

HBV-EC in Raven: Practical Insights and Applications across Western Canada

Raven User Conference

May 29, 2025

Outline

- HBV and HBV-EC
- Typical Changes
- Representation of...
 - Lakes
 - Glaciers
 - Rainfall Events

Hydrologiska byråns vattenbalansavdelning

- Developed by Sten Bergstrom at the Swedish Meteorological and Hydrological Institute
- Earliest version of the model date back to 1972
- Goals:
 - Sound physical description but not complex
 - Data demands met by observational network
 - Avoid overparameterization
- Numerous model variations many applications, publications

HBV-EC Origins

ESTIMATING WINTER STREAMFLOW USING CONCEPTUAL STREAMFLOW MODEL

By A. S. Hamilton,¹ D. G. Hutchinson,² and R. D. Moore³

ABSTRACT: Ice-affected periods represent a significant portion of the annual hydrograph for most Canadian hydrometric stations. Because the stage-discharge relation is not reliable under ice-cover conditions, Water Survey of Canada subjectively interpolates winter streamflow from as few as two observations of discharge during the ice-covered season, which may last 6 months or longer. An alternative method of producing discharge estimates is proposed that uses a combination of conceptual and statistical hydrological modeling to overcome limitations in both the availability of data and our understanding of relevant processes. A conceptual hydrological model is tested to evaluate the utility of this approach for data-sparse regions. When model predictions were adjusted to fit two winter measurements, 79% of all verification measurements were within 20% of predicted estimates. There was a seasonal bias to the error distribution, with most measurements within the first 30 days after freeze-up being less than predicted and most measurements after April 1 being greater than predicted. These deviations probably result from hydraulic and hydrologic processes not represented within the model.

Application of a conceptual streamflow model in a glacierized drainage basin

R.D. Moore

Geography Department, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada (Received 31 July 1992; revision accepted 26 December 1992)

hhc

HBV-EC

Why do we like HBV-EC?

- Limited forcing inputs
- Simple, easy to understand
- Limited parameters
- Does well in snowmelt dominated basins

What could use improvement?

- Original model did not consider nonstationarity
- Process representation
 - Lakes
 - Vegetation

•

What are we using it for?

- Climate change assessments
- Forecasting
- PMF

HBV-EC Emulation in Raven

Similkameen Watershed – Some simple changes

08NL022 - Similkameen River near Nighthawk

8

Similkameen Watershed – Some simple changes

- Project purpose: understand climate change impacts to Similkameen near Nighthawk gauge (influencing Osoyoos Lake operations)
- Key Model Structure Changes:
 - Change PET from monthly values to Hargreaves 1985
 - Eliminate lateral equilibrate for fast and slow reservoir
 - Use Raven lake release/evaporation instead of soil 2 reservoir

Representation of Lakes and Reservoirs

Snhc

- Traditional HBV-EC structure is not ideal for watersheds with significant lakes and reservoirs
- Hydrologic model of the Okanagan mainstem uses HBV-EC as the basis but with power of Raven's other lake and reservoir representation
- Project goal: Understand implication of climate change to lake inflows, outflows, levels
- 11 lakes/reservoirs and 3 operating schemes

Lake Storage and Evaporation

<pre># non-HBV: :LakeStorage LAKE STORA</pre>	GE			
#Hydrologic Processe	S			
:Alias SLOW_RESERVOIR S	OIL[2]			
:HydrologicProcesses				
:SnowRefreeze FREEZE DEGREE DAY		SNOW LIO	SNOW	
:Precipitation	PRECIP RAVEN	ATMOS PRECIP	MULTIPLE	
:CanopyEvaporation	CANEVP_ALL CANEVP_ALL SNOBAL_SIMPLE_MELT OVERFLOW RAVEN	CANOPY CANOPY_SNOW SNOW SNOW LIO	ATMOSPHERE ATMOSPHERE	
:CanopySublimation				
:SnowBalance			SNOW_LIQ PONDED WATER	
:Overflow				
:Flush	RAVEN DEFAULT	PONDED WATER	GLACIER	
:>Conditional	HRU TYPE IS GLACIER	_		
:GlacierMelt	GMELT HBV	GLACIER ICE	GLACIER	
:GlacierRelease	GRELEASE HBV EC	GLACIER	SURFACE WATER MULTIPLE	
:Infiltration	INF HBV	PONDED WATER		
:Flush	RAVEN DEFAULT	SURFACE WATER	FAST RESERVOIR	
:>Conditional	HRU TYPE IS NOT GLACIER		100	
:>Conditional	HRU TYPE IS NOT LAKE			
:SoilEvaporation	SOILEVAP HBV	SOIL[0]	ATMOSPHERE	
:CapillaryRise	CRISE HBV	FAST DESERVOTE	SOIL[0]	
:LakeEvaporation	LAKE EVAP BASIC	LAKE STORAGE	ATMOSPHERE #non hb	
:LakeRelease	LAKEREL LINEAR	LAKE STORAGE	SURFACE WATER #non hb	
:Percolation	PERC_CONSTANT	FAST RESERVOIR	SLOW_RESERVOIR	
:Baseflow	BASE POWER LAW	FAST RESERVOIR	SURFACE_WATER	
:Baseflow	BASE LINEAR	SLOW RESERVOIR	SURFACE WATER	

:EndHydrologicProcesses

Evaporation from Lakes

- Lake evaporation is a significant portion of the water balance
- External model developed for Okanagan mainstems used to calculate Lake evaporation
- Used PET_DATA and gauge weights to apply external model results within the Raven model

From Schertzer and Taylor, 2010

Backwater Effect on Lake Osoyoos

- Under normal conditions Osoyoos
 Lake levels determined by inflow from
 the Okanagan River and operations of
 Zosel dam
- Under certain conditions Osoyoos Lake levels become backwatered by Similkameen River with backflow occurring in extreme conditions

ATA SOURCES: BACKGROUND - ESRI WORLD IMAGERY, INSET BACKGROUND - ESRI TOPO

Backwater Effect on Lake Osoyoos

- Implemented latest reservoir management methods in Raven
- Used regression that describes relationship between Osoyoos Lake Levels, Okanagan Flow, and Similkameen Flow
- When specific criteria met typical operations stop and regression equation used to determine "target water level"

Observed — Simulated

Representation of Glaciers

:GlacierMelt :GlacierRelease

GMELT_HBV GRELEASE_HBV_EC GLACIER_ICE GLACIER GLACIER SURFACE WATER

GMELT_HBV = POTMELT*HBV_MELT_GLACIER_CORR

 $GRELEASE = -K^* \varphi_{Glac} \qquad K^* = K_{MIN} + (K - K_{MIN})^{-AG(SN+SNLiq)}$

Representation of Glacier Retreat – Historic Conditions

Landuse changes

:LandUseChange Glaciers_1985 BARE 2005-01-01 :VegetationChange Glaciers_1985 BARE 2005-01-01 :HRUTypeChange Glaciers_1985 STANDARD 2005-01-01

Representation of Glaciers – Reality Checks

 $Ice_{wastage} = \min_ice_{yi} - \min_ice_{yi-1}$ $\Delta SWE = \min_SWE - \min_SWE_{vi-1}$

Custom Outputs – Yearly minimum glacier ice and yearly minimum SWE

Representation of Glaciers – Parameter Ranges

GMELT_HBV = POTMELT*HBV_MELT_GLACIER_CORR

- HBV_MELT_GLACIER_CORR should always be greater than 1
- Typical Range 1-2

GRELEASE = $-K^* \varphi_{Glac}$

$$K^* = K_{MIN} + (K - K_{MIN})^{-AG(SN+SNLiq))}$$

- K_{min} < K (Tied parameter in Ostrich)
- Both Kmin and K < 1
- K_{min}: 0.05 default
- K: 0.1 default
- AG: 0 0.2 (Green Kenue Manual)

Table 3. Melt factors for snow (k_s) and ice (k_i) and static massbalance sensitivities (S_T) to a 1 K temperature increase, calculated from the model run (15 May–30 September, 6.0°C km⁻¹)

Glacier	$k_{\rm s}$	$k_{\rm i}$	R^2	n	S_T
	$mm{}^{\circ}C^{-1}d^{-1}$	$mm^\circ C^{-1}d^{-1}$			m w.e. a ⁻¹ K ⁻¹
Bench	2.81	4.17	0.80	52	-0.43
Bridge	3.21	4.22	0.86	94	-0.55
Helm	3.62	5.27	0.65	35	-0.56
Peyto	2.32	5.57	0.90	239	-0.49
Place	2.71	4.69	0.81	165	-0.55
Sykora	3.27	4.22	0.84	37	-0.54
Tiedemann	2.97	4.79	0.83	67	-0.54
Woolsey	3.21	4.58	0.75	67	-0.45
Zavisha	3.23	3.61	0.37	28	-0.52
Mean	3.04	4.59			-0.51

Shea et al. 2009

Wrap Up

- HBV-EC is a great model choice, particularly in snowmelt dominated systems
 - Works well at hourly and daily timestep
- Add complexity as needed make the model fit for purpose

Thank you!

gbrown@nhcwater.com