observed values. These are not linked to a specific Gauge, and
would therefore not be included in an :Gauge...:EndGauge bracket. These time series should be stored
in a separate .rvt file and referred to in the main .rvt file using the :RedirectToFile command.
Note that all of the below time series may be read from NetCDF by using the :ReadFromNetCDF-
:EndReadFromNetCDF command from the previous section.

:ObservationData [data_type] [basin_ID or HRU_ID] {units}
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
v_1
v_2
v_3
...
v_N

:EndObservationData

Similar to the :Data command above. This specifies a continuous time series of observations of type
data_type with units units located either at the outlet of the basin specified with basin_ID or
the HRU specified with HRU_ID. The data types correspond to state variables in the model, and the
data_type therefore must be taken from table D.1, unless the data is (1) a hydrograph, in which
case the HYDROGRAPH tag is used, (2) a reservoir stage, in which case the RESERVOIR_STAGE tag
is used, (3) a reservoir inflow (the RESERVOIR_INFLOW tag) (4) a reservoir net inflow (runoff+P-E, the
RESERVOIR_NETINFLOW tag), (5) a river outlet water level (the WATER_LEVEL tag) (6) stream temper-
ature (theSTREAM_TEMPERATURE tag), (7) stream concentration (theSTREAM_CONCENTRATION tag)
or (8) lake/reservoir area (the LAKE_AREA tag, with observation units of m2). For these seven variables,
the basin ID is specified. For all other variables (e.g., soil moisture or snow), the HRU ID is specified. With
the exception of the hydrograph and inflow hydrographs, it is assumed that the observations correspond
to instantaneous observations in time rather than time-averaged quantities. This command defines a time
series of regularly spaced consecutive values. If the time series time interval doesn’t match the model time
step then the time series is re-sampled to match the model. For irregularly spaced observations, use the
:IrregularObservations command.

The units tag for observation data is informational only. Raven will not convert the values if non-
standard units are provided. Here, discharge observations must be in m3/s, stage and water levels
in m, temperatures in ◦C, concentrations in mg/l, and lake area in m2.

Missing or unknown observations should be specified using the flag -1.2345. Note that the observation
time series does not have to overlap the model simulation duration. All data outside the supplied time
interval is treated as blank.

If an observed hydrograph is supplied, it will be output to the Hydrographs.csv file. Hydrographs
should be specified in period-starting format, i.e., for a time series of daily discharges starting on October
1, 2006, the start time would be 2006-10-01 00:00:00, at the start of the first data period provided.

It is critical that snow observations be converted to mm snow water equivalent, rather than snow
depth, as often reported. This is a common oversight.
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:ObservationWeights [data type] [ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
wt_1
wt_2
wt_3
...
wt_N

:EndObservationWeights

This command is used applyweights to observation data for the calculation of diagnostics. Thedata type,
ID, and number of entries all need to match an existing :ObservationData time series. Not all eval-
uation metrics can be weighted, in which case all weights are ignored except weights of zero.

:IrregularObservations [data type] [ID] [N] {(optional) units}
[date yyyy-mm-dd] [time hh:mm:ss.0] v_1
[date yyyy-mm-dd] [time hh:mm:ss.0] v_2
...
[date yyyy-mm-dd] [time hh:mm:ss.0] v_N

:EndIrregularObservations

This command is used for time series where observations are discontinuous or irregularly spaced. Values
in these time series are assumed to be instantaneous and simulated values are linearly interpolated to
match the observation times for comparison.

Missing or unknown observations should be specified using the flag -1.2345. Note that the observation
time series does not have to overlap the model simulation duration. All data outside the supplied time
interval is treated as blank.

:IrregularWeights [data type] [ID] [N]
[date yyyy-mm-dd] [time hh:mm:ss.0] wt_1
[date yyyy-mm-dd] [time hh:mm:ss.0] wt_2
...
[date yyyy-mm-dd] [time hh:mm:ss.0] wt_N

:EndIrregularWeights

This command is used apply weights to irregular observations, where wt_i is the weight for the ith irreg-
ular data point in a corresponding :IrregularObservations time series. Weights must be between
zero and one. If values in the time series are null or blank, the weights are automatically treated as zero.
The data type, ID, and number of entries all need to match an existing :IrregularObservations
time series.

A.4.3 Reservoir Control Time Series

The following time series commands deal with reservoir operational constraints.

:ReservoirExtraction [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
Q_1
Q_2
...
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Q_N
:EndReservoirExtraction

where Q_i is the ith inflow in m3d−1. Discharges are positive for reservoir extraction and negative for
injection of water into the reservoir located at the outlet of the subbasin indicated by the basin ID. This
command is usually used to represent diversion flow for irrigation or similar.

:VariableWeirHeight [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
h_1
h_2
...
h_N

:EndVariableWeirHeight

where h_i is the ith height of the reservoir outflow weir in m. All weir heights should be positive and are
relative to the minimum crest height of the stage-discharge curve (i.e., weir heights are not with reference
to mean sea level). This minimum crest height is zero by default for a ’lake-like’ reservoir (those specified
using :WeirCoefficient and :CrestWidth parameters) and equivalent to the highest stage with
zero discharge in reservoirs defined using the :StageRelations command. This time series of weir
heights is only applied to the reservoir located at the outlet of the subbasin indicated by the basin ID.

:ReservoirMaxStage [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
h_1
h_2
...
h_N

:EndReservoirMaxStage

where h_i is the ith maximum stage of the reservoir in m (usually with sea level as the datum), and
Basin ID corresponds to the subbasin with the corresponding reservoir at its outlet. If the computed stage
exceeds this stage during operation, the outflow from the reservoir will be adjusted so as to keep the stage
at the specified maximum. This time series is often a constant value corresponding to the maximum flood
pool level of a reservoir.

:ReservoirMinStage [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
h_1
h_2
...
h_N

:EndReservoirMinStage

where h_i is the ith minimum stage of the reservoir in m (usually with sea level as the datum), and Basin
ID corresponds to the subbasin with the corresponding reservoir at its outlet. If the simulated stage is
below this stage during model operation, the outflow from the reservoir will be set to the minimum reser-
voir flow (as specified using the :ReservoirMinStageFlow command. This time series is typically
used to represent reservoir rule curves.
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:ReservoirMinStageFlow [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
Q_1
Q_2
...
Q_N

:EndReservoirMinStageFlow

where Q_i is the ith specified minimum stage discharge from the reservoir in m3/s, and Basin ID corre-
sponds to the subbasin with the corresponding reservoir at its outlet. If the simulated stage is below the
stage specified by the :ReservoirMinStage command during model operation, the outflow from the
reservoir will be set to this flow, overriding the flow determined through stage-discharge relations. This
time series is typically used to represent reservoir rule curves.

:OverrideReservoirFlow [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
Q_1
Q_2
...
Q_N

:EndOverrideReservoirFlow

where Q_i is the ith overridden outflow rate from the reservoir in m3/s, separated by the given time
interval, and Basin ID corresponds to the subbasin with the corresponding reservoir at its outlet. Regard-
less of the stage-discharge relation for the reservoir, the flow will be overridden with this specified flow
time series unless the value for Q_i is Raven’s blank value of -1.2345, in which case the discharge will
be calculated as normally done using the stage-discharge curve. This command is useful for replacing
the calculated flow from a reservoir with observed flow during model calibration. It can also be used in
short-term reservoir operations for evaluating discharge scenarios. The only time during which this spec-
ified flow is disregarded is if the maximum stage constraint for the reservoir (e.g., as specified using the
:ReservoirMaxStage command) is exceeded.

:ReservoirTargetStage [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
h_1
h_2
...
h_N

:EndReservoirTargetStage

where h_i is the ith target stage of the reservoir in m (usually with sea level as the datum), and Basin
ID corresponds to the subbasin with the corresponding reservoir at its outlet. If the simulated stage is
above or below this stage during model operation, the outflow from the reservoir will be adjusted to
move towards this target stage subject to the constraint that the maximum increase rate of the discharge
(specified using the :ReservoirMaxQDelta command) is respected. This time series is typically used
to represent reservoir rule curves. This target stage must be between the minimum and maximum stages
specified using the :ReservoirMaxStage and :ReservoirMinStage commands. If the target
stage is given a blank value (-1.2345) for any time increment, the model will use the discharge as calculated
from the stage-discharge relation.
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:ReservoirMinFlow [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
Q_1
Q_2
...
Q_N

:EndReservoirMinFlow

where Q_i is the ith minimum flow of the reservoir in m3/s, and Basin ID corresponds to the subbasin
with the corresponding reservoir at its outlet. If the simulated/calculated desired flow from the reservoir
is below this flow rate, the flow rate is corrected to this minimum flow value. If downstream reservoir
demands are included, they will increase the specified value of this minimum flow rate to also meet
downstream demand.

:ReservoirMaxFlow [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
Q_1
Q_2
...
Q_N

:EndReservoirMaxFlow

where Q_i is the ith maximum flow of the reservoir in m3/s, and Basin ID corresponds to the subbasin
with the corresponding reservoir at its outlet. If the simulated/calculated desired flow from the reservoir
is above this flow rate, the flow rate is corrected to this maximum flow value. Only the maximum stage
constraint associated with the :MaxReservoirStage command will override this maximum flow con-
straint (i.e., the outflow from the reservoir can exceed this max flow if the reservoir is full).

:ReservoirMaxQDelta [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
QD_1
QD_2
...
QD_N

:EndReservoirMaxQDelta

where QD_i is the ith maximum flow rate increase in m3/s/d, and Basin ID corresponds to the subbasin
with the corresponding reservoir at its outlet. If the simulated stage is above the target stage indicated by
the :ReservoirTargetStage command during model operation, the outflow from the reservoir will
be adjusted to move towards this target stage subject to the constraint that the maximum increase rate of
the discharge (specified using this command) is respected. This time series is typically used to represent
reservoir rule curves.

:ReservoirMaxQDecrease [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
QD_1
QD_2
...
QD_N
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:EndReservoirMaxQDelta

where QD_i is the ith maximum flow rate decrease rate in m3/s/d, and Basin ID corresponds to the
subbasin with the corresponding reservoir at its outlet. If the simulated stage is above the target stage
indicated by the :ReservoirTargetStage command during model operation, the outflow from the
reservoir will be adjusted to move towards this target stage subject to the constraint that the maximum
decrease rate of the discharge (specified using this command) is respected. This time series is typically
used to represent reservoir rule curves.

A.4.4 Irrigation, demand, and diversions

:BasinInflowHydrograph [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
Q_1
Q_2
...
Q_N

:EndBasinInflowHydrograph

where Q_i is the ith inflow in m3/s. This command is typically used to (1) specify inflows coming from
an unmodeled portion of the domain; (2) override simulated inflow to a stream reach with observed in-
flows from a stream gauge, as might be done during calibration; or (3) add additional inflows to a stream
reach from human activities, e.g., a wastewater treatment plant inflow. The discharge is introduced at
the upstream end of a basin reach, therefore this should typically not be used in headwater basins (see
:BasinInflowHydrograph2.

:BasinInflowHydrograph2 [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
Q_1
Q_2
...
Q_N

:EndBasinInflowHydrograph2

where Q_i is the ith inflow in m3/s. This command is typically used to add (or subtract, if negative)
inflows to or outflows from a stream reach from human activities, e.g., a wastewater treatment plant
inflow or irrigation demand. The difference between this and :BasinInflowHydrograph is that it
extracts/injects water from the downstream end of the basin stream reach rather than the upstream end.
It may therefore be used in headwater basins.

:IrrigationDemand [SBID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
Qirr_1
Qirr_2
...
Qirr_N

:EndIrrigationDemand

This time series indicates the time history of irrigation demand, in m3/s, from a subbasin, drawn from
the outlet of the subbasin (downstream of the reservoir, if one is present). If there is sufficient water
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available (i.e., enough to satisfy positive flow and/or the environmental minimum flow), the water will be
removed. This approach is preferred over using negative flows in a :BasinInflowHydrograph time
series, which will not respect these constraints.

:ReservoirDownstreamDemand [down_ID] [res_ID] [percent_met] {j1} {j2}

This command modifies the minimum outflow from a reservoir or set of reservoirs upstream of a sub-
basin with irrigation demand (supplied using the :IrrigationDemand time series command) in order
to satisfy some percentage of this downstream irrigation demand. Here, down_ID is the subbasin in-
dex referring to a subbasin with an irrigation demand time series, the res_ID is the upstream subbasin
index of a reservoir which releases sufficient water to satisfy this demand (i.e., its minimum flow rate is
modified to satisfy demand), and percent_met is the total percentage of the irrigation demand met
by this reservoir, from 0 to 1, with 1 indicating 100% of demand is met by the specified reservoir. If the
res_ID is _AUTO and percent_met is _AUTO, the method indicated by the :ReservoirDeman-
dAllocation command in the .rvi file will be used to identify all of the upstream reservoirs and split
the demand between them according to contributing area, maximum capacity, or other metrics. Note that
the percent met will be globally corrected by the global parameter RESERVOIR_DEMAND_MULT, so if
percent met=0.5 and RESERVOIR_DEMAND_MULT is 1.2, then 60% of the downstream demand will be
satisfied by the specified reservoir.

Optional terms j1 and j2 are the start and end Julian dates on which this constraint will be applied. Both
terms are integers ranging from 1 (Jan 1) to 365 (Dec 31 in a non-leap year). The date range is inclusive, i.e.,
using the range 233-235 would enable this demand constraint from August 21st to August 23rd inclusively
in a non-leap year or August 20th to August 22nd in a leap year.

:FlowDiversion [fromSBID] [toSBID] [pct] [Qmin] {start_day} {end_day}

:FlowDiversionLookupTable [fromSBID] [toSBID] {start_day} {end_day}
nPoints
{Qsource_i Qdivert_i} x nPoints

:EndFlowDiversionLookupTable

These commands provide rules for flow diversions to move water from the outlet of one subbasin to the
inlet of another subbasin. The amount of diversion can either be in the form of a percentage of source
water discharge (the :FlowDiversion command) or using a lookup table (the :FlowDiversion-
RatingCurve command. In both cases, the fromSBID and toSBID are the source and target subbasin
IDs; if the toSBID is -1, then the water is diverted outside of the model. The optional start_day and
end_day command elements are the Julian start date of diversion and Julian end date of diversion; if
these are omitted, it is assumed the diversion is year-round. In the case of the :FlowDiversion com-
mand, the diverted flow is a percentage of the discharge from the source subbasin at the start of each time
step which is diverted, where pct is the decimal percentage (0..1) of flow in exceedance of the minimum
flow Qmin (in m3/s) which is diverted, i.e.,

Qdivert = α ·max((Qsource −Qmin), 0)

In the case of the:FlowDiversionLookupTable command, the diverted flow is linearly interpolated
from a lookup table specified by nPoints pairs of flows, where Qsource is the source basin discharge
(in m3/s) at the start of the time step and Qdivert is the corresponding diversion flow (in m3/s). The
Qsource flows must be in ascending order where the first point is always a flow of zero. No negative
diversions are allowed, and the diversion flow should always be less than the source flow (hopefully for
obvious reasons!).
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:EnvironmentalMinFlow [Basin ID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
Q_1
Q_2
...
Q_N

:EndEnvironmentalMinFlow

where Q_i is the ith minimum flow constraint in m3s−1. This command is used in conjunction with
the :IrrigationDemand time series at the same basin, and constrains the irrigation-based extraction
such that the minimum flow is always respected. Note that simulated stream discharge can be less than
this environmental minimum flow, but that irrigation cannot extract water such that this constraint is
violated.

:UnusableFlowPercentage [Basin ID] [value]

This command is used to constrain the water available for irrigation demand, and would be used in con-
junction with the :IrrigationDemand time series at the same basin. The value of this percentage
(expressed as a fraction from 0.0 to 1.0) indicates the percentage of flow above the environmental mini-
mum flow which is available for irrigation. For instance, if the discharge in a subbasin was 7 m3/s and the
environmental minimum flow was 3m3/s and the unusable flow percentage was 0.3 =30%, the maximum
amount of water that could be used to satisfy irrigation demand would be (1− 0.3) · (7− 3) =2.8 m3/s.
Most commonly, this would be used when there are regulatory constraints regarding allowable fractions
of streamflow that may be used to satisfy water demand. The unusable flow percentage for all subbasins
is zero by default, i.e., irrigation can draw down flows to the environmental minimum (or zero discharge,
if the environmental minimum is not specified).

A.4.5 Transport Time Series

The following time series are used to support simulation of constituent transport. In all cases the con-
stituent named constit_name must have been included in the :Transport command in the .rvi
file.

:ObservationData STREAM_CONCENTRATION [SBID] {constit_name}
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
C_1
C_2
...
C_N

:EndObservationData

This is a special version of the :ObservationData command which can be used to supply in-stream
concentrations (in mg/l) at the outlet of the main reach in subbasin SBID.

:ObservationData STREAM_TEMPERATURE [SBID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
T_1
T_2
...
T_N
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:EndObservationData

This is a special version of the :ObservationData command which can be used to supply in-stream
temperatures at the outlet of the main reach in subbasin SBID.

:ConcentrationTimeSeries [constit_name] [storage] {HRUGroup}
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
C_1
C_2
...
C_N

:EndConcentrationTimeSeries

This command is used to represent aDirichlet (specified concentration) condition in a storage unitstorage
(e.g., SOIL[0]) for the constituent named constit_name. By default this is applied to all storage com-
partments of this type across the domain, unless the HRUGroup identifier is provided, in which case it is
applied only to the specified HRU group. The concentrations C_i should be in units of mg/l. This is the
transient equivalent to the :FixedConcentration command.

:MassFluxTimeSeries [constit_name] [storage] {HRUGroup}
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
M_1
M_2
...
M_N

:EndMassFluxTimeSeries

This command is used to represent a Neumann (specified flux) condition in a storage unit storage
(e.g., SOIL[0]) for the constituent named constit_name. By default this is applied to all storage
compartments of this type across the domain, unless the HRUGroup identifier is provided, in which case
it is applied only to the specified HRU group. The mass fluxes M_i are provided in units of mg/m2/d. This
is the transient equivalent to the :MassFlux command.

:SpecifiedInflowConcentration [constit_name] [SBID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
C_1
C_2
...
C_N

:EndSpecifiedInflowConcentration

This command overrides the concentration of the inflow into a subbasin reach, where the subbasin is
specified by its SBID and the constituent of interest is indicated by constit_name. The concentrations
C_i must be in units of mg/L.

:SpecifiedInflowTemperature [SBID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
T_1
T_2
...
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T_N
:EndSpecifiedInflowTemperature

This command overrides the temperature of the inflow into a subbasin reach, where the subbasin is spec-
ified by its SBID. The temperature T_i must be in units of ◦C.

:MassLoading [constit_name] [SBID]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
M_1
M_2
...
M_N

:EndMassLoading

This command adds a continuous loading of constituent mass into a subbasin reach, where the subbasin is
specified by its SBID and the constituent of interest is indicated by constit_name. The mass loadings
must be supplied in units of kg/d.

A.4.6 Special Commands

:AnnualCycle [J F M A M J J A S O N D]
# for instance:
:ReservoirTargetStage [Basin ID]
:AnnualCycle 379 379 379 379 379 382 383 382 380 380 379 379

:EndReservoirTargetStage

This commandmay be used internal to any of the time series commands in this section (or any continuous
single-data time series with a similar format), by replacing the date/time/interval/N and data vector con-
tents between the :Data and :EndData (e.g.,) commands with the single :AnnualCycle command.
The monthly values here will be interpolated using the method specified in the :MonthlyInterpo-
lationMethod (section A.1.2) and used to populate a continuous cyclic time series.

:AnnualEvents
{[jul_day_1] [value]} x (num. of events)

:EndAnnualEvents
# for instance:
:MassLoading NITRATE [Basin ID]

:AnnualEvents
114 100.0 #100 kg/d on Apr 24
128 150.0 #150 kg/d on May 8

:EndAnnualEvents
:EndMassLoading

This commandmay be used internal to any of the time series commands in this section (or any continuous
single-data time series with a similar format), by replacing the date/time/interval/N and data vector con-
tents between the:Data and:EndData (e.g.,) commandswith the:AnnualEvents-:EndAnnualEvents
command block. The event values here (assumed to last for one entire day) will be used to populate a con-
tinuous time series, with all other values assumed to be zero.

229



:OverrideStreamflow [Basin ID]

This command overrides the discharge at the outlet of the basin definedwith this ID. For this towork, there
must be a corresponding observation HYDROGRAPH data set provided using the :ObservationData
command, and there cannot be blank values in the data record during the course of the simulation. This
command is often used to replace simulated inflows with observed inflows during model calibration. Note
that the overriden flows will NOT be reported in the Hydrographs.csv output file. Rather, the simulated
flows prior to overriding are reported.

:AssimilateStreamflow [Basin ID]

This command indicates that the observed flows at the indicated basin should be assimilated, if the :As-
similateStreamflow command is included in the .rvi file. For this to work, there must be a corre-
sponding observationHYDROGRAPH data set provided using the:ObservationData command. Blank
values in the data record are allowed during the course of the simulation.
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A.4.7 NetCDF Input Data

Raven supports gridded or station-based forcing inputs exclusively in NetCDF format (*.nc files). In case
of gridded inputs, the user needs to define some information about the variables and structure of the
gridded NetCDF input file; in addition, the mapping of grid cells to HRUs needs to be specified through
a weighting table (unless this mapping is 1:1 with subbasins/HRUs).

Example File: modelname.rvt

# --------------------------------------------
# Example Raven Gridded Input file
# --------------------------------------------
:GriddedForcing PRECIPITATION

:ForcingType PRECIP
:FileNameNC gridded_precip.nc
:VarNameNC pre
:DimNamesNC lon lat ntime # must be in the order of (x,y,t)
:GridWeights

:NumberHRUs 3
:NumberGridCells 24
# HRU GridCell Weight

1 15 0.4
1 16 0.6
2 14 1.0
3 14 0.2
3 15 0.3
3 13 0.5

:EndGridWeights
:EndGriddedForcing
#
:RedirectToFile UpstreamInflow.rvt
:RedirectToFile LandCoverChange.rvt
:RedirectToFile ObservedHydrograph.rvt

The forcing inputs like precipitation and temperature are traditionally given as time series per gauging
station (see appendix A.4.1). This becomes inconvenient if you have inputs available for multiple gauging
stations or you even have the forcings available on a grid covering your whole modeling domain. Hence,
Raven supports gridded input in NetCDF format. Instead of specifying a time series per gauge or grid cell
in the .rvt file, one can specify a single input grid inside a:GriddedForcing-:EndGriddedForcing
command structure:

:GriddedForcing [forcing name]
:ForcingType [type]
:FileNameNC [path/filename of .nc file]
:VarNameNC [name of variable in .nc file]
:DimNamesNC [long_name] [lat_name] [time_name]
:ElevationVarNameNC [elevation variable] #optional
:TimeShift [time stamp shift in days] #optional
:LinearTransform [slope] [intercept] #optional
:Deaccumulate #optional
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:GridWeights
:NumberHRUs [total number of HRUs]
:NumberGridCells [total number of grid cells]

[HRU ID] [Cell ID] [weight]
...

:EndGridWeights
# OR #
:MapStationsTo [HRUS or SUBBASINS]

:EndGriddedForcing

One has to specify the type of the forcing input in the :ForcingType command, e.g. PRECIP or
TEMP_AVE (see Table D.2 for complete list). The name of the file containing the data has to be given
:FileNameNC. The file can contain more data than only this specific forcing; only the data of the speci-
fied variable:VarNameNCwill be read and used by Raven. Since the order of the dimensions in a NetCDF
file is not unique, one has to specify the dimension names starting with the x-dimension (usually longi-
tudes), y-dimension (usually latitudes) and at last the name of the time dimension. The data must be a 3D
dataset; Raven does not support subsetting of higher dimensional (e.g., 4-D) arrays. One can also specify
a time shift :TimeShift to shift the data. For example, when data given in UTC need to be shifted to
local time; positive time shifts make the time stamp later, negative make it earlier. A linear transformation
can further be applied to the data. For example, when data are given in Kelvin but need to be provided
in Celsius for Raven. For instance, the following shift could be used to convert Fahrenheit temperature
gridded data to Celsius for Raven:

:LinearTransform 0.555555 -17.77777

which is equivalent to TC = (TF − 32)/1.8. Note that the output is the desired raven units and the input
to the linear transform is in the NetCDF units. The :Deaccumulate command, if included will take
cumulative precipitation values stored in the NetCDF file (such as are output by some weather models)
and convert these to precipitation rates, in mm/d.

The (optional) :ElevationVarNameNC refers to an attribute in the NetCDF file (if present) which
contains a surface elevation value for each grid cell, in meters above sea level. This is used for orographic
corrections of precipitation or temperature data when scaled to the HRUs in the model. If not included,
no orographic corrections are applied within the model.

To obtain the information about variable name :VarNameNC and dimension names :DimNamesNC, one
can use the command line tool ncdump available with the NetCDF library. Running the command

> ncdump -h gridded_precip.nc

will display the header information of the NetCDF file gridded_precip.nc and provide all the nec-
essary information.

The last required information is the :GridWeights block specifying how much each grid cell is con-
tributing to each HRUs. Only non-zero weights have to be given; missing pairs are automatically assumed
to be zero. The HRU ID has to correspond to the numbering in the :HRUs block of the .rvh file. The num-
bering of the grid cells is linewise starting with zero, i.e., the grid cell ID is CELLID = irow ∗Ncol + icol,
where irow and icol are the row and column indices of the grid cell, andNcol is the number of grid columns.
The valid range of grid cell IDs is therefore zero to (NcolNrow−1). The weights per HRU ID have to sum up
to 1.0 otherwise Raven raises an error message. The list of grid weights will get very long with large grids
and multiple HRUs. In such a case, the :GridWeights block would typically be stored in a separate
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file then and the :RedirectFile functionality be used instead.

This grid weights command block may be generated using the python scripts available, along with an
HRU shapefile and NetCDF input file, at:

https://github.com/julemai/GridWeightsGenerator

For NetCDF inputs that are not linked to a 2D grid, but rather store a vector of time series (e.g., from
meteorological stations), the following alternate to :GriddedForcing is available:

:StationForcing [forcing name]
:ForcingType [type]
:FileNameNC [path/filename of .nc file]
:VarNameNC [name of variable in .nc file]
:DimNamesNC [station_name] [time_name]
:TimeShift [time stamp shift in days] #optional
:LinearTransform [slope] [intercept] #optional
:Deaccumulate #optional
:GridWeights

:NumberHRUs [total number of HRUs]
:NumberStations [total number of stations]

[HRU ID] [station ID] [weight]
...

:EndGridWeights
# OR
:MapStationsTo [HRUS or SUBBASINS]

:EndStationForcing

This differs from:GriddedForcings only in the number of items in the:DimNamesNC command and
the use of the :NumberStations command in the grid weights portion; the remaining components of
the command are identical to that of :GriddedForcings, as defined above. This command is typically
used when 2D (stations x time) array attributes are stored in the NetCDF file instead of 3D gridded data
(typically, row x col x time).

:MapStationsTo [HRUS or SUBBASINS]

The:MapStationsTo command replaces the:GridWeights-:EndGridWeights command block,
and is specifically designed to support the FEWS forecasting. It presumes that the forcing data is stored
as an 2D array of stations x time, where there is either a 1:1 relationship between stations and HRUs
in the model (using the HRUS keyword) or a 1:1 relationship between NetCDF stations and subbasins
(SUBBASINS keyword). It also presumes that there is a vector attribute called ’stations’ in the NetCDF
file which stores the ordered list of HRU or subbasin IDs, as specified in the .rvh file, where the station
order is identical to the ordering of time series in the specified NetCDF variable indicated by :VarNa-
meNC.
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A.5 Initial Conditions Input file (.rvc)

The initial conditions input file is used to store the initial conditions for the model. By default, the initial
conditions for all model state variables is zero, and there are no required commands in this file (it could
even be completely empty). Alternately, the solution state from a previous run may be used to continue
its progress seamlessly.

Advice

For a basic model run which allows some spin-up period, the .rvc file may generally be left empty
with the exception of storage variables with long memories. For instance, groundwater storage
and reservoir stage often have to be initialized, otherwise it may take years for these to fill up
and equilibrate. Most other stores, including shallow soil storage, snow water equivalent, and
depression storage will often equilibrate within a one- or two-year spin-up.
For forecasting applications, it is recommended to use the solution.rvc from a previous equilibrated
model run as the initial conditions for the future run (this is called a ’warm start’).

Example File: modelname.rvc

# --------------------------------------------
# Raven Initial Conditions Input file
# --------------------------------------------
:HRUStateVariableTable

:Attributes, SOIL[0], SNOW,
:Units , mm, mm,

1, 145, 33,
2, 150, 13,

...
:EndHRUStateVariableTable
:UniformInitialConditions SOIL[3] 300

:BasinInitialConditions
:Attributes, Q
:Units , m3/s

31, 3.2
32, 3.6

...
:EndBasinInitialConditions

:InitialReservoirStage 32 432.1

A.5.1 Optional Commands

:HRUStateVariableTable
:Attributes,{ SV_TAG_1, SV_TAG_2,..., SV_TAG_NSV}
:Units ,{ units_1, units_2,..., units_NSV}
{HRUID , SV_value_1,SV_value_2,...,SV_value_NSV} x nHRUs
# AND/OR
{HRUGroup , SV_value_1,SV_value_2,...,SV_value_NSV} x nHGs
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:EndHRUStateVariableTable

Provides initial conditions for state variables in individual HRUs and/or across HRU groups within the
model. Here, NSV is the number of state variables for which initial state variable conditions are provided,
nHRUs is the number of HRUs for which initial conditions are specified (not all HRUs need to be contained
in this table), nHGs is the number of HRU groups included in the table. SV_TAG refers to the state variable
tag, with the complete list of valid state variable tags in table D.1. Each row can correspond to an HRU
(in which case the first item is the unique integer HRU ID) or an HRU Group (in which case the first item
in the row is the unique HRU group name). Each row must have NSV+1 entries. In the latter case, the
initial conditions are applied to all initial conditions in the group. If HRU initial conditions are specified
for both an HRU and for one or more HRU groups to which the HRU belongs, the last entry of this table
will determine the actual initial conditions applied. This command may be repeated more than one time
in the .rvc file; again, in the case of duplicate entries, the final state initial condition/HRU combination to
appear is the one applied.

Initial conditions for chemical constituents or temperatures use the following special notation for
the SV_TAG:
!NITRATE|SOIL[0]
or
!TEMPERATURE|SNOW
i.e., an exclamation point, followed by the name of the constituent followed by a vertical bar fol-
lowed by the water compartment state variable name.

This table is automatically generated as output in the solution.rvc file for all simulated HRUs, and can be
used to continue a previous simulation.

:UniformInitialConditions [SV_TAG] [value]

Applies a uniform initial condition (value) to the state variable corresponding to SV_TAG, with the com-
plete list of water storage state variable tags (and units) in table D.1. While it depends upon the state
variable, the value is usually in units of mm. If called after :HRUStateVariableTable, it will over-
write the initial conditions previously specified.

:UniformInitialConcentration [constit_name] [SV_TAG] [value]

Applies a uniform initial concentration (in mg/l ) of the constituent named constit_name to the water
storage state variable corresponding to SV_TAG, with the complete list of water storage state variable
tags in table D.1. If called after :HRUStateVariableTable, it will overwrite the initial conditions
previously specified.

:UniformInitialTemperature [SV_TAG] [value]

Applies a uniform initial concentration (in ◦C) to thewater storage state variable corresponding toSV_TAG,
with the complete list of state variable tags in table D.1. If called after :HRUStateVariableTable, it
will overwrite the initial conditions previously specified.

:BasinInitialConditions
:Attributes, Q
:Units , m3/s

{SBID, FLOWRATE} x nSubBasins

235



:EndBasinInitialConditions

A list of initial outflow rates from the subbasins, indexed by subbasin ID as specified within the :Sub-
Basins command of the .rvh file. If neither this command nor the :BasinStateVariables com-
mand is supplied, the initial flows in all reaches are estimated from the :AnnualAvgRunoff parameter.

:InitialReservoirStage [SBID] [stage]

Specifies initial reservoir stage for the reservoir located in the subbasin indicated by subbasin ID SBID,
in meters. For lake-type reservoirs, this defaults to meters above crest width if no absolute crest height
is provided. Typically, however, this height would be in metres above sea level, and the datum must
be consistent with the stage data provided in the reservoir specification of stage-discharge-area-volume
relationships.

:BasinStateVariables
:BasinIndex SBID, name

:ChannelStorage [val]
:RivuletStorage [val]
:Qout [nsegs] [aQout x nsegs] [aQoutLast]
:Qlat [nQlatHist] [aQlatHist x nQlatHist] [QlatLast]
:Qin [nQinHist] [aQinHist x nQinHist]
{reservoir variables}

:BasinIndex SBID, name
...

:EndBasinStateVariables

This command is usually generated only as part of the Raven solution file and would not typically be mod-
ified by the user. It fully describes the flow variables linked to each subbasin. Here, :ChannelStorage
[m3] is the volume of water in the channel, :RivuletStorage [m3] is the volume of water waiting
in catchment storage, Qout [m3/s] the array of outflows at each reach segment, Qlat [m3/s] is an ar-
ray storing the time history of outflows to the channel, Qin [m3/s] is the time history of inflows to the
uppermost segment of the reach.

:BasinTransportVariables [constit_name]
:BasinIndex ID

:ChannelMass [val]
:RivuletMass [val]
:Mout [nsegs] [aMout x nsegs ] [aMoutLast]
:Mlat [nQlatHist] [aMlatHist x nQlatHist] [MlatLast]
:Min [nQinHist] [aMinHist x nQinHist ]
{:ResMassOut [Mout_res] [last_Mout_res]}
{:ResMass [mass] [last mass]}

:BasinIndex ID
...

:EndBasinTransportVariables

This command is usually generated only as part of the Raven solution file and would not typically be
modified by the user. It fully describes the mass transport variables linked to each subbasin. Here,
:ChannelMass [mg] is the mass of constituent in the channel, :RivuletStorage [mg] is the mass
within the water waiting in catchment storage, :Mout [mg/s] the array of mass outflows at each reach
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segment, :Mlat [mg/s] is an array storing the time history of outflows to the channel, :Min [mg/s]
is the time history of mass inflows to the uppermost segment of the reach. If a reservoir is linked to
the subbasin, :ResMassOut is the mass outflow rate at the start and timestep, reported in mg/s, and
:ResMass reports the total mass (in mg) within the reservoir at the end and start of the time step,
respectively.

This content is also written to a state file if the constituent is TEMPERATURE, in which case the ’mass’
terms actually refer to the enthalpy within the channel/rivulet/reservoir stores (in MJ), and the mass flow
terms are energy flow rates, in MJ/s.

:TimeStamp [YYYY-mm-dd] [00:00:00.0]

This command is usually generated only as part of the Raven solution file and would not typically be mod-
ified by the user. Specifies time stamp linked to the initial conditions file. This is generated automatically
by Raven when it produces a snapshot of the state variables, such as when it generates the solution.rvc
output file. The time stamp should be consistent with the start time of the model.

:Nudge NUDGE_MULTIPLY [state_var] [mutiplier] {HRU Group}
# or
:Nudge NUDGE_ADD [state_var] [additive factor] {HRU Group}

This command can be used to collectivelymodify state variables either across thewatershed or (optionally)
just in one HRU group if a group is specified. This is typically used in a forecasting context or to test
sensitivity to model initial conditions. The state_var variable must be one of the state variables in D.1
which exists in the model. If NUDGE_MULTIPLIER is used, all state variables of this type in the specified
HRU group are multiplied by the factor provided (here, multiplier). If NUDGE_ADD is used, all state
variables of this type in the specified HRU group are increased by the additive factor, which implicitly has
the same units as the state variable. The :Nudge commands may be used in a separate .rvc file pointed
to using the :RedirectToFile command.
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A.6 Water Management Input file (.rvm)

The water management input file provides information used for water resources optimization within
Raven, including optimization of water demand delivery and reservoir operations. The key content of
this file is the specification of water management constraints (which must be satisfied in each time step)
and water management goals (which the optimizer attempts to satisfy).

# --------------------------------------------
# Example Raven Water Management (.rvm) File
# --------------------------------------------
:LookbackDuration 3

# Demand specification section ---------------
:RedirectToFile demands.rvm
:WaterDemand 323 3230 RAND_Corp_12

:AnnualCycle 0.01 0.02 0.02 0.8 0.8 0.8 0.8 0.8 0.8 0.2 0.2 0.2
:Penalty 35
:ReturnFraction 0.9

:EndWaterDemand

:DemandMultiplier Plot7_Irrigation 0.95
:DemandPenalty FarmerGlen 5

# goal specification section -----------------
:DefineDecisionVariable vFarmerBobsDelivered = !D121 + !D122 + !D134

:ManagementConstraint MothLakeBelowMaxStage
:Expression !h130 < 1233
:Condition DAY_OF_YEAR BETWEEN 121 239

:EndManagementConstraint

:ManagementGoal MothLakeFlowRamping_zoneB
:Expression !q130 < 20
:Condition !h130 < 1224 + @ts(headroom,0)
:Penalty 10.0

:EndManagementGoal

As with the *.rvi file # denotes a comment, but * does not - it is a mathematical operator. There are no
required commands in the .rvm file - all commands are optional.

A.6.1 Optional Control Commands

The below commands control the overall functioning of the water management optimization tool.

:LookbackDuration [duration]

The duration over which state variables are stored for use in management constraints and goals, where
duration is given in days. For instance, if goals are to be constrained by the reservoir stage three days
previous, then a lookback duration of at least 3 is needed. The lookback duration defaults to 1 day if not
specified. Note this can get memory-expensive in an hourly model.
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A.6.2 Optional Demand Specification Commands

Water demands can be defined as a time series of demands, as a function of flow, or using a user-specified
general expression. By default, demands do not return any of their water back to the routing network.
However, each demand can also be linked to a return flowwhichmay be directed to the same river reach as
it was withdrawn from, any other reach in thewatershed, or sent to anHRU group as irrigation (equivalent
to rainfall). Each water demand is assigned a penalty for not being satisfied (default=0.5 sm−3). Any
management goal or other demand with a higher penalty will get preferential access to water subject to
environmental flow minima or mass balance requirements (i.e., satisfaction of positive or zero flows at
every point in the stream network).

:WaterDemand [SBID] [demand_ID] [demand_name]
:DemandTimeSeries

:AnnualCycle [J F M A M J J A S O N D]
:EndDemandTimeSeries
:ReturnTimeSeries

:AnnualCycle [J F M A M J J A S O N D]
:EndReturnTimeSeries
:ReturnFraction [fraction]
:Penalty [magnitude]

:EndWaterDemand

This designates a demand just upstream of the outlet of the reach associated with subbasin SBID. The
water demand must be given a unique demand_ID and demand_name. Within the command block,
the demand magnitude must be specified as either a time series (:DemandTimeSeries), fraction of
in-stream flow (:DemandFlowFraction), or general expression (:DemandExpression). Option-
ally, a return flow may be specified as a time series (:ReturnTimeSeries), fraction of delivered de-
mand (:ReturnFraction), of general expression (:ReturnExpression). If both the return frac-
tion and time series/expression are The destination of return flow defaults to the location of this demand.
However, it can be overridden such that the delivery is applied to another subbasin reach (using the
:ReturnDestination command). By default, delivered flow does not return to the watershed.

:ReservoirWaterDemand [SBID] [demand_ID] [demand_name]
:DemandTimeSeries

:AnnualCycle [J F M A M J J A S O N D]
:EndDemandTimeSeries

:EndReservoirWaterDemand

This command operates identically to a :WaterDemand command block, except the demand is drawn
from the reservoir associated with SBID rather than the subbasin channel outlet, and any return flows
are likewise returned to the reservoir by default. It may include all of the internal commands listed below.

The following commands may be only used within a :WaterDemand - :EndWaterDemand block or
:ReservoirWaterDemand - :EndReservoirWaterDemand block:

• :DemandTimeSeries or :DemandFlowFraction

• :Penalty

• :ReturnTimeSeries

• :ReturnFraction
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• :ReturnDestination

• :ResetDate

• :IsUnrestricted

These commands are described below.

:DemandTimeSeries
:AnnualCycle [J F M A M J J A S O N D]

:EndDemandTimeSeries

Specifies thewater demand as awithdrawal rate in units ofm3/s. Typically specified using the //:AnnualCycle
command for brevity, the default time series or :AnnualPattern formats documented in appendix A.4
may also be used, though a :RedirectToFile would be typically used in the former case. Cannot be
used in conjunction with the :DemandFlowFraction command.

:DemandFlowFraction [fraction]

Specifies the water demand as a fraction of the total flow at the start of the time step, expressed as a
decimal. For instance, if 0.1 % of the streamflow was to be diverted through a demand, fraction would
be 0.001. Cannot be used in conjunction with the :DemandTimeSeries command. Must be inside a
:Demand command block.

:DemandExpression !dxxx = [expression]

An arbitrary expression for the demand as a function of any value in the model (see description of :Ex-
pression later in this appendix section). The left hand of the expression should be of the form !dxxx,
where xxx is the subbasin ID of this demand.

:Penalty [penalty]

Sets the penalty for unmet demand of the water demand. The penalty value must be positive, with zero
penalty indicating that there is no consequence for unmet demand. Demands with higher penalties will
effectively be given higher priority over other demands in the same system.

:ReturnTimeSeries
:AnnualCycle [J F M A M J J A S O N D]

:EndReturnTimeSeries

Specifies the maximum quantity of return flow as a flow rate in units of m3/s. Typically specified us-
ing the :AnnualCycle command for brevity, the default time series or :AnnualPattern formats
documented in appendix A.4 may also be used, though a :RedirectToFile would be typically used
in the former case. Cannot be used in conjunction with the :DemandFlowFraction command. If
used in conjunction with a :ReturnFraction command, the actual return flow will beQr = min(α ∗
Qd, Q

spec
r ), where α is the return fraction, Qd is the delivered demand, and Qspecr is the return flow as

specified by this time series. Must be inside a :Demand command block.

:ReturnFraction [fraction]

Specifies the maximum quantity of return flow as a percentage of delivered water. Must be between
0 and 1. If used in conjunction with a :ReturnTimeSeries command, the actual return flow will be

240



Qr = min(α∗Qd, Qspecr ), whereα is the specified return fraction,Qd is the delivered demand, andQspecr is
the return flow as specified by this time series. If not used in conjunction with a :ReturnTimeSeries
command, the actual return flow will be Qr = α ∗Qd. Must be inside a :Demand command block.

:ReturnDestination [SBID]

Specifies the subbasin reach where the return flow is directed, if the return fraction is greater than zero.
The default is the same basin as the flow. The subbasin is referred to by the id SBID. For a reservoir, the
same syntax is used, because the return flow will be added at the outlet of the reach draining into the
reservoir, which is the same as being added as a direct inflow to the reservoir. Cannot be used in conjunc-
tion with the :IrrigationDestination command. This is often used to represent municipal water
use, where water is delivered to a water treatment plant with some percentage returned via a wastewater
treatment plant at another location in the stream network. Must be inside a :Demand command block.

Advice

Flow diversions from one water body to another may be simply built by creating a water demand
with a return subbasin destination other than the source of the withdrawal.

A.6.3 Optional Demand Modification Commands

The following commands are used outside of a:WaterDemand command block or:ReservoirWaterDemand
command block, typically to modify demand properties from their default values within a specific sce-
nario. For instance, all of the water demand default properties could be specified in a single .rvm file, with
another .rvm file added via a (easily commented out) :RedirectToFile command which modifies
these defaults. Importantly, all of the below commands require that the demands already be defined at
an earlier point in the master .rvm file.

:DemandMultiplier [demand_ID] [mult]

Multiplies demands from the water demand identified by demand_ID by the (positive) value mult
for all model time steps. The demand_ID can be the integer demand identifier or the demand name,
as specified in the :WaterDemand demand command in the .rvm file or the :IrrigationDemand,
:WaterDemand, or :ReservoirExtraction time series commands in the .rvt file.

:DemandPenalty [demand_ID] [penalty]

Overrides or sets the penalty for unmet demand of the water demand identified by demand_ID, usually
called after the demand has been defined in a :WaterDemand command block using the :Penalty
command. The demand_ID can be the integer demand identifier or the demand name. The penalty value
must be positive and usually between 0 and 10, with zero penalty indicating that there is no consequence
for unmet demand.

:DemandResetDate [demand_ID] [julian_date]

Sets the date at which cumulative delivery for the year is reset to zero for the water demand identi-
fied by demand_ID. By default, this is a julian_date of zero, i.e., Jan 1. The demand specified by
demand_ID must already have been defined a :WaterDemand command block. This overrides the
value specified by the :ResetDate in the demand’s :WaterDemand command block.
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:DemandIsUnrestricted [demand_ID]

Indicates that a water demand is unconstrained by environmental flow minima constraints, i.e. that a
water demand will only be unsatisfied if the river/reservoir dries out (a mass balance constraint) or if other
management goals with larger flow penalties take precedence. The demand specified by demand_ID
must already have been defined a :WaterDemand command block.

:DemandGroup [dgroupname]
[demand_ID1] [demand_ID2] ... [demand_IDN]

:EndDemandGroup

Defines a demand group named dgroupname as a collection of water demands. The demand_ID
can be the integer demand identifier or the demand name, as specified in the :IrrigationDemand,
:WaterDemand, or :ReservoirExtraction time series commands. Demand groups can be used
to collectively adjust demand from all group members.

:DemandGroupMultiplier [dgroupname] [multiplier]

Multiplies demands of all members of demand group dgroupname by the (positive) value multiplier
for all model time steps.

A.6.4 Optional Constraint/Goal Specification Commands

Management constraints and goals are defined by general expressions composed of numerical values,
named numerical constants, model state variables such as streamflow or reservoir stage, user-specified
decision variables such as the total flow from four select basins, time series, lookup tables, and historical
values of state variables. These expressions can collectively represent very general water management
rules.

:NamedConstant [cname] [value]

Creates a named constant with name cname that can be used in constraint or goal expressions. Sug-
gested naming convention is to name constants starting with a lowercase c, e.g., cPowerMultiplier or
cRegulatoryLimitPct.

:LookupTable [name]
N
x1 y1
x2 y2
...
xN yN

:EndLookupTable

Creates a lookup table comprised of N pairs of x-values (the input to the lookup table) and y-values (the
result of the lookup table, interpolated for any input value x). These lookup tables can be referred to in
general expressions using @lookup(name,x), which will return the interpolated y value corresponding
to an input x value. If x is greater than xN, the linear segment between xN and xN-1 is assumed to extend
to any value. If x is less than x1, then the output is the value y1.
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# this command can appear in an .rvt file OR an .rvm file:

:UserTimeSeries [name]
[date yyyy-mm-dd] [time hh:mm:ss.0] [time interval (d)] [N]
v_1
v_2
...
v_N

:EndUserTimeSeries

# or, for monthly varying values:

:UserTimeSeries [name]
:AnnualCycle [J F M A M J J A S O N D]

:EndUserTimeSeries

# or, for specifying annual patterns:

:UserTimeSeries [name]
:AnnualPattern [STEP or INTERPOLATE]

[mm-dd] [v_1]
[mm-dd] [v_2]
[mm-dd] [v_3]
[mm-dd] [v_4]

:EndAnnualPattern
:EndUserTimeSeries

Creates a named time series of values. This time series can be referred to in general expressions using
@ts(name,n), where n is a time shift from the current time step, i.e., n=0 corresponds to the current
time step, n=-3 is three time steps in the past, andn=7 is seven time steps in the future. See the descriptions
of the :AnnualCycle and :AnnualPattern commands in appendix A.4.

:DefineWorkflowVariable [wv_name] = [expression]
# e.g.,
:DefineWorkflowVariable vBDeliv = !D121[-1] + !D122[-1] + !D134[-1]
:DefineWorkflowVariable vConv130= @lookup(Q130_lookup,!Q130[-1])

Creates and defines a workflow variable named wv_name and defines it using an expression which does
not include decision variables (syntax rules for this expression are defined under the :Expression com-
mand definition below). These workflow variables are used to build complex (but readable) management
rules. Unlike decision variables, they are calculated at the start of each routing time step prior to solving
the demand problem. As such, their definitions cannot include any decision variables which are a by-
product of optimization. They therefore can only be assembled from historical variables, but are preferred
over decision variables because 1) they do not increase the computational cost of solving the optimization
problem and 2) can be included in non-linear expressions such as lookup tables. Suggested naming con-
vention is that the control variables should be nouns and start with a lowercase v, e.g., vTotalFlowDemand
or vFlowToPowerConversion. If other workflow or design variables are used in the expression defining this
variable, they need to be defined prior to this variable in the input file. Workflow variables are calculated
in the order they are defined in the input file.
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:WorkflowVarDefinition [wv_name]
:OperatingRegime [nameA]

:Expression [wv_name] = [expression]
:Condition [condition]

:EndOperatingRegime
:OperatingRegime [nameB]

:Expression [wv_name] = [expression]
:EndOperatingRegime

:EndWorkflowVarDefinition

For more complex workflow variable rules where the definition of the variable is controlled by the current
system state. The syntax is identical to the :ManagementGoal described below, except the expressions
must begin with wv_name =, using the same name as appears in the first line of the command.

:DefineDecisionVariable [dv_name] = [expression]
# e.g.,
:DefineDecisionVariable vBobsDelivered = !D121 + !D122 + !D134
:DefineDecisionVariable vNelsonCreekQ = !Q435
:DefineDecisionVariable vPowerConv13 = @lookup(Q13_lookup,!Q13[-1])

Creates and defines a decision variable named dv_name and defines it using a linear expression (syntax
rules for this expression are defined under the:Expression command definition below). These decision
variables are tracked by the model and reported in DemandOptimization.csv. They can also themselves be
used to build complex (but linear) management rules. Suggested naming convention is that the decision
variables should be nouns and start with a lowercase v, e.g., vTotalFlowDemand or vFlowToPowerConver-
sion.

:DeclareDecisionVariable [dv_name]

Creates a decision variable named dv_name which may later be manipulated with management goals
and constraints, but may not have a fixed definition. These decision variables are tracked by the model
and reported in DemandOptimization.csv. They can also themselves be used to build complex (but lin-
ear) management rules. Suggested naming convention is that the decision variables should be nouns
and start with a lowercase v, e.g., vTotalFlowDemand or vFlowToPowerConversion. User specified deci-
sion variables with complex definitions conditional on system state should first be declared, then their
definition specified using a management condition.

Advice

Workflow variables and decision variables are often used in similar ways, but have a key difference:
decision variables are calculated as part of the optimization problem in each time step, whereas
workflow variables are calculated at the start of the time step. This also means that workflow
variables may not be a function of decision variables, whereas decision variables can be a function
of workflow variables. Lastly, workflow variables may be used within non-linear expressions such
as lookup tables, min/max functions, or as the product of two variables. Decision variables are
limited such that management goals can only be constructed of linear combinations of decision
variables (including Raven state variables).

:DecisionVariableBounds [dv_name] [lower] [upper]
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Provide upper and lower bounds to a user-specified decision variable already defined using the
:DefineDecisionVariable or :DeclareDecisionVariable command. These bounds act as
constraints in the model, and the decision variable cannot take on values outside of this range. By default,
decision variables have the lower bound 0 and upper bound∞.

# for a single operating regime:
:ManagementGoal [goal_name]
:Expression [expression]
:Condition [condition1]
...
:Condition [conditionN]
:Penalty [value1] {value2}

:EndManagementGoal

# OR, using multiple operating regimes:
:ManagementGoal [goal_name]

:OperatingRegime [name]
:Expression [expression]
:Condition [condition1]
:Condition [condition2]
...
:Condition [conditionN]

:EndOperatingRegime
:OperatingRegime [name]

:Expression [expression2]
:EndOperatingRegime
:OperatingRegime [name] #default- no conditions

:Expression [expression2]
:EndOperatingRegime
:Penalty [penalty1] {penalty2}

:EndManagementGoal

Define a water management goal defined by the expression expression, which must be linear with
respect to decision variables. The expression may be an equality or inequality. For the single operating
regime case, the goal expression is only applied if all of the conditionals are satisfied, and is always ap-
plied if no conditional statements are present. For the case of several operating regimes, the expression
corresponding to first operating regime whose conditions are all satisfied will be applied. Therefore, the
operating regimes define sets of conditions defining when different management goals are active. Every
operating regime must have one :Expression command within it. The naming convention for goals is
usually a verb, e.g., SetMaxDixonReservoirStage or AdjustDemand.

The specified penalty terms are the penalty multipliers associated with violating the goal expression, such
that the magnitude of the penalty will be:

• P1 · (RHS− LHS) if the expression is of the form LHS > RHS,

• P1 · (LHS− RHS) if the expression is of the form LHS < RHS, and

• P1·max(LHS−RHS, 0)+P2·max(RHS−LHS, 0) if the expression is a target of the form LHS = RHS.
P1 (penalty1) is the penalty for exceeding the target right hand side, and P2 (penalty2) is the
penalty for being below the target right hand side.
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Note that the second penalty is only required if the goal expression is an equality. Syntax for the:Expression,
:OperatingRegime, and :Constraint commands are described below.

# for a single operating regime:
:ManagementConstraint [constraint_name]
:Expression [expression]
:Condition [condition1]
:Condition [condition2]
...
:Condition [conditionN]

:EndManagementConstraint

Define a water management constraint defined by the expression expression, which must be linear
with respect to decision variables. The expression may be an equality or inequality. The constraint is only
applied if all of the conditionals are satisfied, and is always applied if no conditional statements are present
(alternatively, multiple operating regimes may be applied as done above in the :ManagementGoal
example).

The difference between a constraint and goal is that the constraint must be satisfied, while the optimiza-
tion algorithm will try its best to satisfy a goal. For this reason, constraints should be used sparingly as
they may over-constrain the optimization problem such that there is no feasible solution. For instance, si-
multaneously enforcing a maximum reservoir stage constraint andmaximum reservoir outflow constraint
could be impossible if the reservoir is already at its max stage and there is a large inflow rate: either the
stage must increase or the reservoir must be allowed to release more water. It is better to treat one or both
of these constraints as goals, where exceeding the maximum reservoir outflow or stage is discouraged
via a penalty, but allowed to happen if it must to preserve mass balance. Syntax for the :Expression,
:OperatingRegime, and :Condition commands are described below.

When in doubt, express your management intent as a goal rather than constraint. Constraints
that unintentionally conflict with mass balance (or each other) will lead to infeasible solutions and
stoppage of the model.

:Expression [expression]

The :Expression command must be within a :ManagementConstraint, :ManagementGoal,
or :WorkflowVarDefinition command block, and will define an equality or inequality relationship
between one or more variables. Each expression must include one or more decision variables and the
expression must be linear with respect to decision variables. Linearity means that 1) decision variables
are not included within a function (such as a lookup table or min/max function) and 2) the product or
quotient of two or more decision variables is not present, and 3) decision variables do not appear in the
divisor of a term. Within these rules, the expression can be built with nearly arbitrary complexity by
multiplying, adding, subtracting or dividing the following single terms :

• vConstant
named constants defined using the :NamedConstant command.

• @ts(tseries,n)
a time series defied using the :TimeSeries command in the .rvt file. Here, tseries is the name
of the time series and n is the number of time steps prior to the current time step if negative, or the
number of time steps after the current time step if positive.
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• @lookup(table,exp)
a lookup table defined using the :LookupTable command. Here, table is the name of the
lookup table andexp is a single-term input expression. The expression cannot be a decision variable.

• @min(exp1,exp2)
a function evaluating the minimum of the single-term input expressions exp1 and exp2, e.g.,
@min(!Q130,10.0). Neither expression can be a decision variable.

• @max(exp1,exp2)
a function evaluating the maximum of the single-term input expressions exp1 and exp2, e.g.,
@max(!D130,!D120). Neither expression can be a decision variable.

• @SB_var(state var,SBID)
a function returning the mean value of a state variable (from table D.1) in the subbasin with a
specific subbasin ID (SBID).

• @HRU_var(state var,HRUID)
a function returning the mean value of a state variable (from table D.1) in the HRU with a specific
ID (HRUID).

• Unit conversion constants
reserved constants used to multiply or divide quantities to convert units. Current units conver-
sions supported include ACREFTD_TO_CMS, CMS_TO_ACREFTD, MM_TO_INCH, INCH_TO_MM,
FEET_TO_METER, METER_TO_FEET, CMS_TO_CFS, CFS_TO_CMS, ACREFT_TO_M3, and
M3_TO_ACREFT. These are reserved keywords, and therefore cannot be used as named constants.

• Internal state variables within Raven (treated as decision variables within the management opti-
mization problem) can be referred to using the ! notation:

– !Qxxx is the stream or reservoir (i.e., subbasin) outflow in the subbasin with ID xxx [m3/s]

– !hxxx is the absolute reservoir or lake stage in the subbasin with ID xxx [m]

– !Ixxx is the inflow to a reservoir in the subbasin with ID xxx [m3/s]

– !qxxx is the rate of change in reservoir outflow from the subbasin with ID xxx [m3/s/d]

– !Dxxx is the satisfied/delivered demand with demand ID xxx (demand IDs can refer to
stream or reservoir demands) [m3/s]

These same variables may likewise be referred to using the subbasin, demand, or reservoir/lake
name by adding a period after the state variable letter

– !Q.subname (e.g., !Q.NelsonCreek)

– !h.resname (e.g., !h.PittsDam)

– !I.resname

– !q.resname

– !D.demand_name (e.g., !D.GrahamRanchAllocation)

Lastly, the following notation can be used to refer to historical values of state variables:

– !Q.RavenRiver[-2] refers to the streamflow in the Raven river subbasin from two time
steps ago. There is a limit to how far back the history is stored, defined by the:LookbackDuration
command. No spaces can be within the square brackets.

– !Qxxx[-n] refers to the streamflow in river with subbasin ID xxx from n time steps ago.
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Supported history variables include !Q, !D, !I, !h, $B, and $E.

• Other internal Raven variables within Raven can be referred to using the $ notation:

– $dxxx is the demand target with demand ID xxx (demand IDs can refer to stream or reservoir
extractions)[m3/s]

– $Cxxx is the cumulative satisfied/delivered demand with demand ID xxx, accumulated since
the demand reset date for that demand [m3]

– $Bxxx is the specified basin inflow hydrograph to the subbasin with ID xxx
(from a :BasinInflowHydrograph time series) [m]

– $Exxx is the environmental minimum flow in the subbasin with ID xxx
(from a :EnvironmentalMinFlow time series) [m3/s/d]

The $B or $E variables can be followed with the [n] suffix, such that past or future values of these
two time series may be used in an expression

The above syntax can also be used elsewhere in rvm file commands, including within the :Condition
command (for building general conditions), the :DefineDecisionVariable command, and the
:DefineWorkflowVariable command.

Valid example expressions:

:Expression !Q120 + !Q181 = @ts(Q130_power_target,0) * vPowerConvert

Example invalid expressions:

# you cannot include product of two state variables (non-linear):
:Expression !Q120 * !Q181 = 40

# parentheses are not yet supported:
:Expression !Q120 < (!Q150 + !Q141) * cVal
# instead, use:
:Expression !Q120 < !Q150 * cVal + !Q141 * cVal

# a decision variable can’t be within a lookup table (non-linear):
:Expression !Q181 = @lookup(myLUT,!Q120)

# nested functions are not yet supported:
:Expression !d181 = @lookup(myLUT,@ts(myTS,0))
# instead, use:
:DefineWorkflowVariable currTS = @ts(myTS,0)
:Expression !d181 = @lookup(myLUT,currTS)

If an expression refers to a state variable which is in a disabled portion of the model domain, the entire
constraint/goal will be ignored.

:Condition [condition] [comparator] [value] {bound}

One or more conditional statements may be included within a :ManagementGoal or
:ManagementConstraint command block, optionally within an :OperatingRegime command
block. If multiple conditional statements are included, then all of the conditions have to be satisfied
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within a given time step in order for the goal or constraint to be applied. If multiple operating regimes
are specified, the expression within first operating regime whose conditions are all satisfied is applied.

The conditional statements are in one of the following forms:

:Condition [variable] > [expression]
:Condition [variable] < [expression]
:Condition [variable] = [expression]
:Condition [variable] IS_NOT_EQUAL_TO [value]
:Condition [variable] IS_BETWEEN [lower bound] [upper bound]

Where expression uses the same syntax as the :Expression command defined above. Here, the
variable term can be one of:

• DATE - dates in the form yyyy-mm-dd
e.g., :Condition DATE IS_BETWEEN 1975-01-02 2010-01-02

• DAY_OF_YEAR - Julian dates, from 0 (Jan 1) to 364 (Dec 31)

• MONTH - month as an integer, from 1 (Jan) to 12 (Dec)

• YEAR - year, in yyyy format
e.g., :Condition YEAR IS_BETWEEN 1977 2025

• A simulated internal state variable, in the form !Qxxx or !hxxx as defined above in the
:Expression command

• A user-specified decision variable, created using the :DeclareDecisionVariable or
:DefineDecisionVariable command

:Penalty [penalty] {penalty_over}

One penalty commandmay be includedwithin a:ManagementGoal (but not a:ManagementConstraint)
command block. If not included, the penalty defaults to a value of 1.0. The optional penalty_over term
should be included only for equalities where exceedance of a target should be penalizedmore (or less) than
falling short of the target.

Penalties are used for prioritization ofmanagement goals - by definition, goals which incur a larger penalty
will be interpreted by the algorithm as more important than goals with lesser penalties. Penalties must
be greater than zero. Very large values for penalties (e.g., >100000) may lead to instabilities in the linear
programming solver.

Note that penalties magnitudes are implicitly tied to the units of the :Expression statement as noted
above when discussing the management goal command block. If you write a management goal in terms
of reservoir stage, for instance, it may be useful to multiply the magnitude of the penalty by the area
of the reservoir (in m2) divided by 86400 (sec/day). This is done automatically for all standard reservoir
operation time series, but can also be enforced using the :UseStageUnitsCorrection command.

:UseStageUnitsCorrection [SBID]

This adjusts the units of a penalty if the management goal or constraint expression is expressed in units
of stage instead of discharge. It must be inside a :ManagementGoal command block. Otherwise, it is
assumed the units (and therefore the penalties incurred) of all goal expressions are in units of discharge.
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:OverrideStageDischargeCurve [SBID]

Because outflows to reservoirs are by default handled using a constraint (the stage discharge curve), the
constraint has to be disabled if a management goal (for instance, a target stage) is instead intended to be
used. This command is typically associatedwith - but not containedwithin - one ormore:ManagementGoal
expressions that will override the default behaviour of a reservoir. Here, the SBID is the subbasin in which
the reservoir is located. Suggested practice is to list all of these overrides at the top of the .rvm file so that
it is clear which reservoirs are managed vs. those handled using stage-discharge relations only.

It is important that if :OverrideStageDischargeCurve command is used, a goal or con-
straint must be applied to the stage or discharge of a reservoir for ANY possible conditions, other-
wise the reservoir outflow is unconstrained and strange results may occur.

:LoopThrough [looptype] [groupname]
[.rvm commands]

:EndLoopThrough
# OR
:LoopThrough LIST [size]

[.rvm commands]
:EndLoopThrough

This command block allows for looping through sets of .rvm commands multiple times. The looptype
is one of SB_GROUP, DEMAND_GROUP, or LIST.

If the looptype is SB_GROUP, the loop iterates through all of the subbasins in the subbasin group
named groupname; any appearance of the wildcard $ID$ will be replaced with the subbasin ID. Likewise,
any appearance of the wildcard $NAME$ will be replaced with the subbasin name, as indicated in the .rvh
file.

If the looptype is DEMAND_GROUP, the loop iterates through all of the demands in the demand group
named groupname; any appearance of the wildcard $ID$ will be replaced with the demand ID. Likewise,
any appearance of the wildcard $NAME$ will be replaced with the demand name.

Lastly, if the looptype is LIST, the loop iterates through a vector of size size. Wildcards are handled
through the :LoopVector command below.

There is no limit to the number of commands allowed within the :LoopThrough command block. How-
ever, care must be taken to not generate duplicate management goals; the wildcards are intended to be
used to differentiate between contents of each loop. Nested loops are not supported.

:LoopVector $wildcard$ s1 s2 s3 ... sN

Located at the top of a :LoopThrough-:EndLoopThrough command block, the :LoopVector
command defines a wildcard string that is replaced by string items within the vector of values (s1..sN).
The wildcard must always be a string between two dollar signs, e.g., $res_stage$. The reserved wildcards
$ID$ and $NAME$ cannot be used. The size of the vector must be equal to the size of the subbasin group,
demand group, or list being looped through. Everywhere the wildcard appears in the remainder of the
:LoopThrough-:EndLoopThrough command block, the wildcard will be replaced by the string item
corresponding to the current loop iteration.
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A.7 Live file (.rvl)

The live file is intended for direct synchronous coupling of Raven with another model or software tool
which would require regular information exchange with Raven during operation. Examples of such tools
include reservoir optimization tools, software which represents dynamic land use or forestry practices,
hydraulic models, or glacier mass balance models. Typically used in conjunction with the :CallEx-
ternalScript command, the live file (*.rvl) is read if the :ReadLiveFile command is included in
the .rvi file. By default this file will be read at the start of every time step just prior to the mass balance
calculations and enables external codes to dynamically modify Raven state variables, simulated flows,
parameters, and landscape classification.

An example .rvl file is shown below.

:LandUseChange 2402 URBAN
:LandUseChange 2417 URBAN
:LandUseChange 2483 URBAN

This file would change the land use of HRUs 2402, 2417, and 2483 from their previous land use to URBAN.
The URBAN land use parameters will now be used to represent the hydrologic response of these HRUs.

A.7.1 Commands

:VegetationChange [HRU_ID] [new vegetation class name]

Converts HRU indicated by HRU_ID from its previous vegetation class to the one specified. Useful for
representing agricultural management.

:GroupVegetationChange [HRU_Group_Name] [new vegetation class name]

Converts all HRUs in the HRU group HRU_Group_Name from its previous vegetation class to the one
specified.

:LandUseChange [HRU_ID] [new land use class name]

Converts HRU indicated by HRU_ID from its previous land use class to the one specified.

:GroupLandUseChange [HRU_Group_Name] [new land use class name]

Converts all HRUs in the HRU group HRU_Group_Name from its previous land use class to the one
specified.

:HRUTypeChange [HRU_ID] [new HRU type]

Converts HRU indicated by HRU_ID from its previous type to the one specified.

:HRUTypeChange [HRU_ID] [new HRU type]

Converts all HRUs in the HRU group HRU_Group_Name from their previous type to the one specified.

251



:GroupLandUseChange [HRU_Group_Name] [new land use class name]

Converts all HRUs in the HRU group HRU_Group_Name from its previous land use class to the one
specified.

:SetStreamflow [SBID] [Q]

Changes the outflow from subbasin with subbasin index SBID to the discharge Q in m3/s.

:SetReservoirStage [SBID] [stage]

Changes the stage in the reservoir within subbasin SBID to the stage indicated (in m).

:RepopulateHRUGroup [group_name]
[HRUID_1] [HRUID_2] ... [HRUID_N]

:EndRepopulateHRUGroup

Uses the same format as :HRUGroup command in the .rvh file. Allows dynamic repopulation of HRU
groups defined in the .rvi file and/or earlier populated in the .rvh file. The repopulation command may be
immediately followed by (e.g.,) a :GroupLandUseChange command call to dynamically adjust land
use change externally via a script or call to an external model. For instance:

:RepopulateHRUGroup DeglaciatingHRUs
1203, 1204, 1206, 1212

:EndRepopulateHRUGroup
:GroupLandUseChange DeglaciatingHRUs BARREN
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A.8 Ensemble file (.rve)

The ensemble file is intended for controlling the operation of Raven when running in ensemble mode.
Each ensemble mode uses different commands, and so this section is divided into subsections based upon
these modes. The ensemble file is only read if the following command is found in the .rvi file:

:EnsembleMode [ens_mode] [num_members]

where ens_mode is the ensemble mode (currently only ENSEMBLE_ENKF) and num_members is the
number of ensemble members.

All ensemble methods require the following command:

:OutputDirectoryFormat [directory, with wildcard]
# e.g.,
:OutputDirectoryFormat ./out/ens_*

This command defines the output directory setup, as each ensemble member will preferably be directed to
its own directory. Any asterisks in the directory namewill be replaced with the ensemble member number,
from 1 to N . The directory should not have a final backslash appended. In general, it is desirable to have
this as a subdirectory to the base output directory (i.e., ’./out’ in the above example). The RavenErrors.txt
and ensemble-specific summary output will be sent to the base output directory, with all other output
directed to the subfolder. No spaces are allowed in the directory.

A.8.1 EnKF ensemble commands

:EnKFMode {mode}

This specifies the mode of EnKF operation, as outlined in section 6.4. Here, “mode” can be one of the
following:

• ENKF_SPINUP - in spinup mode, each ensemble member uses the same initial conditions from the
standard .rvc file. Perturbations are applied to forcings. EnKF is applied at the end of the simulation
and generates a solution_EnKF.rvc file in each ensemble member folder.

• ENKF_CLOSED_LOOP - in closed loop mode, each ensemble member uses initial conditions from
an EnKF-adjusted previous model run (from the solution_EnKF.rvc file). Perturbations are applied
to forcings. EnKF is applied at the end of the simulation and generates a solution_EnKF.rvc file in
each ensemble member folder.

• ENKF_FORECAST - in forecast mode, each ensemble member uses initial conditions from an EnKF-
adjusted previous model run (from the solution_EnKF.rvc file). Perturbations are NOT applied to
forcings, and EnKF is not applied. The only thing that varies between forecast members is the initial
conditions set.

• ENKF_OPEN_LOOP - same as ENKF_CLOSED_LOOP, except without use of EnKF-updated states.
Instead, initial conditions are read from the member-specific solution.rvc file for each member.

• ENKF_OPEN_FORECAST - same asENKF_FORECAST, exceptwithout use of EnKF-updated states.

All modes assume that the time stamp on the solution.rvc and solution_EnKF.rvc are the same as the start
time of the simulation. Only the closed loop and spinup modes actually apply Kalman Filter to their end
model states.
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:SolutionRunName [runname]

(Optional) The runname argument specifies the run name used in the previous ensemble run, which will
be read as initial conditions for each member in closed-loop mode (users may wish to change run names
between ensemble runs to prevent overwriting of results). If not included, it is assumed the run name is
the same as the run name specified using the :RunName command in the .rvi file. Should not be used in
conjunction with :EnsembleRVCFormat, which will override this command.

:EnsembleRVCFormat [filename, with wildcard]
# e.g.,
:EnsembleRVCFormat ./EnKFsols/runname_solution_EnKF_*.rvc
# or
:EnsembleRVCFormat ./input/ens_*/solution_EnKF.rvc

(Optional) This command defines the solution file read by each ensemble member, if these should vary by
member. Any asterisks in the file path name will be replaced with the ensemble member number, from 1
to N . The file extension .rvc should be included in the filename. No spaces are allowed in the filename.

The filename argument specifies the .rvc filenames to be used for initial conditions, typically generated
from a previous ensemble run. If not included, it is assumed the solution files are read from the output
directories specified using the :OutputDirectoryFormat command OR the base .rvc file model-
name.rvc. This command is only used to override this default behavior, usually because a forecasting
system is running from alternative saved ensemble states. In the case of the EnKF model configuration,
the source of the initial conditions file is by default determined by the :EnKFMode, but will be overrid-
den by this command unless the mode is ENKF_SPINUP, in which case the single base .rvc is used for
initial conditions. This command should not be used in conjunction with :SolutionRunName, as it
will override the provided runname.

:ExtraRVTFilename [file.rvt]

(Optional) The contents of the specified .rvt is used in addition to the base and forecast .rvt files. If an
asterisk is included in the filename, this is used as a wildcard character and replaced with the ensemble
member number, from 1 to N . This allows for individual members to have access to ensemble member-
specific time series inputs. This file must be specified with the .rvt extension. Relative or absolute path
names are allowed.

:ForcingPerturbation [forcing] [dist] [p1] [p2] [adj] {HRU_grp}

This defines which forcings should be perturbed for each ensemble member prior to t0 and how they
should be perturbed. Here, forcing is the forcing type (must be one of the terms in table D.2), dist
is one of the distributions found in table A.8, with parameters p1 and p2 fully defining the distribution,
adj is one of ADDITIVE or MULTIPLICATIVE depending upon whether the perturbation is additive
or multiplicative. Optionally, the HRU group may be specified using the HRU_grp term, in which case
the perturbation is only applied locally. Additive pertubations should typically have a mean of zero, while
multiplicative perturbations should have a mean of one. Raven supports an arbitrary number of forcing
perturbations in the model.

:AssimilatedState [state] {group_name}

This command determines which model states are actually updated during EnKF data assimilation. The
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Table A.8: Probability distributions supported by Raven. Units assume the variable of interest is in units
of L.

tag Definition parameter 1 parameter 2
DIST_UNIFORM uniform distribution left bound [L] right bound [L]
DIST_NORMAL normal distribution mean [L] std. deviation [L]
DIST_GAMMA Gamma distribution shape [-] scale [1/L]

command state is one of the state variable types in table D.1, and must exist in the model. The special
state tags STREAMFLOW and RESERVOIR_STAGE may be used to update in-stream flows and reser-
voir/lake levels, in which case group_name must be a subbasin group. Otherwise, group_name is
assumed to be an HRU group name. Raven does not yet support assimilation of transported constituent
states.

:AssimilateStreamflow [SBID}

This command (which can also optionally appear in the .rvt file) indicates which streamflow observational
time series are used in EnKF assimilation. Each stream gauge to be used in assimilation should appear in
its own :AssimilateStreamflow command. The subbasin index SBID must exist in the model and
should also have a HYDROGRAPH-type :ObservationData time series associated with it.

:ObservationErrorModel [state] [dist] [p1] [p2] [adj]

This command defines the observational error model for each observed state. The parameter state
is the model state associated with the observation data, which much correspond to an entry in table
D.1 (currently, only STREAMFLOW is supported). The command entry dist is one of the probability
distributions found in table A.8, with parameters p1 and p2 fully defining the error distribution, adj
is one of ADDITIVE or MULTIPLICATIVE depending upon whether the perturbation is additive or
multiplicative (in most cases this should be additive with a mean of zero). Users should typically have
one observational error model command for each observation type used in assimilation. If this command
is not included for a given observed state, the error model is a Dirac distribution centred at zero (i.e., it
assumes no observation error).
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Appendix B

Output Files

B.1 Standard Output Files

By default, output files are in comma-delimited format, and can be readily opened up in Excel or R for
post-processing, visualization, and analysis. Most of these files will alternatively be generated in NetCDF
(*.nc) format if the command :WriteNetCDFFormat command is used in the .rvi file. Available output
files include:

• WatershedStorage.csv/.nc (created by default)
A comma-delimited file describing the total storage of water (in mm) in all water storage compart-
ments for each time step of the simulation. Mass balance errors, cumulative input (precipitation),
and output (channel losses) are also included. Note that the precipitation rates in this file are period-
ending, i.e., this is the precipitation rate for the time step preceding the time stamp; all water storage
variables represent instantaneous reports of the storage at the time stamp indicate. Note that it is
normal that the Ponded Water and Surface Water stores are empty throughout the simulation,
because these are temporary stores emptied out by the end of each time step. Created by default.

• Hydrographs.csv/.nc (created by default)
A comma-delimited file containing the outflow hydrographs (in m3/s) for all subbasins specified as
’gauged’ in the .rvh file. If the :SnapshotHydrograph command is used, this reports instan-
taneous flows at the end of each time step (plus the initial conditions at the start of the first time
step). Without, this reports period-ending time-averaged flows for the preceding time step, as is
consistent with most measured stream gauge data (again, the initial flow conditions at the start of
the first time step are included). If observed hydrographs are specified, they will be output adjacent
to the corresponding simulated hydrograph. If the :WriteLocalFlows command is included in
the .rvi file, local subbasin contributions to the outlet hydrograph for that subbasin are reported.
Created by default.

• RavenErrors.txt (always created)
A text file outlining model input errors, warnings, and advisories for the user.

• ForcingFunctions.csv/.nc (optional)
A comma-delimited file containing the time series of all watershed-averaged system forcing func-
tions (e.g., rainfall, radiation, PET, etc.). The output is all period-ending, i.e., the values reported
correspond to the time-averaged forcings for the time step before the indicated time stamp. Cre-
ated if :WriteForcingFunctions command included in .rvi file.

• Diagnostics.csv (optional)
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A comma-delimited file reporting the quality of fit between model and supplied observations. Cre-
ated if observations are present and the :EvaluationMetrics command is used.

• WatershedMassEnergyBalance.csv/.nc (optional)
A comma-delimited file describing the total cumulative fluxes of energy andwater (inMJ/m2 ormm)
from all energy storage compartments for each time step of the simulation. Created if :WriteMass-
BalanceFile command included in .rvi file.

• Parameters.csv (optional)
A comma-delimited file containing the values for all static specified and auto-generated parame-
ters for all soil, vegetation, land use, and terrain classes. Created if :WriteParametersFile
command included in .rvi file.

• ReservoirStages.csv/.nc (optional)
A comma-delimited file reporting the instantaneous stage of all simulated reservoirs where the
corresponding subbasin is specified as ’gauged’ in the .rvh file. Created automatically if reservoirs
are present in the model.

• Demands.csv/.nc (optional)
A comma-delimited file containing the time series of irrigation demand, environmental minimum
flow, actual flow, and unmet demand for all subbasins specified as ’gauged’ in the .rvh file. The
output is all instantaneous, i.e., the reported values refer to snapshots in time. Created if :Writ-
eDemandFile command is included in .rvi file.

• WaterLevels.csv (optional)
A comma-delimited file containing the time series of stream water levels at subbasin outlets, or
just upstream of reservoirs in the case of subbasins with a reservoir. Only reported at subbasins
specified as ’gauged’ in the .rvh file. Created if :WriteWaterLevels command is included in
the .rvi file.

• SubbasinProperties.csv (optional)
A comma-delimited file containing key calculated properties of all subbasins, including drainage
area, catchment routing, and channel routing properties such as celerity and diffusivity. Created if
:WriteSubbasinFile is included in the .rvi.

• {constituent}concentrations.csv/.nc (optional)
A comma-delimited file reporting the instantaneouswatershed-averaged concentration of the trans-
port constituent in all water storage units. Created automatically if transport is included in the
model.

• Temperatures.csv (optional)
A comma-delimited file reporting the instantaneous watershed-averaged water temperature in all
water storage units. Created automatically if thermal transport is included in the model.

• {constituent}pollutograph.csv/.nc (optional)
A comma-delimited file reporting the instantaneous concentration of water flowing out from all
gauged subbasins. Created automatically if transport is included in the model.

• StreamTemperatures.csv/.nc (optional)
A comma-delimited file reporting the instantaneous outflow water temperature from all gauged
subbasins. Created automatically if thermal transport is included in the model.

• {constituent}MassLoadings.csv (optional)
A comma-delimited file reporting the instantaneous mass loading (in kg/d) from the outlets of
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gauged subbasins. Only generated if the :WriteMassLoadings command is used in the .rvi
file. For synthetic tracers, this corresponds to the fractional flow (in m3/s) tagged with the tracer.

If the :RunName parameter is specified in the .rvi file, this run name is added as a prefix to the above
filenames.

B.2 Custom Outputs

A variety of custom outputs of any state variable or mass flux in the model may be generated using the
:CustomOutput command. See section A.1.4 for details. Note that for CONTINUOUS time aggregation,
these custom outputs report instantaneous fluxes/states, and the forcing function rates (e.g., rainfall)
will be period-ending, i.e., the average precipitation rate for the time step preceding the time stamp is
reported. If the aggregation is MONTHLY, YEARLY, or WYEARLY, the variables reported are calculated
over the entire corresponding period.

B.3 NetCDF Output Format

The .nc output hydrographs, reservoir stages, water level, forcing functions, transport outputs, and custom
output files are generated if the :WriteNetCDFFormat command is used. Currently these are the only
NetCDF-format outputs available; other outputs will still be generated in .csv format.

The NetCDF files written are compatible with NetCDF version 4.0 and greater. The contain an unlimited
dimension for time. Depending upon the output file, other dimensions may include the number of sub-
basins with simulated outflow nbasin_sim or the number of basins with observed outflows nbasin_-
obs. All floating-point variables are written in double precision. Multiple attributes are available for each
output variable, such as units, long_name, _FillValue, and/or missing_value.

The header of an example Hydrographs.nc containing the results of a simulation with 2 sub-basins
and streamflow observations for one sub-basin starting at Oct 1st, 1991 looks like:

netcdf Hydrographs {
dimensions:

time = UNLIMITED ;
nbasin_sim = 2 ;
nbasin_obs = 1 ;

variables:
double time(time) ;

time:units = "days since 1991-10-01 00:00:00" ;
time:calendar = "gregorian" ;

double precip(time) ;
precip:units = "mm d**-1" ;
precip:long_name = "Precipitation" ;
precip:_FillValue = -9999. ;
precip:missing_value = -9999. ;

string basin_name_sim(nbasin_sim) ;
basin_name_sim:long_name = "ID of sub-basins with simulated outflows" ;

double q_sim(time, nbasin_sim) ;
q_sim:long_name = "Simulated outflows" ;
q_sim:units = "m**3 s**-1" ;
q_sim:_FillValue = -9999. ;
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q_sim:missing_value = -9999. ;
string basin_name_obs(nbasin_obs) ;

basin_name_obs:long_name = "ID of sub-basins with observed outflows" ;
double q_obs(time, nbasin_obs) ;

q_obs:long_name = "Observed outflows" ;
q_obs:units = "m**3 s**-1" ;
q_obs:_FillValue = -9999. ;
q_obs:missing_value = -9999. ;

}
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Appendix C

Using Raven with Deltares FEWS

Raven 3.1 and above works seamlessly with the Deltares Flood Early Warning System (FEWS) software
program. A schematic of the connections between Raven and FEWS is shown in figure C.1. In this setup,
Raven and FEWS communicate entirely via NetCDF files, so this only works with the FEWS version of
the Raven software.

Figure C.1: The coupling between FEWS and Raven

C.1 Setup

The FEWS directory structure should be setup as follows:

• ./input/

– FEWS-generated model input. NetCDF files which include the meteorological forcings and
input time series

– FEWS-generated state update and parameter update files (format defined below)

• ./output/

– The Raven output directory. FEWS will read model output from here.

• ./work/
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– The base model .rvi, .rvh, .rvp, .rvc, and .rvp files

• run_info.nc

To port an existing Raven model to use the FEWS framework, the first step is to include the following
command block in the header of the .rvi file:

:DeltaresFEWSMode
:WriteNetCDFFormat
:OutputDirectory ../output/
:FEWSRunInfoFile ../run_info.nc
:FEWSStateInfoFile ../input/state_update.nc
:FEWSBasinStateInfoFile ../input/flow_update.nc
:FEWSParamInfoFile ../input/param_update.nc

This ensures that all output is generated in NetCDF format, the output is directed to the correct location
in the file structure, and that Raven can find the FEWS-generated run information, state update, and
parameter update files. The :DeltaresFEWSMode ensures that missing data in the first time step of
meteorological inputs is ignored.

All meteorological forcing inputs and time series (such as reservoir controls or observed flow data) should
be generated by FEWS into the ’input’ folder. Raven can read this input via the use of :ReadFrom-
NetCDF, :GriddedForcing, and :StationForcing commands in the .rvt, as documented in ap-
pendix A.4. No specific naming convention for time series variables is required, as these are specified in
the .rvt file.

To support run control by FEWS, Raven reads three special FEWS-generated input files, in addition to the
standard .rv files:

• Run Information File (run_info.nc) -
specifies the simulation start date and end date; also provides access to some basic run control
(equivalent to :RunName, :Mode, :NoisyMode, and other basic I/O commands).

• State Update File (state_update.nc) -
used to override initial model states, including SWE and soil moisture in all HRUs

• Basin State Update File (flow_update.nc) -
used to override initial basin-linked model states, including discharge and lake/reservoir stage in all
subbasins.

• Parameter Update File (param_update.nc) -
used to override model parameters; including global, land use, soil, vegetation, subbasin or gauge
parameters.

The content of these files overrides any existing commands in the .rvi, .rvp, or .rvc files. The required
format of these files is indicated in the following section.

C.2 FEWS adaptor files

C.2.1 Run information file

The run information file, with filename indicated with the :FEWSRunInfoFile command, overrides
some basic commands in the .rvi file for run management. The following variables in the NetCDF file will
be processed:
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• start_time
A double variable named start_timewith units in standard NetCDF format (e.g., ’minutes since
YYYY-MM-DD...’). The time zone will be ignored and assumed to be in the same time zone as the
model. This will override the simulation start date indicated by the :StartDate command.

• end_time
A double variable named end_time with units in standard NetCDF format (e.g., ’minutes since
YYYY-MM-DD...’). The time zone will be ignored and assumed to be in the same time zone as the
model. This will override the simulation end date indicated by the :EndDate or :Duration
commands.

• properties
A multi-attribute character variable named properties. The following attributes within proper-
ties will be read:

– RunName
Corresponds to the Raven command :RunName. A string.

– BlockRavenWarnings
Equivalent to the Raven command :SuppressWarnings. Must be true (suppress) or
false (don’t suppress).

– BlockRavenCustomOutput
Disables all writing of custom outputs if true. Must be true or false.

– NoisyMode
Equivalent to the Raven command :NoisyMode command if true. Must be true or false.

– SilentMode
Equivalent to the Raven command:SilentMode command if true. Must betrue orfalse.

– Mode
Equivalent to the Raven command :Mode command if true. Must be a single character. Be-
cause this gets processed AFTER reading of the .rvi file, all:IfModeEquals command blocks
in the .rvi file will not properly register; in such cases, the mode should be supplied at the com-
mand line or manually rather than via the run information file.

– AssimilateStreamflow
Equivalent to the :AssimilateStreamflow command in the .rvi file if true. Must be
true or false.

– EnKFMode Equivalent to the :EnKFMode command in the .rve file. A string. Must be
one of ENKF_SPINUP, ENKF_CLOSED_LOOP, ENKF_OPEN_LOOP, ENKF_FORECAST, or
ENKF_OPEN_FORECAST.

C.2.2 State update file

The state update file, with filename indicated with the :FEWSStateInfoFile command in the .rvi
file, overrides some basic commands in the .rvc file model for direct initialization by FEWS.

The state update file MUST include:

• the dimensions time (size of the time vector) and stations (size of the HRU vector), where the
number of ’stations’ must be equal to or fewer than the number of HRUs in the Raven model.
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• the character variable station_id, with dimensions (stationsxchar_leng_id). This vector
of character strings encodes the list of HRUs which may be modified in state; these HRU IDs must
be present in the :HRUs command block inside the .rvh file. Any unrecognized HRU IDs in this
variable will cause an error to be thrown.

• the double variable time with dimension (time). This vector, with NetCDF time units (e.g., ’min-
utes since YYYY-MM-DD...’, must be ordered and have one of its entries correspond to the simula-
tion start time (typically the one indicated in the run information file).

In addition, the state update file can include any number of (time xstation) float array variables which
store model states at a number of times. The names of these variables must correspond to state variable
names in the model (e.g., SOIL[0] or |SNOW|, see table D.1). All names not in the model will be ignored,
as will all other variables in the update file. If the state variable name is present in the model, the row of
values corresponding to the model start time will be used to re-initialize the state variables prior to model
simulation, acting as initial conditions to the model. Only the HRUs included in the station_id list
will be updated, and if the value is blank, updating will not be performed. The column indices of the array
are assumed to align with that of the station_id variable, i.e., if the 3rd item in the station_id
variable is ’1001’, then the 3rd state variable value in the state array will be used to update HRU 1001.

Note that only HRU-linked state variables will be adjusted using this file; basin-linked state variables
(such as stream discharge and reservoir stage) must be present in a separate file.

C.2.3 Subbasin State update file

This is similar to the state update file, but is used to initialize states which are linked to subbasins, such
as stream discharge or reservoir stage. The subbasin state update file, with filename indicated with the
:FEWSBasinStateInfoFile command in the .rvi file, overrides some basic commands in the .rvc file
model for direct initialization by FEWS.

The state update file MUST include:

• the dimensions time (size of the time vector) and stations (size of the subbasin vector), where
the number of ’stations’ must be equal to or fewer than the number of subbasins in the Raven
model.

• the character variable station_id, with dimensions (stationsxchar_leng_id). This vector
of character strings encodes the list of subbasins which may be modified in state; these subbasin
IDs must be present in the :SubBasins command block inside the .rvh file. Any unrecognized
subbasin IDs in this variable will cause an error to be thrown.

• the double variable time with dimension (time). This vector, with NetCDF time units (e.g., ’min-
utes since YYYY-MM-DD...’, must be ordered and have one of its entries correspond to the simula-
tion start time (typically the one indicated in the run information file).

In addition, the state update file can include any number of (time x station) float array variables
which store model states (flows or stages) at a number of times. The names of these variables must be
one of: BASIN_OUTFLOW or RESERVOIR_STAGE. All other variables in the update file will be ignored.
The row of values corresponding to the model start time will be used to re-initialize the state variables
prior to model simulation, acting as initial conditions to the model. Only the subbasins included in the
station_id list will be updated, and if the value is blank, updating will not be performed. If the stage is
supplied for a subbasin without a reservoir, it will be ignored. The column indices of the array are assumed
to align with that of the station_id variable, i.e., if the 3rd item in the station_id variable is ’301’,
then the 3rd state variable value in the state array will be used to update subbasin 301.
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C.2.4 Parameter update file

The parameter update file, with filename indicated with the :FEWSParamInfoFile command in the
.rvi file, overrides parameter values in the .rvp file model for direct parameter override by FEWS.

The parameter update file MUST include:

• the dimensions time (size of the time vector)

• the double variable time with dimension (time). This vector, with NetCDF time units (e.g., ’min-
utes since YYYY-MM-DD...’, must be ordered and have one of its entries correspond to the simula-
tion start time (typically the one indicated in the run information file).

In addition, the parameter update file can include any number of 1-D array variables of size time which
store parameter values at a number of times. The names of these variables in the NetCDF file will be of
the format PARAM_in_CLASS, where PARAM is a valid parameter name and CLASS is one of:

• A valid soil class, vegetation class, land use class name which exists in the .rvp file;

• The string GLOBALS, if the parameter is a global parameter;

• A valid gauge name which is specified in the .rvt file;

• An integer value corresponding a subbasin ID in the .rvh file; OR

• The string SUBBASINxxx where xxx is a subbasin ID

Example valid variable names includeADIABATIC_LAPSE_in_GLOBALS, BASEFLOW_COEFF_in_SILT,
MANNINGS_N_in_SUBBASIN12, MANNINGS_N_in_12, RAINFALL_CORR_in_X3054, or
IMPERM_FRAC_in_URBAN. All names not in the model will be ignored, as will all other variables in
the update file. If the parameter is in the model, the parameter value corresponding to the model start
time will override the value as specified in the .rvp or .rvt file. If the value is blank, parameter updating
will not be performed.

C.2.5 Management Time Series File

Thewatermanagement time series file, with filename indicatedwith the:FEWSManagementInfoFile
command in the .rvi file, supplies user-specified time series for use with FEWS, and is the equivalent of
the :UserTimeSeries command in the .rvm file.

The management file MUST include:

• the dimensions time (size of the time vector)

• the double variable time with dimension (time). This vector, with NetCDF time units (e.g., ’min-
utes since YYYY-MM-DD...’, must be ordered and have one of its entries correspond to the simula-
tion start time (typically the one indicated in the run information file).

In addition, the management update file can include any number of 1-D array variables of size time which
store arbitrary management time series. The names of these variables in the NetCDF file will be of the
format UserTimeSeries_NAME, where NAME is the name of the time series as used in management
commands within the .rvm file(s).
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Appendix D

Reference Tables
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Table D.1: All state variables currently available in Raven. This list of state variables is supported by the
:HydroProcesses commands and :CustomOutput commands, amongst others.

State Variable [units] Description

Required Water Storage Variables

SURFACE_WATER [mm] streams/rivulets - routed to outlet via in-catchment routing
ATMOSPHERE [mm] atmosphere : receives water only‼
ATMOS_PRECIP [mm] atmosphere : provides water only‼
PONDED_WATER [mm] water (melt & precip) waiting to infiltrate/runoff
Water Storage

SOIL [mm] shallow subsurface/vadose zone
GROUNDWATER [mm] deep groundwater
CANOPY [mm] liquid water on vegetation canopy
CANOPY_SNOW [mm] snow on canopy
DEPRESSION [mm] depression/surface storage
WETLAND [mm] deep depression storage
LAKE_STORAGE [mm] lake storage
SNOW [mm] frozen snow storage (as mm SWE : snow water equivalent)
SNOW_LIQ [mm] snow liquid water content
GLACIER [mm] glacier melt/reservoir storage
GLACIER_ICE [mm] glacier ice - typically assumed to be infinite reservoir.
Convolution storage

CONVOLUTION [mm] storage of water en route - for conceptual models with convolution
CONV_STOR [mm] convolution sub-storage - internal water mass for convolution
Temperature / Energy Storage

SURFACE_WATER_TEMP [C] temperature of surface water
SNOW_TEMP [C] temperature of snow
COLD_CONTENT [C or MJ/m2] Cold content of snowpack
GLACIER_CC [C] cold content of glacier
SOIL_TEMP [C] temperature of soil
CANOPY_TEMP [C] temperature of canopy
Auxilliary Variables

SNOW_DEPTH [mm] snow depth - surrogate for density
PERMAFROST_DEPTH [mm] depth of permafrost
SNOW_COVER [0..1] fractional snow cover
SNOW_AGE [d] snow age, in days
SNOW_ALBEDO [-] snow surface albedo
CROP_HEAT_UNITS [-] cumulative crop heat units
Diagnostic Variables

AET [mm/d] actual evapotranspiration
RUNOFF [mm/d] net runoff to surface water (includes baseflow)
Memory Variables

CUM_INFIL [mm] cumulative infiltration to topsoil
CUM_SNOWMELT [mm] cumulative snowmelt
Transport Variables

CONSTITUENT [mg/m2] mass density of chemical species or tracer
CONSTITUENT_SRC [mg/m2] chemical species or tracer cumulative source
CONSTITUENT_SW [mg/m2] chemical species dumped to surface water
CONSTITUENT_SINK [mg/m2] chemical species or tracer cumulative sink (e.g., decay)
![CONST]|[SV] [mg/l] concentration of CONST in water store SV
(e.g.) !SNOWMELT|SOIL[1] [mg/l] SNOWMELT concentration in SOIL[1]
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Table D.2: All forcing functions currently available in Raven. This list of forcing functions is supported by
the :Data, :GriddedForcing, :MultiData, :CustomOutput, and :GaugeMultiData com-
mands, amongst others.

Forcing Name Definition

PRECIP rain/snow precipitaiton rate over time step /data interval [mm/d]
PRECIP_DAILY_AVE average rain/snow precipitaiton over day (0:00-24:00) [mm/d]
PRECIP_5DAY precipitation total from previous 5 days [mm]
SNOW_FRAC fraction of precip that is snow [0..1]
SNOWFALL snowfall rate over time step [mm/d]
RAINFALL rainfall rate over time step [mm/d]
RECHARGE groundwater recharge rate over time step [mm/d]

TEMP_AVE average air temp over time step/data interval [ ◦C]
TEMP_DAILY_AVE average air temp over day (0:00-24:00) [ ◦C]
TEMP_MIN/TEMP_DAILY_MIN minimum air temperature over day (0:00-24:00)[ ◦C]
TEMP_MAX/TEMP_DAILY_MAX maximum air temperature over day (0:00-24:00)[ ◦C]
TEMP_MONTH_MAX maximum air temp during month [ ◦C]
TEMP_MONTH_MIN minimum air temp during month [ ◦C]
TEMP_MONTH_AVE average air temp during month [ ◦C]
TEMP_AVE_UNC uncorrected daily average air temp [ ◦C]
TEMP_MAX_UNC uncorrected daily min air temp [ ◦C]
TEMP_MIN_UNC uncorrected daily max air temp [ ◦C]
AIR_DENS air density [kg/m3]
AIR_PRES air pressure [kPa]
REL_HUMIDITY relative humidity [0..1]

ET_RADIA uncorrected extraterrestrial shortwave radiation [MJ/m2/d]
SHORTWAVE/SW_RADIA Incoming shortwave radiation (uncorrected for albedo) [MJ/m2/d]
SW_RADIA_NET net shortwave radiation (albedo corrected) [MJ/m2/d]
LW_RADIA_NET net longwave radiation [MJ/m2/d]
LW_INCOMING incoming longwave radiation [MJ/m2/d]
CLOUD_COVER cloud cover [0..1]
DAY_LENGTH day length [d]
DAY_ANGLE day angle [0..2PI] ( =0 for Jan 1, 2pi for Dec 31)

WIND_VEL wind velocity [m/s]
PET potential evapotranspiration [mm/d]
OW_PET open water potential evapotranspiration [mm/d]
PET_MONTH_AVE average PET during month [mm/d]

POTENTIAL_MELT potential snowmelt rate [mm/d]

SUBDAILY_CORR a subdaily correction factor to downscale daily average PET or snowmelt [-]
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Table D.3: All subbasin parameters currently available in Raven. These parameters may be specified in
the :SubBasinProperties command in the .rvh file.
Parameter [units] Description

In-catchment Routing Parameters

TIME_TO_PEAK [d] The time to peak of the unit hydrograph
TIME_CONC [d] The time of concentration of the unit hydrograph
TIME_LAG [d] The time lag of the unit hydrograph
NUM_RESERVOIRS [-] The number of reservoirs used in the ROUTE_RESERVOIR_SERIES method
RES_CONSTANT [1/d] A linear reservoir constant used to generate the unit hydrograph
GAMMA_SHAPE [-] The Gamma unit hydrograph shape factor (for ROUTE_GAMMA method)
GAMMA_SCALE [1/d] The Gamma unit hydrograph scale factor (for ROUTE_GAMMA method)
In-channel Routing Parameters

Q_REFERENCE [m3/s] reference flow for the reach
MANNINGS_N [-] Manning’s coefficient for the reach; overrides channel profile value
SLOPE [-] Slope for the reach; overrides channel profile value
DIFFUSIVITY [m3/s] Diffusivity for reach, overrides channel default value
CELERITY [m/s] Celerity of flood wave in reach, overrides channel default value
Global parameters

RAINSNOW_TEMP [ ◦C] rain/snow halfway transition temperature
RAINSNOW_DELTA [ ◦C] range of rain-snow transition zone (about RAINSNOW_TEMP)
SNOW_SWI [-] water saturation fraction of snow
Other Parameters

RAIN_CORR [0..1] rain correction factor for subbasin (multiplier)
SNOW_CORR [0..1] snow correction factor for subbasin (multiplier)
GAMMA_SHAPE_MULTIPLIER shape factor multiplier, adjusts Raven-estimated values
TIME_TO_PEAK_MULTIPLIER time to peak multiplier, adjusts Raven-estimated values
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Table D.4: Required parameters for all model operation options. The asterisk∗ denotes the default algo-
rithm for each method.
Option Algorithms Required Parameters

Interpolation

:Interpolation INTERP_FROM_FILE :GaugeWeightsTable required
INTERP_AVERAGE_ALL -
INTERP_NEAREST_NEIGHBOR* -
INTERP_INVERSE_DISTANCE -

Routing

:Routing ROUTE_NONE

Channel Geometry, Mannings n (ALL but ROUTE_NONE)

ROUTE_DIFFUSIVE_WAVE*
ROUTE_PLUG_FLOW
ROUTE_STORAGE_COEFF
ROUTE_MUSKINGUM
ROUTE_MUSKINGUM_LAGGED
ROUTE_MUSKINGUM_CUNGE
ROUTE_HYDROLOGIC

:CatchmentRoute ROUTE_DUMP* -
ROUTE_GAMMA_CONVOLUTION TIME_TO_PEAK or GAMMA_SCALE [GAMMA_SHAPE optional]
ROUTE_TRI_CONVOLUTION TIME_CONC, TIME_TO_PEAK
ROUTE_RESERVOIR_SERIES NUM_RESERVOIRS, RES_CONSTANT
ROUTE_EXPONENTIAL RES_CONSTANT

Evaporation

:Evaporation PET_NONE -
PET_FROMFILE [gridded data or time series at gauge]
PET_FROMMONTHLY [HBV] :MonthlyAveEvaporation, :MonthlyAveTemperature
PET_MONTHLY_FACTOR FOREST_PET_CORR, FOREST_COVERAGE, :MonthlyEvapFactor
PET_PENMAN_MONTEITH MAX_HEIGHT,RELATIVE_HT,MAX_LAI, RELATIVE_LAI

SPARSENESS, MAX_LEAF_COND
PET_PENMAN_COMBINATION MAX_HEIGHT,RELATIVE_HT
PET_HAMON -
PET_HARGREAVES :MonthlyMaxTemperature and :MonthlyMinTemperature
PET_HARGREAVES_1985* -
PET_OUDIN
PET_TURC_1961 -
PET_SIMPLE33 (Valiantzas et al 2006) -
PET_SIMPLE39 (Valiantzas et al 2006) -
PET_GRANGERGRAY -
PET_MOHYSE MOHYSE_PET_COEFF
PET_MAKKINK_1957 -
PET_PRIESTLEY_TAYLOR -

:OW_Evaporation Same as :Evaporation -

:OroPETCorrect OROCORR_NONE* -
OROCORR_SIMPLELAPSE
OROCORR_HBV

Radiation

:SWRadiationMethod SW_RAD_DATA [gridded data or time series at gauge]
SW_RAD_DEFAULT* SLOPE, ASPECT
SW_RAD_UBCWM

:LWRadiationMethod LW_RAD_DATA [gridded data or time series at gauge]
LW_RAD_DEFAULT* FOREST_COVERAGE
LW_RAD_UBC FOREST_COVERAGE

:CloudCoverMethod CLOUDCOV_NONE* -
CLOUDCOV_DATA [gridded data or time series at gauge]
CLOUDCOV_UBC -
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Table D.5: Required parameters for all model operation options (continued)
Option Algorithms Required Parameters

Precipitation

:RainSnowFraction RAINSNOW_DATA [gridded data or time series at gauge]
RAINSNOW_DINGMAN RAINSNOW_TEMP
RAINSNOW_HBV RAINSNOW_TEMP, RAINSNOW_DELTA
RAINSNOW_HARDER -
RAINSNOW_UBC RAINSNOW_TEMP, RAINSNOW_DELTA

:PrecipIceptFract PRECIP_ICEPT_USER RAIN_ICEPT_PCT, SNOW_ICEPT_PCT
PRECIP_ICEPT_LAI RAIN_ICEPT_FACT,SNOW_ICEPT_FACT
PRECIP_ICEPT_EXPLAI -

:OroPrecipCorrect OROCORR_NONE* -
OROCORR_UBC :UBCPrecipLapseRates
OROCORR_HBV -
OROCORR_SIMPLELAPSE -

Temperature

:OroTempCorrect OROCORR_NONE* -
OROCORR_UBC :UBCTempLapseRates,:ReferenceMaxTemperatureRange,

ADIABATIC_LAPSE,WET_ADIABATIC_LAPSE
OROCORR_HBV ADIABATIC_LAPSE
OROCORR_SIMPLELAPSE ADIABATIC_LAPSE

Energy

:PotentialMeltMethod POTMELT_DEGREE_DAY* MELT_FACTOR, DD_MELT_TEMP (opt)
POTMELT_RESTRICTED MELT_FACTOR, DD_MELT_TEMP (opt)
POTMELT_DATA [gridded data or time series at gauge]
POTMELT_EB [Dingman] -
POTMELT_USACE WIND_EXPOSURE
POTMELT_HMETS MIN_MELT_FACTOR, MAX_MELT_FACTOR, DD_AGGRADATION
POTMELT_HBV MIN_MELT_FACTOR,HBV_MELT_ASP_CORR,

FOREST_COVERAGE,HBV_MELT_FOR_CORR,
MELT_FACTOR

POTMELT_UBC MIN_SNOW_ALBEDO, FOREST_COVERAGE,ASPECT,
:UBCSouthSWCorr,F0ERGY,:UBCNorthSWCorr

:SubdailyMethod SUBDAILY_NONE* -
SUBDAILY_SIMPLE -
SUBDAILY_UBC -

Atmospheric Variables

:WindspeedMethod WINDVEL_CONSTANT* -
WINDVEL_DATA [gridded data or time series at gauge]
WINDVEL_UBC :UBCTempLapseRates (P0TEDL,P0TEDU,

MAX_RANGE_TEMP), FOREST_COVERAGE

:RelativeHumidityMethod RELHUM_CONSTANT* -
RELHUM_DATA [gridded data or time series at gauge]
RELHUM_MINDEWPT -

:AirPressureMethod AIRPRESS_BASIC* -
AIRPRESS_UBC -
AIRPRESS_DATA [gridded data or time series at gauge]
AIRPRESS_CONST -

Temporal Interpolation

:MonthlyInterpolationMethod MONTHINT_UNIFORM -
MONTHINT_LINEAR_FOM -
MONTHINT_LINEAR_MID* -
MONTHINT_LINEAR_21 -
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Appendix E

Database Files

The following section provides an overview of the .dat database files distributed with Raven source. These
files contain information that is independent of the compiled model code but may be useful to users
and pre/post-processing tools. This includes parameter ranges and default values (RavenParameters.dat),
mapping of parameters used in each algorithm (RavenAlgParams.dat), and the mapping of process con-
nection for each algorihtm (RavenProcessConnections.dat). These files are distributed with the Raven
source code, and an unofficial version is also distributed with the RavenR package. These files are used
by a number of RavenR routines.

A preview of the format for each of these three files is provided in the following sections. Note that
these master files are to date incomplete and will be updated with each new addition to algorithms and
parameters in Raven, and should not be treated as comprehensive files as of Raven v3.5.

E.1 RavenAlgParams.dat

The tabular file RavenAlgParams.dat contains a list of all of the parameter requirements of the Raven
hydrologic process algorithms and other options. Each row corresponds to one parameter requirement
for one algorithm. Example:

# algorithm name | algorithm type | parameter name | parameter class

PRECIP_RAVEN Precipitation FOREST_COVERAGE LULT
PRECIP_RAVEN Precipitation POROSITY SOIL
CANEVP_RUTTER CanopyEvap FOREST_COVERAGE LULT
CANEVP_RUTTER CanopyEvap MAX_CAPACITY LULT
CANEVP_RUTTER CanopyEvap TRUNK_FRACTION LULT
...
SOILEVAP_HBV SoilEvaporation FIELD_CAPACITY SOIL
SOILEVAP_HBV SoilEvaporation SAT_WILT SOIL
SOILEVAP_HBV SoilEvaporation FOREST_COVERAGE LULT
SOILEVAP_HBV SoilEvaporation PET_CORRECTION SOIL
...
ROUTE_HYDROLOGIC RoutingMethod CHANNEL_GEOM SUBBASIN
ROUTE_HYDROLOGIC RoutingMethod MANNINGS_N SUBBASIN
...
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E.2 RavenParameters.dat

The RavenParameters.dat is a tabular file which contains a complete list of all of the parameters in Raven,
their parameter class, their units, a default parameter value and a reasonable range. Missing values are
indicated with a -9999 flag. Other parameters may also have arbitrarily large numbers to indicate that an
upper bound should be determined by the user. These values should be reviewed prior to use in calibration
or before use as default values in a model.

#parameter name, class type, units, Autogen, default, min, max
FOREST_COVERAGE LULT [0..1] False 0 0 1
LAKE_PET_CORR LULT [0..1] False 1.0 0.0 2.0
...
POROSITY SOIL [0..1] True 0.4 0.0 1.0
VIC_ALPHA SOIL [-] False -9999 -9999 -9999
VIC_ZMAX SOIL [mm] False -9999 0.0 -9999
VIC_ZMIN SOIL [mm] False -9999 0.0 -9999
...
TIME_CONC SUBBASIN [d] False 1 0 200
TIME_TO_PEAK SUBBASIN [d] False 1 0 100
TIME_LAG SUBBASIN [d] True 0.0 0.0 5.0
...
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E.3 RavenProcessConnections.dat

The RavenProcessConnections.dat is a tabular file that specifies the list of ’from’ and ’to’ compartments
for all of the algorithms in Raven. Each line corresponds to one connection.

#algorithm, process, from, to
#--------------------------------------------------------
# PRECIPITATION
#--------------------------------------------------------
PRECIP_RAVEN Precipitation ATMOS_PRECIP SNOW
PRECIP_RAVEN Precipitation ATMOS_PRECIP PONDED_WATER
PRECIP_RAVEN Precipitation ATMOS_PRECIP DEPRESSION
PRECIP_RAVEN Precipitation ATMOS_PRECIP WETLAND
...
#--------------------------------------------------------
# SOIL PROCESSES
# -------------------------------------------------------
INF_RATIONAL Infiltration PONDED_WATER SOIL[0]
INF_RATIONAL Infiltration PONDED_WATER SURFACE_WATER
INF_SCS Infiltration PONDED_WATER SOIL[0]
INF_SCS Infiltration PONDED_WATER SURFACE_WATER
...
#--------------------------------------------------------
# CONCEPTUAL PROCESSES
#--------------------------------------------------------
FLUSH_RAVEN Flush USER_SPECIFIED USER_SPECIFIED
RAVEN_DEFAULT LateralFlush USER_SPECIFIED USER_SPECIFIED
SPLIT_RAVEN Split USER_SPECIFIED USER_SPECIFIED
...
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Appendix F

Template Files

The following section provides template .rvi files. Note that for these files and for custom model configu-
rations, the :CreateRVPTemplate command in the .rvi file (see section A.1.3) can be used to generate
an empty rvp file which can be populated with parameter values by the user.

F.1 UBCWatershed Model Emulation

# ------------------------------------------------------------
# Raven Template Input File
# UBC Watershed Model v5 Emulation
# ------------------------------------------------------------
:StartDate 1991-10-01 00:00:00
:Duration 365
:TimeStep 24:00:00
#
:Method ORDERED_SERIES
:Interpolation INTERP_NEAREST_NEIGHBOR

:Routing ROUTE_NONE
:CatchmentRoute ROUTE_DUMP

:Evaporation PET_MONTHLY_FACTOR
:OW_Evaporation PET_MONTHLY_FACTOR
:SWRadiationMethod SW_RAD_UBCWM
:SWCloudCorrect SW_CLOUD_CORR_UBCWM
:SWCanopyCorrect SW_CANOPY_CORR_UBCWM
:LWRadiationMethod LW_RAD_UBCWM
:WindspeedMethod WINDVEL_UBCWM
:RainSnowFraction RAINSNOW_UBCWM
:PotentialMeltMethod POTMELT_UBCWM
:OroTempCorrect OROCORR_UBCWM
:OroPrecipCorrect OROCORR_UBCWM2
:OroPETCorrect OROCORR_UBCWM
:CloudCoverMethod CLOUDCOV_UBCWM
:PrecipIceptFract PRECIP_ICEPT_USER
:MonthlyInterpolationMethod MONTHINT_LINEAR_21

:SoilModel SOIL_MULTILAYER 6
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:SnapshotHydrograph

# --Hydrologic Processes-------------------------
:Alias TOP_SOIL SOIL[0]
:Alias INT_SOIL SOIL[1]
:Alias SHALLOW_GW SOIL[2]
:Alias DEEP_GW SOIL[3]
:Alias INT_SOIL2 SOIL[4]
:Alias INT_SOIL3 SOIL[5]
:HydrologicProcesses

:SnowAlbedoEvolve SNOALB_UBCWM
:SnowBalance SNOBAL_UBCWM MULTIPLE MULTIPLE
# moves snowmelt to fast runoff
:Flush RAVEN_DEFAULT PONDED_WATER INT_SOIL2

:-->Conditional HRU_TYPE IS GLACIER
:GlacierMelt GMELT_UBC GLACIER_ICE PONDED_WATER
:Precipitation PRECIP_RAVEN ATMOS_PRECIP MULTIPLE
:SoilEvaporation SOILEVAP_UBC MULTIPLE ATMOSPHERE
:Infiltration INF_UBC PONDED_WATER MULTIPLE
# from infiltration to routing
:Flush RAVEN_DEFAULT SURFACE_WATER INT_SOIL2

:-->Conditional HRU_TYPE IS_NOT LAKE
:GlacierInfiltration GINFIL_UBCWM PONDED_WATER MULTIPLE
# soils really used as routing stores
:Percolation PERC_LINEAR_ANALYTIC INT_SOIL INT_SOIL2
:Percolation PERC_LINEAR_ANALYTIC INT_SOIL2 INT_SOIL3
:Baseflow BASE_LINEAR INT_SOIL3 SURFACE_WATER
:Baseflow BASE_LINEAR SHALLOW_GW SURFACE_WATER
:Baseflow BASE_LINEAR DEEP_GW SURFACE_WATER
:GlacierRelease GRELEASE_LINEAR GLACIER SURFACE_WATER

:EndHydrologicProcesses

See the Alouette tutorial example for a template .rvp file for UBCWM emulation, indicating all required
parameters.
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F.2 HBV-EC Emulation

To emulate the Environment Canada version of HBV-96 Hamilton et al. (2000); Lindström et al. (1997):

# ----------------------------------------------
# Raven Input file
# HBV-EC Emulation
# ----------------------------------------------
# --Simulation Details -------------------------
:StartDate 1991-10-01 00:00:00
:Duration 365
:TimeStep 1.0
#
# --Model Details -------------------------------
:Method ORDERED_SERIES
:Interpolation INTERP_NEAREST_NEIGHBOR

:Routing ROUTE_NONE
:CatchmentRoute ROUTE_TRI_CONVOLUTION

:Evaporation PET_FROMMONTHLY
:OW_Evaporation PET_FROMMONTHLY
:SWRadiationMethod SW_RAD_DEFAULT
:SWCloudCorrect SW_CLOUD_CORR_NONE
:SWCanopyCorrect SW_CANOPY_CORR_NONE
:LWRadiationMethod LW_RAD_DEFAULT
:RainSnowFraction RAINSNOW_HBV
:PotentialMeltMethod POTMELT_HBV
:OroTempCorrect OROCORR_HBV
:OroPrecipCorrect OROCORR_HBV
:OroPETCorrect OROCORR_HBV
:CloudCoverMethod CLOUDCOV_NONE
:PrecipIceptFract PRECIP_ICEPT_USER
:MonthlyInterpolationMethod MONTHINT_LINEAR_21

:SoilModel SOIL_MULTILAYER 3

# an oddity unique to HBV:
:LakeStorage SLOW_RESERVOIR

# --Hydrologic Processes-------------------------
:Alias FAST_RESERVOIR SOIL[1]
:Alias SLOW_RESERVOIR SOIL[2]

:HydrologicProcesses
:SnowRefreeze FREEZE_DEGREE_DAY SNOW_LIQ SNOW
:Precipitation PRECIP_RAVEN ATMOS_PRECIP MULTIPLE
:CanopyEvaporation CANEVP_ALL CANOPY ATMOSPHERE
:CanopySublimation CANEVP_ALL CANOPY_SNOW ATMOSPHERE
:SnowBalance SNOBAL_SIMPLE_MELT SNOW SNOW_LIQ

:Overflow OVERFLOW_RAVEN SNOW_LIQ PONDED_WATER
:Flush RAVEN_DEFAULT PONDED_WATER GLACIER

:-->Conditional HRU_TYPE IS GLACIER
:GlacierMelt GMELT_HBV GLACIER_ICE GLACIER
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:GlacierRelease GRELEASE_HBV_EC GLACIER SURFACE_WATER
:Infiltration INF_HBV PONDED_WATER MULTIPLE
:Flush RAVEN_DEFAULT SURFACE_WATER FAST_RESERVOIR

:-->Conditional HRU_TYPE IS_NOT GLACIER
:-->Conditional HRU_TYPE IS_NOT LAKE

:SoilEvaporation SOILEVAP_HBV SOIL[0] ATMOSPHERE
:CapillaryRise CRISE_HBV FAST_RESERVOIR SOIL[0]
:LakeEvaporation LAKE_EVAP_BASIC SLOW_RESERVOIR ATMOSPHERE
:Percolation PERC_CONSTANT FAST_RESERVOIR SLOW_RESERVOIR
:Baseflow BASE_POWER_LAW FAST_RESERVOIR SURFACE_WATER
:Baseflow BASE_LINEAR SLOW_RESERVOIR SURFACE_WATER
:LateralEquilibrate RAVEN_DEFAULT AllHRUs FAST_RESERVOIR 1.0
:LateralEquilibrate RAVEN_DEFAULT AllHRUs SLOW_RESERVOIR 1.0

:EndHydrologicProcesses

See the Alouette2 tutorial example for a template .rvp file for HBV-EC emulation, indicating all required
parameters.
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# ----------------------------------------------
# Raven Input file
# HBV-Light Emulation
# developed by Koen Jansen, Wageningen University
# ----------------------------------------------
# --Simulation Details -------------------------
:StartDate 1991-10-01 00:00:00
:Duration 365
:TimeStep 1.0
:Method ORDERED_SERIES
:SoilModel SOIL_MULTILAYER 3

:Routing ROUTE_NONE
:CatchmentRoute ROUTE_TRI_CONVOLUTION
:Evaporation PET_DATA
:RainSnowFraction RAINSNOW_HBV
:PotentialMeltMethod POTMELT_DEGREE_DAY
:OroTempCorrect OROCORR_HBV
:OroPrecipCorrect OROCORR_HBV
:OroPETCorrect OROCORR_HBV
:CloudCoverMethod CLOUDCOV_NONE
:PrecipIceptFract PRECIP_ICEPT_USER

# --Hydrologic Processes-------------------------
:Alias TOPSOIL SOIL[0]
:Alias FAST_RESERVOIR SOIL[1]
:Alias SLOW_RESERVOIR SOIL[2]
:HydrologicProcesses

:SnowRefreeze FREEZE_DEGREE_DAY SNOW_LIQ SNOW
:Precipitation PRECIP_RAVEN ATMOS_PRECIP MULTIPLE
:SnowBalance SNOBAL_SIMPLE_MELT SNOW SNOW_LIQ

:Overflow OVERFLOW_RAVEN SNOW_LIQ PONDED_WATER
:Infiltration INF_HBV PONDED_WATER MULTIPLE
:Flush RAVEN_DEFAULT SURFACE_WATER FAST_RESERVOIR
:-->Conditional HRU_TYPE IS_NOT LAKE
:SoilEvaporation SOILEVAP_HBV TOPSOIL ATMOSPHERE
:CapillaryRise CRISE_HBV FAST_RESERVOIR TOPSOIL
:Percolation PERC_CONSTANT FAST_RESERVOIR SLOW_RESERVOIR
:Baseflow BASE_POWER_LAW FAST_RESERVOIR SURFACE_WATER
:Baseflow BASE_THRESH_POWER FAST_RESERVOIR SURFACE_WATER
:Baseflow BASE_LINEAR SLOW_RESERVOIR SURFACE_WATER

:EndHydrologicProcesses

278



F.3 GR4J Emulation

# ----------------------------------------------
# Raven Input file
# GR4J Emulation
# ----------------------------------------------
:StartDate 2000-01-01 00:00:00
:EndDate 2004-01-01 00:00:00
:TimeStep 1.0

:Method ORDERED_SERIES
:Interpolation INTERP_NEAREST_NEIGHBOR

:Routing ROUTE_NONE
:CatchmentRoute ROUTE_DUMP

:Evaporation PET_DATA
:RainSnowFraction RAINSNOW_DINGMAN
:PotentialMeltMethod POTMELT_DEGREE_DAY
:OroTempCorrect OROCORR_SIMPLELAPSE
:OroPrecipCorrect OROCORR_SIMPLELAPSE

:SoilModel SOIL_MULTILAYER 4

# --Hydrologic Processes-------------------------
:Alias PRODUCT_STORE SOIL[0]
:Alias ROUTING_STORE SOIL[1]
:Alias TEMP_STORE SOIL[2]
:Alias GW_STORE SOIL[3]
:HydrologicProcesses
:Precipitation PRECIP_RAVEN ATMOS_PRECIP MULTIPLE
:SnowTempEvolve SNOTEMP_NEWTONS SNOW_TEMP
:SnowBalance SNOBAL_CEMA_NEIGE SNOW PONDED_WATER
:OpenWaterEvaporation OPEN_WATER_EVAP PONDED_WATER ATMOSPHERE
:Infiltration INF_GR4J PONDED_WATER MULTIPLE
:SoilEvaporation SOILEVAP_GR4J PRODUCT_STORE ATMOSPHERE
:Percolation PERC_GR4J PRODUCT_STORE TEMP_STORE
:Flush RAVEN_DEFAULT SURFACE_WATER TEMP_STORE
:Split RAVEN_DEFAULT TEMP_STORE CONVOLUTION[0]

CONVOLUTION[1] 0.9
:Convolve CONVOL_GR4J_1 CONVOLUTION[0] ROUTING_STORE
:Convolve CONVOL_GR4J_2 CONVOLUTION[1] TEMP_STORE
:Percolation PERC_GR4JEXCH ROUTING_STORE GW_STORE
:Percolation PERC_GR4JEXCH2 TEMP_STORE GW_STORE
:Flush RAVEN_DEFAULT TEMP_STORE SURFACE_WATER
:Baseflow BASE_GR4J ROUTING_STORE SURFACE_WATER

:EndHydrologicProcesses

See the Irondequoit tutorial example for a template .rvp file for GR4J emulation, indicating all required
parameters.
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F.4 Canadian Shield Configuration

A useful configuration in Canadian shield basins characterised by shallow soils atop rock, with ample
exposed rock and lakes. Use the :CreateRVPTemplate command to generate the corresponding .rvp
template file and determine what parameters are needed.

:StartDate 2003-10-01 00:00:00
:EndDate 2004-01-01 00:00:00
:TimeStep 1.0

:Method ORDERED_SERIES
:InterpolationMethod NEAREST_NEIGHBOR

:SoilModel SOIL_MULTILAYER 3

:Routing ROUTE_DIFFUSIVE_WAVE
:CatchmentRoute ROUTE_TRI_CONVOLUTION
:Evaporation PET_HARGREAVES_1985
:OW_Evaporation PET_HARGREAVES_1985
:SWCanopyCorrect SW_CANOPY_CORR_STATIC
:RainSnowFraction RAINSNOW_DINGMAN
:PotentialMeltMethod POTMELT_DEGREE_DAY
:PrecipIceptFract PRECIP_ICEPT_LAI

:MonthlyInterpolationMethod MONTHINT_LINEAR_MID

:LakeStorage LAKE_STORAGE

# --Hydrologic Processes-------------------------
:Alias SOIL0 SOIL[0]
:Alias SOIL1 SOIL[1]
:Alias SOIL2 SOIL[2]
:HydrologicProcesses

:SnowRefreeze FREEZE_DEGREE_DAY SNOW_LIQ SNOW
:Precipitation PRECIP_RAVEN ATMOS_PRECIP MULTIPLE
:CanopyEvaporation CANEVP_MAXIMUM CANOPY ATMOSPHERE
:CanopySublimation CANEVP_MAXIMUM CANOPY_SNOW ATMOSPHERE
:SnowBalance SNOBAL_TWO_LAYER MULTIPLE MULTIPLE
:Abstraction ABST_FILL PONDED_WATER DEPRESSION
:OpenWaterEvaporation OPEN_WATER_EVAP DEPRESSION ATMOSPHERE
:Infiltration INF_HBV PONDED_WATER MULTIPLE
:LakeRelease LAKEREL_LINEAR LAKE_STORAGE SURFACE_WATER
:SoilEvaporation SOILEVAP_ROOT SOIL0 ATMOSPHERE
:Percolation PERC_GAWSER_CONSTRAIN SOIL0 SOIL1
:Percolation PERC_GAWSER_CONSTRAIN SOIL1 SOIL2
:Baseflow BASE_THRESH_POWER SOIL0 SURFACE_WATER
:Baseflow BASE_THRESH_POWER SOIL1 SURFACE_WATER
:Baseflow BASE_THRESH_POWER SOIL2 SURFACE_WATER

:EndHydrologicProcesses
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F.5 MOHYSE Configuration

A simple educational model developed at the Université duQuébec à Montréal (Fortin and Turcotte, 2006)
. Use the :CreateRVPTemplate command to generate the corresponding .rvp template file and de-
termine what parameters are needed.

:StartDate 1958-08-01 00:00:00
:EndDate 2003-09-30 00:00:00
:TimeStep 1.0
:Method ORDERED_SERIES

:Routing ROUTE_NONE
:CatchmentRoute ROUTE_GAMMA_CONVOLUTION

:PotentialMeltMethod POTMELT_DEGREE_DAY
:Evaporation PET_MOHYSE
:RainSnowFraction RAINSNOW_DATA
:DirectEvaporation

:SoilModel SOIL_TWO_LAYER

:HydrologicProcesses
:SoilEvaporation SOILEVAP_LINEAR SOIL[0] ATMOSPHERE
:SnowBalance SNOBAL_SIMPLE_MELT SNOW PONDED_WATER
:Precipitation RAVEN_DEFAULT ATMOS_PRECIP MULTIPLE
:Infiltration INF_HBV PONDED_WATER SOIL[0]
:Baseflow BASE_LINEAR SOIL[0] SURFACE_WATER
:Percolation PERC_LINEAR SOIL[0] SOIL[1]
:Baseflow BASE_LINEAR SOIL[1] SURFACE_WATER

:EndHydrologicProcesses

See the MOHYSE model example file distributed with the Raven tutorials for a template .rvp file for
MOHYSE emulation, indicating all required parameters.
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F.6 HMETS Configuration

HMETS is a relatively simple model developed at the École de technologie supérieure (Martel et al., 2017).
You may use the :CreateRVPTemplate command to generate the corresponding .rvp template file
and determine what parameters are needed.

:StartDate 1953-01-01 00:00:00
:EndDate 2009-12-31 00:00:00
:TimeStep 24:00:00

:PotentialMeltMethod POTMELT_HMETS
:RainSnowFraction RAINSNOW_DATA
:Evaporation PET_OUDIN

:CatchmentRoute ROUTE_DUMP
:Routing ROUTE_NONE

:SoilModel SOIL_TWO_LAYER

:AllowSoilOverfill

:HydrologicProcesses
:SnowBalance SNOBAL_HMETS MULTIPLE MULTIPLE
:Precipitation RAVEN_DEFAULT ATMOS_PRECIP MULTIPLE
:Infiltration INF_HMETS PONDED_WATER MULTIPLE

:Overflow OVERFLOW_RAVEN SOIL[0] CONVOLUTION[1]
:Baseflow BASE_LINEAR SOIL[0] SURFACE_WATER #interflow
:Percolation PERC_LINEAR SOIL[0] SOIL[1] #recharge

:Overflow OVERFLOW_RAVEN SOIL[1] CONVOLUTION[1]
:SoilEvaporation SOILEVAP_ALL SOIL[0] ATMOSPHERE #AET
:Convolve CONVOL_GAMMA CONVOLUTION[0] SURFACE_WATER #surf. runoff
:Convolve CONVOL_GAMMA_2 CONVOLUTION[1] SURFACE_WATER #delay. runoff
:Baseflow BASE_LINEAR SOIL[1] SURFACE_WATER

:EndHydrologicProcesses

See the Salmon model example file distributed with the Raven tutorials for a template .rvp file for HMETS
emulation, indicating all required parameters.

282



F.7 HYPR Configuration

HYPR is a version of HBV revised to support simulation on the Canadian Prairies (Ahmed et al., 2020).
You may use the :CreateRVPTemplate command to generate the corresponding .rvp template file
and determine what parameters are needed.

:StartDate 2002-10-01 00:00:00
:EndDate 2015-08-31 00:00:00
:Duration 4718
:TimeStep 24:00:00

# Model options
#------------------------------------------------------------------------
:CatchmentRoute ROUTE_TRI_CONVOLUTION

:Evaporation PET_FROMMONTHLY
:OW_Evaporation PET_FROMMONTHLY
:SWRadiationMethod SW_RAD_DEFAULT
:LWRadiationMethod LW_RAD_DEFAULT
:RainSnowFraction RAINSNOW_HBV
:PotentialMeltMethod POTMELT_HBV
:PrecipIceptFract PRECIP_ICEPT_USER
:MonthlyInterpolationMethod MONTHINT_LINEAR_21
:SoilModel SOIL_MULTILAYER 3

# Soil Layer Alias Definitions
#------------------------------------------------------------------------
:Alias FAST_RESERVOIR SOIL[1]
:Alias SLOW_RESERVOIR SOIL[2]

# Hydrologic process order for HYPR Emulation
#------------------------------------------------------------------------
:HydrologicProcesses

:SnowRefreeze FREEZE_DEGREE_DAY SNOW_LIQ SNOW
:Precipitation PRECIP_RAVEN ATMOS_PRECIP MULTIPLE
:CanopyEvaporation CANEVP_ALL CANOPY ATMOSPHERE
:CanopySublimation CANEVP_ALL CANOPY_SNOW ATMOSPHERE
:SnowBalance SNOBAL_SIMPLE_MELT SNOW PONDED_WATER
:Infiltration INF_HBV PONDED_WATER MULTIPLE
:Flush RAVEN_DEFAULT SURFACE_WATER PONDED_WATER
:Abstraction ABST_PDMROF PONDED_WATER DEPRESSION
:Flush RAVEN_DEFAULT SURFACE_WATER FAST_RESERVOIR
:SoilEvaporation SOILEVAP_HYPR MULTIPLE ATMOSPHERE
:Baseflow BASE_LINEAR FAST_RESERVOIR SURFACE_WATER
:Baseflow BASE_THRESH_STOR FAST_RESERVOIR SURFACE_WATER

:EndHydrologicProcesses
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F.8 HYMOD/HYMOD2 Configuration

HYMOD is a popular conceptual model based upon the Probability DistributedModel (PDM) described in
(Moore, 2007), and is documented in (e.g.,) (Wagener et al., 2001). The HYMOD2model is a slightly revised
variant documented by Roy et al. (2017). The user may use the :CreateRVPTemplate command to
generate the corresponding .rvp template file and determine what parameters are needed.

:StartDate 2000-01-01 00:00:00
:EndDate 2001-01-01 00:00:00
:TimeStep 1.0
:Method ORDERED_SERIES

# Model options for HYMOD Emulation
#------------------------------------------------------------------------
:Routing ROUTE_NONE
:CatchmentRoute ROUTE_RESERVOIR_SERIES

:Evaporation PET_HAMON
:OW_Evaporation PET_HAMON
:SWRadiationMethod SW_RAD_NONE
:LWRadiationMethod LW_RAD_NONE
:CloudCoverMethod CLOUDCOV_NONE
:RainSnowFraction RAINSNOW_THRESHOLD
:PotentialMeltMethod POTMELT_DEGREE_DAY
:PrecipIceptFract PRECIP_ICEPT_NONE

:SoilModel SOIL_MULTILAYER 2

#------------------------------------------------------------------------
# Hydrologic process order for HYMOD/HYMOD2 Emulation
#
:HydrologicProcesses

:Precipitation PRECIP_RAVEN ATMOS_PRECIP MULTIPLE
:SnowBalance SNOBAL_SIMPLE_MELT SNOW PONDED_WATER
:Infiltration INF_PDM PONDED_WATER MULTIPLE
# 0.5 is the HYMOD_ALPHA parameter
:Flush RAVEN_DEFAULT SURFACE_WATER SOIL[1]

0.5
:SoilEvaporation SOILEVAP_PDM SOIL[0] ATMOSPHERE
# for HYMOD2, replace above with:
# :SoilEvaporation SOILEVAP_HYMOD2 SOIL[0] ATMOSPHERE
:Baseflow BASE_LINEAR SOIL[1] SURFACE_WATER

:EndHydrologicProcesses
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F.9 AWBM Configuration

The Australian Water Balance Model (ABWM) is a low-parameter 4-compartment conceptual model de-
scribed in Boughton (2004), here augmented to support simple treatment of snowmelt. The user may use
the :CreateRVPTemplate command to generate the corresponding .rvp template file and determine
what parameters are needed.

:StartDate 1994-01-01 00:00:00
:EndDate 1999-01-01 00:00:00
:TimeStep 1.0
:Method ORDERED_SERIES

# Model options for AWBM Emulation
#------------------------------------------------------------------------
:Routing ROUTE_NONE
:CatchmentRoute ROUTE_DUMP

:SWRadiationMethod SW_RAD_NONE
:LWRadiationMethod LW_RAD_NONE
:CloudCoverMethod CLOUDCOV_NONE
:PrecipIceptFract PRECIP_ICEPT_NONE

:Evaporation PET_HAMON
:RainSnowFraction RAINSNOW_THRESHOLD
:PotentialMeltMethod POTMELT_DEGREE_DAY

:SoilModel SOIL_MULTILAYER 4

#------------------------------------------------------------------------
# Hydrologic process order for AWBM Emulation
#
:HydrologicProcesses

:Precipitation PRECIP_RAVEN ATMOS_PRECIP MULTIPLE
:SnowBalance SNOBAL_SIMPLE_MELT SNOW PONDED_WATER
:Infiltration INF_ABWM PONDED_WATER MULTIPLE
:SoilEvaporation SOILEVAP_ABWM MULTIPLE ATMOSPHERE
:Baseflow BASE_LINEAR SOIL[3] SURFACE_WATER

:EndHydrologicProcesses

Note that the baseflow parameterK in Boughton (2004) is equal to 1-BASE_COEFF here.
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F.10 SAC-SMA Configuration

The Sacramento Soil Moisture Accounting model (SAC-SMA) is a spatially lumped model that divides the
basin into lower and upper zones at different depths. The Raven implementation has seven soil layers,
including layers for upper zone tension and free storage compartments, special storage corresponding
to saturaed soil regions near a surface water body, and deep groundwater storage. The user may use
the :CreateRVPTemplate command to generate the corresponding .rvp template file and determine
what parameters are needed.

:StartDate 1954-01-01 00:00:00
:Duration 20819
:TimeStep 1.0
:Method ORDERED_SERIES

# Model options for SAC-SMA Emulation
#------------------------------------------------------------------------
:PotentialMeltMethod POTMELT_DEGREE_DAY
:RainSnowFraction RAINSNOW_DATA
:Evaporation PET_DATA
:CatchmentRoute ROUTE_DUMP
:Routing ROUTE_NONE

:SoilModel SOIL_MULTILAYER 7

:Alias UZ_T SOIL[0]
:Alias UZ_F SOIL[1]
:Alias LZ_T SOIL[2]
:Alias LZ_PF SOIL[3]
:Alias LZ_PS SOIL[4]

#------------------------------------------------------------------------
# Hydrologic process order for SAC-SMA Emulation
#
:HydrologicProcesses

:SnowBalance SNOBAL_SIMPLE_MELT SNOW PONDED_WATER
:Precipitation RAVEN_DEFAULT ATMOS_PRECIP MULTIPLE
:SoilEvaporation SOILEVAP_SACSMA MULTIPLE ATMOSPHERE
:SoilBalance SOILBAL_SACSMA MULTIPLE MULTIPLE
:OpenWaterEvaporation OPEN_WATER_RIPARIAN SURFACE_WATER ATMOSPHERE

:EndHydrologicProcesses
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F.11 Routing-only implementation

For a routing-only implementation, another model is used to generate the net runoff (all water reach-
ing the surface water network, minus ET losses from water bodies, including baseflow). This is sent to
Raven as a PRECIP input file, often as a gridded or station-based NetCDF input. Raven routes this water
downstream through a network of rivers, lakes, and reservoirs.

:StartDate 2000-01-01 00:00:00
:EndDate 2010-12-31 00:00:00
:TimeStep 24:00:00

:CatchmentRoute ROUTE_GAMMA_CONVOLUTION
:Routing ROUTE_DIFFUSIVE_WAVE

:PrecipIceptFract PRECIP_ICEPT_NONE
:PotentialMeltMethod POTMELT_NONE
:SWRadiationMethod SW_RAD_NONE
:OW_Evaporation PET_NONE

:SoilModel SOIL_ONE_LAYER

:HydrologicProcesses
:Precipitation PRECIP_RAVEN ATMOS_PRECIP PONDED_WATER
:Flush RAVEN_DEFAULT PONDED_WATER SURFACE_WATER

:EndHydrologicProcesses

For an example routing-only setup, look at walkthrough number 6 of the Raven tutorials.
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F.12 Blended v1 Configuration

The Blended model v1 configuration is a blended modelling approach in which five hydrologic process
groups, specifically infiltration, quickflow, soil evapotranspiration, baseflow, and snow balance, have two
ormore process options. This blendedmodel concept was introduced inMai et al. (2020). The user may use
the :CreateRVPTemplate command to generate the corresponding .rvp template file and determine
what parameters are needed.

:StartDate 2000-01-01 00:00:00
:EndDate 2001-01-01 00:00:00
:TimeStep 1.0

:PotentialMeltMethod POTMELT_HMETS
:RainSnowFraction RAINSNOW_HBV
:Evaporation PET_OUDIN

:CatchmentRoute ROUTE_DUMP
:Routing ROUTE_NONE
:SoilModel SOIL_MULTILAYER 3

:Alias DELAYED_RUNOFF CONVOLUTION[1]

:HydrologicProcesses
:Precipitation RAVEN_DEFAULT ATMOS_PRECIP MULTIPLE
:ProcessGroup # infiltration group

:Infiltration INF_HMETS PONDED_WATER MULTIPLE
:Infiltration INF_VIC_ARNO PONDED_WATER MULTIPLE
:Infiltration INF_HBV PONDED_WATER MULTIPLE

:EndProcessGroup CALCULATE_WTS 0.55556 0.5
:Overflow OVERFLOW_RAVEN SOIL[0] DELAYED_RUNOFF
:ProcessGroup # quickflow group

:Baseflow BASE_LINEAR_ANALYTIC SOIL[0] SURFACE_WATER
:Baseflow BASE_VIC SOIL[0] SURFACE_WATER
:Baseflow BASE_TOPMODEL SOIL[0] SURFACE_WATER

:EndProcessGroup CALCULATE_WTS 0.55556 0.5
:Percolation PERC_LINEAR SOIL[0] SOIL[1]
:Overflow OVERFLOW_RAVEN SOIL[1] DELAYED_RUNOFF
:Percolation PERC_LINEAR SOIL[1] SOIL[2]
:ProcessGroup #evaporation group

:SoilEvaporation SOILEVAP_ALL SOIL[0] ATMOSPHERE
:SoilEvaporation SOILEVAP_TOPMODEL SOIL[0] ATMOSPHERE

:EndProcessGroup CALCULATE_WTS 0.5
:Convolve CONVOL_GAMMA CONVOLUTION[0] SURFACE_WATER
:Convolve CONVOL_GAMMA_2 DELAYED_RUNOFF SURFACE_WATER
:ProcessGroup #baseflow group

:Baseflow BASE_LINEAR_ANALYTIC SOIL[1] SURFACE_WATER
:Baseflow BASE_POWER_LAW SOIL[1] SURFACE_WATER

:EndProcessGroup CALCULATE_WTS 0.5
:ProcessGroup #snow balance group

:SnowBalance SNOBAL_HMETS MULTIPLE MULTIPLE
:SnowBalance SNOBAL_SIMPLE_MELT SNOW PONDED_WATER
:SnowBalance SNOBAL_HBV MULTIPLE MULTIPLE

:EndProcessGroup CALCULATE_WTS 0.55556 0.5
:EndHydrologicProcesses
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F.13 Blended v2 Configuration

The Blended model v2 configuration is a blended modelling approach in which five hydrologic process
groups, specifically potential evapotranspiration, potential melt, quickflow, soil evapotranspiration, and
baseflow, have two or more process options. This blended model concept was introduced in Mai et al.
(2020), and the blended v2 configuration was produced by Chlumsky et al. (2024). The user may use the
:CreateRVPTemplate command to generate the corresponding .rvp template file and determine what
parameters are needed.

The blended v2 configuration below was developed for a lumped, daily model. Modifications for a semi-
distributed, subdaily model are provided subsequently.

:StartDate 2000-01-01 00:00:00
:Duration 365
:TimeStep 1.0
:Method ORDERED_SERIES

:SoilModel SOIL_MULTILAYER 3

:Evaporation PET_BLENDED
:BlendedPETWeights PET_GRANGERGRAY 0.55556 PET_HAMON 0.5 PET_PENMAN_MONTEITH

:PotentialMeltMethod POTMELT_BLENDED
:BlendedPotMeltWeights POTMELT_HMETS 0.5 POTMELT_RESTRICTED

:RainSnowFraction RAINSNOW_HBV # RAINSNOW_DATA
:PrecipIceptFract PRECIP_ICEPT_USER
:CatchmentRoute ROUTE_DUMP
:Routing ROUTE_NONE

:Alias DELAYED_RUNOFF CONVOLUTION[1]

:HydrologicProcesses
:Precipitation RAVEN_DEFAULT ATMOS_PRECIP

MULTIPLE
:CanopyDrip CANDRIP_RUTTER CANOPY

PONDED_WATER
:Abstraction ABST_PERCENTAGE PONDED_WATER

DEPRESSION
:OpenWaterEvaporation OPEN_WATER_EVAP DEPRESSION

ATMOSPHERE
:CanopyEvaporation CANEVP_MAXIMUM CANOPY

ATMOSPHERE
:CanopySnowEvap CANEVP_MAXIMUM CANOPY_SNOW

ATMOSPHERE
:Seepage SEEP_LINEAR DEPRESSION

SOIL[1]
:Infiltration INF_HMETS PONDED_WATER

MULTIPLE
:Overflow OVERFLOW_RAVEN SOIL[0]

DELAYED_RUNOFF
:ProcessGroup #quickflow/interflow group

:Baseflow BASE_POWER_LAW SOIL[0]
SURFACE_WATER
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:Baseflow BASE_THRESH_POWER SOIL[0]
SURFACE_WATER

:EndProcessGroup CALCULATE_WTS 0.5
:Percolation PERC_LINEAR SOIL[0]

SOIL[1] # recharge
:CapillaryRise CRISE_HBV SOIL[1]

SOIL[0]
:Overflow OVERFLOW_RAVEN SOIL[1]

DELAYED_RUNOFF
:Percolation PERC_LINEAR SOIL[1]

SOIL[2] # loss to deep gw
:CapillaryRise CRISE_HBV SOIL[2]

SOIL[1]
:ProcessGroup #evaporation/AET group

:SoilEvaporation SOILEVAP_ALL SOIL[0]
ATMOSPHERE

:SoilEvaporation SOILEVAP_ROOT SOIL[0]
ATMOSPHERE

:SoilEvaporation SOILEVAP_SEQUEN SOIL[0]
ATMOSPHERE

:EndProcessGroup CALCULATE_WTS 0.55556 0.5
:Convolve CONVOL_GAMMA

CONVOLUTION[0] SURFACE_WATER # ’surface runoff’
:Convolve CONVOL_GAMMA_2

DELAYED_RUNOFF SURFACE_WATER # ’delayed runoff’
:ProcessGroup #baseflow group

:Baseflow BASE_POWER_LAW SOIL[1]
SURFACE_WATER

:Baseflow BASE_THRESH_POWER SOIL[1]
SURFACE_WATER

:EndProcessGroup CALCULATE_WTS 0.5
:SnowBalance SNOBAL_HBV MULTIPLE

MULTIPLE
:EndHydrologicProcesses

The modifications for a semi-distributed, subdaily blended v2 configuration include several minor adjust-
ments. The first is to replace the catchment and in-channel routing with valid routines and also inlcude a
subdaily method for temporal downscaling of forcings:

:CatchmentRoute ROUTE_GAMMA_CONVOLUTION
:Routing ROUTE_DIFFUSIVE_WAVE
:SubdailyMethod SUBDAILY_SIMPLE

If orographic corrections are important, then adding the following is also recommended:

:OroTempCorrect OROCORR_SIMPLELAPSE
:OroPrecipCorrect OROCORR_HBV

The primary Hydrologic Processes block should be updated to the following, which removes the convo-
lution routing for the faster convolution store, as is this practically replaced by catchment routing. The
glacial processes (:GlacierMelt, :GlacierRelease, and glacial :Flush commands) may be removed if not rel-
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evant.

:HydrologicProcesses
:Precipitation RAVEN_DEFAULT ATMOS_PRECIP

MULTIPLE
:CanopyDrip CANDRIP_RUTTER CANOPY

PONDED_WATER
:Abstraction ABST_PERCENTAGE PONDED_WATER

DEPRESSION
:OpenWaterEvaporation OPEN_WATER_EVAP DEPRESSION

ATMOSPHERE
:CanopyEvaporation CANEVP_MAXIMUM CANOPY

ATMOSPHERE
:CanopySnowEvap CANEVP_MAXIMUM CANOPY_SNOW

ATMOSPHERE
:Seepage SEEP_LINEAR DEPRESSION

SOIL[1]
:Infiltration INF_HMETS PONDED_WATER

MULTIPLE
:Overflow OVERFLOW_RAVEN SOIL[0]

DELAYED_RUNOFF
:ProcessGroup #quickflow/interflow group

:Baseflow BASE_POWER_LAW SOIL[0]
SURFACE_WATER

:Baseflow BASE_THRESH_POWER SOIL[0]
SURFACE_WATER

:EndProcessGroup CALCULATE_WTS 0.5
:Percolation PERC_LINEAR SOIL[0]

SOIL[1] # recharge
:CapillaryRise CRISE_HBV SOIL[1]

SOIL[0]
:Overflow OVERFLOW_RAVEN SOIL[1]

DELAYED_RUNOFF
:Percolation PERC_LINEAR SOIL[1]

SOIL[2] # loss to deep gw
:CapillaryRise CRISE_HBV SOIL[2]

SOIL[1]
:ProcessGroup #evaporation/AET group

:SoilEvaporation SOILEVAP_ALL SOIL[0]
ATMOSPHERE

:SoilEvaporation SOILEVAP_ROOT SOIL[0]
ATMOSPHERE

:SoilEvaporation SOILEVAP_SEQUEN SOIL[0]
ATMOSPHERE

:EndProcessGroup CALCULATE_WTS 0.55556 0.5
:Flush RAVEN_DEFAULT

CONVOLUTION[0] SURFACE_WATER # ’surface runoff’
:Convolve CONVOL_GAMMA_2

DELAYED_RUNOFF SURFACE_WATER # ’delayed runoff’
#
:Flush RAVEN_DEFAULT

PONDED_WATER GLACIER
:-->Conditional HRU_TYPE IS GLACIER

:GlacierMelt GMELT_HBV
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GLACIER_ICE GLACIER
:GlacierRelease GRELEASE_HBV_EC

GLACIER SURFACE_WATER
#
:ProcessGroup #baseflow group

:Baseflow BASE_POWER_LAW SOIL[1]
SURFACE_WATER

:Baseflow BASE_THRESH_POWER SOIL[1]
SURFACE_WATER

:EndProcessGroup CALCULATE_WTS 0.5
:SnowBalance SNOBAL_HBV MULTIPLE

MULTIPLE
:EndHydrologicProcesses
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F.14 EnKF implementation

In the .rvi file:

:EnsembleMode ENSEMBLE_ENKF 30
:SilentMode

The subbasin group AllSubbasinsmust be populated in the .rvh file and there must be HYDROGRAPH-
type :ObservationData in subbasins 321, 604, and 1204 indicated below. In the .rve file:

:OutputDirectoryFormat ./outEnKF/mem_*

# EnKF parameters
#---------------------------------------------------
:EnKFMode ENKF_CLOSED_LOOP
:SolutionRunName Alouette

# the forcing perturbations to apply
#----------------------------------------------------
:ForcingPerturbation PRECIP DIST_NORMAL 0.0 1.5 ADDITIVE
:ForcingPerturbation TEMP_AVE DIST_UNIFORM -0.5 0.5 ADDITIVE

# the states to adjust during assimilation
#----------------------------------------------------
:AssimilatedState SNOW ALLSubbasins
:AssimilatedState SOIL[0] AllSubbasins

# Observations to assimilate at 3 stream gauges
#----------------------------------------------------
:AssimilateStreamflow 321
:AssimilateStreamflow 604
:AssimilateStreamflow 1204
:ObservationErrorModel STREAMFLOW DIST_NORMAL 1.0 0.07 MULTIPLICATIVE
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To do. . .

□ 1 (p. 46): Add PERC ASPEN routine / parameter

□ 2 (p. 81): Add unit hydrograph intercomparison figure

□ 3 (p. 83): find RobertsonEtAl1995 reference

□ 4 (p. 84): Muskingum citations

□ 5 (p. 101): Sub-daily temperature orographic and lapsing temp ranges not yet described

□ 6 (p. 151): Forcing estimator code development section

□ 7 (p. 172): Create a table for ’Required Parameters for Hydrologic Processes Options’
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