

CALIBRATION, TEMPLATES, HYDROFABRICS, AND OTHER RAVEN MISCELLANY

Bryan Tolson, PhD

- 1. Professor, Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, Canada
- 2. Heron Hydrologic, https://heronhydrologic.ca/

Raven Workshop. May 29, 2025. Penticton, B.C.

Goals

- Knowledge sharing
 - ... after teaching 62 UWaterloo undergrads hydrologic modelling with Raven
- Convince you all to use RavenView from this day forth
- Convince you all to use the Canadian Lake & River Hydrofabric (or OLRRPv2 in Ontario) to build your next Raven model
- Learn about your modelling needs and suggestions

Surveys

- RavenView
 - How many Raven modellers have NOT used RavenView in practice?
- Uwaterloo hydrofabrics (CLRH or OLRRP)
 - How many Raven modellers have NOT used CLRH/OLRRP to date?

RavenView Demo 1: no geojson files

- Open RavenView: https://raven.uwaterloo.ca/RavenView/RavenView.html
- Import any Raven time series file with this button:

Import multiple I/O files

- Forcing file .rvt
- Observed streamflow .rvt
- **any** Raven output file
- Begin your diagnosis and inspection!!!

Canadian Lake & River Hydrofabric

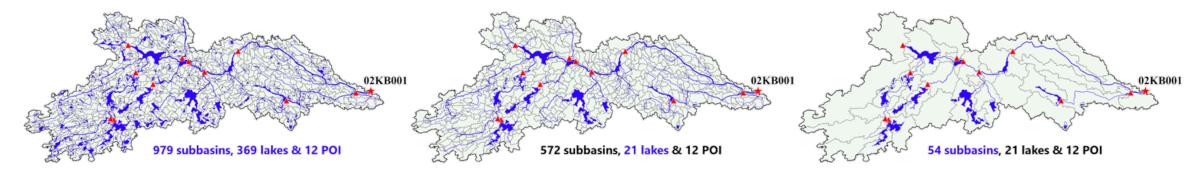
Go here: hydrology.uwaterloo.ca/CLRH/

Check out 08JB006

The Canadian Lake-River Hydrofabric (CLRH)

CLRH:

- Is as consistent as possible with NHS National Hydrometric Network Basin Polygons prerelease (2024/08/29) uses ECCC flow direction raster developed with NHN (J. Weibe's group)
 - Blue line network respected!
- Resolves subbasins at a scale of ~5km², lakes >0.1km²
- Includes subbasin outlets at key points of interest (POIs)
 - HYDAT gauges,
 - Available provincial flow and level monitoring gauges
 - River crossings along U.S. border
- Subjected to rigorous quality control



CLRH & BasinMaker 3.1

https://hydrology.uwaterloo.ca/basinmaker/

- Open source software tool developed at uWaterloo
- Can delineate site-specific routing network from any DEM/FDR/Lake polygon dataset
 - Key strength proper delineation of Lakes!
- Can be used to customize base CLRH data for user purposes
 - Add/remove POIs
 - Decrease spatial resolution
 - Decrease number of lakes based on threshold
- Can directly generate Raven hydrological model input files

Canadian Lake & River Hydrofabric DEMO

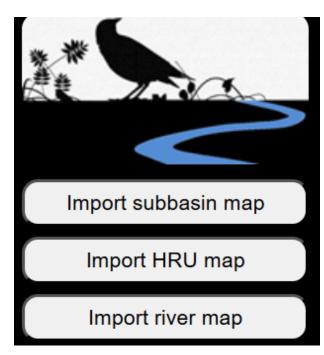
- Looking for a volunteer:
 - Do you have <u>one of your</u> Raven models you can run on your laptop here?
 - Is it a lumped model? [or did you build your .rvh without using CLRH?]
 - Is your watershed < 5000 km2?
 - Will you provide the group a WSC gauge ID or watershed outlet location?

Canadian Lake & River Hydrofabric

- Go here: hydrology.uwaterloo.ca/CLRH/
- Follow along and we can all delineate our new favourite watershed

Canadian Lake & River Hydrofabric DEMO

Updating your model to use the new CLRH files from BasinMaker Colab:


- 1. Replace your .rvh and channel_properties.rvp files with ones from CLRH
- 2. Edit .rvp as follows:
 - a. Insert a redirect to channel_properties.rvp at the end of the file
 - b. Change your dominant LAND_USE_CLASS VEG_CLASS SOIL_PROFILE names to (respectively):

```
Landuse_Land_HRU Veg_Land_HRU Soil_Land_HRU
```

- 3. In .rvi, use :Interpolation INTERP_NEAREST_NEIGHBOR
- 4. Change the SubID in your observed flow .rvt to the CLRH subbasin ID containing your WSC gauge
- 5. Try and run it!

RavenView Demo 2: geojson files from CLRH

- Open RavenView: https://raven.uwaterloo.ca/RavenView/RavenView.html
- Import any CLRH generated geojsons with these buttons:

← finalcat_info_v1-o.geojson (the one you just downloaded)

← routing_product_lake_river.geojson (the one you just downloaded)

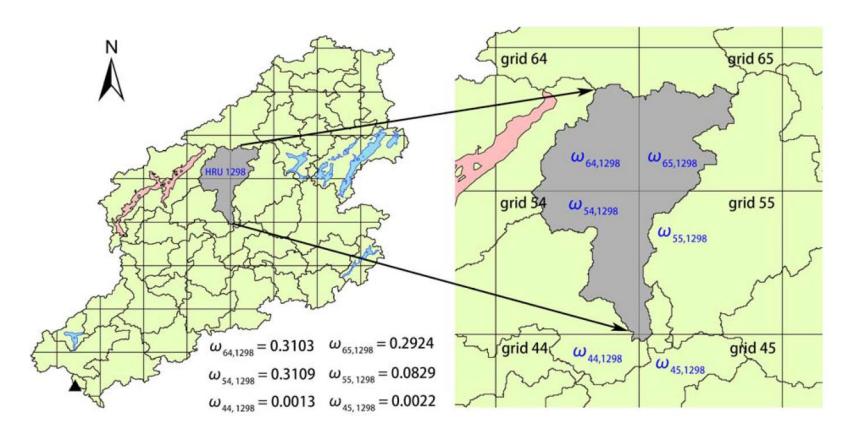
Begin your diagnosis and inspection!!!

RavenView Demo 3: geojsons & Raven output files

- You can do this one yourself
- Click the Help button
 - Watch the 5 minute Youtube video starring James Craig
 - https://www.youtube.com/watch?v=-znMUKHjeeo&feature=youtu.be

Combination gives you your map-based Raven output viewer

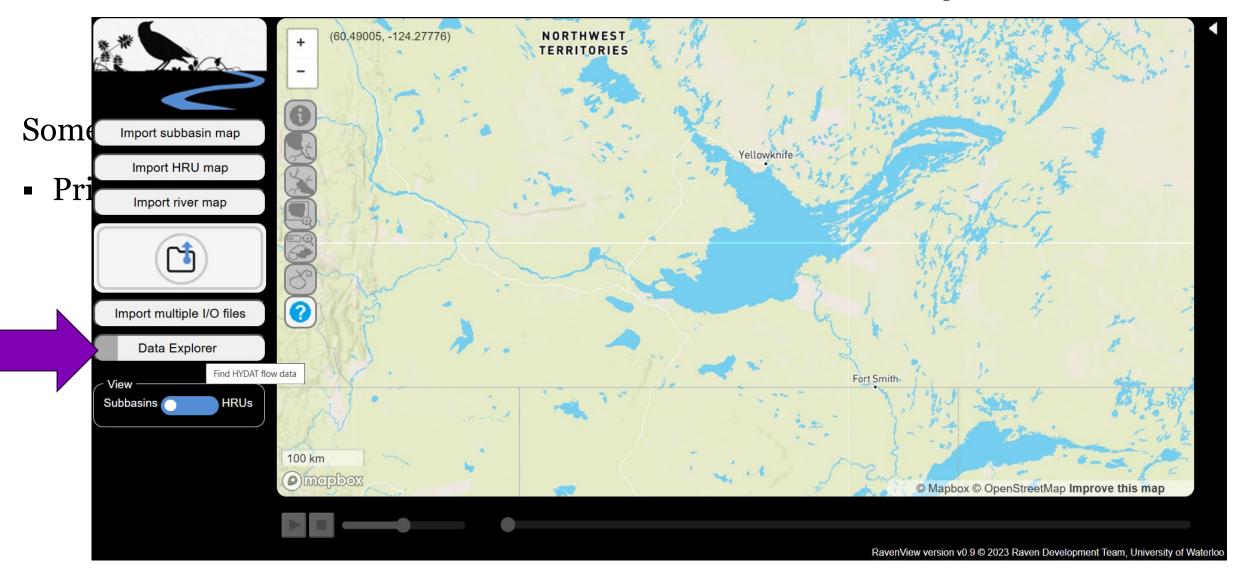
• If you think you might like to create a permanent RavenView webpage hosting your model and results ... email the Heron Hydrologic team (Rob, Bryan, James, Hannah)

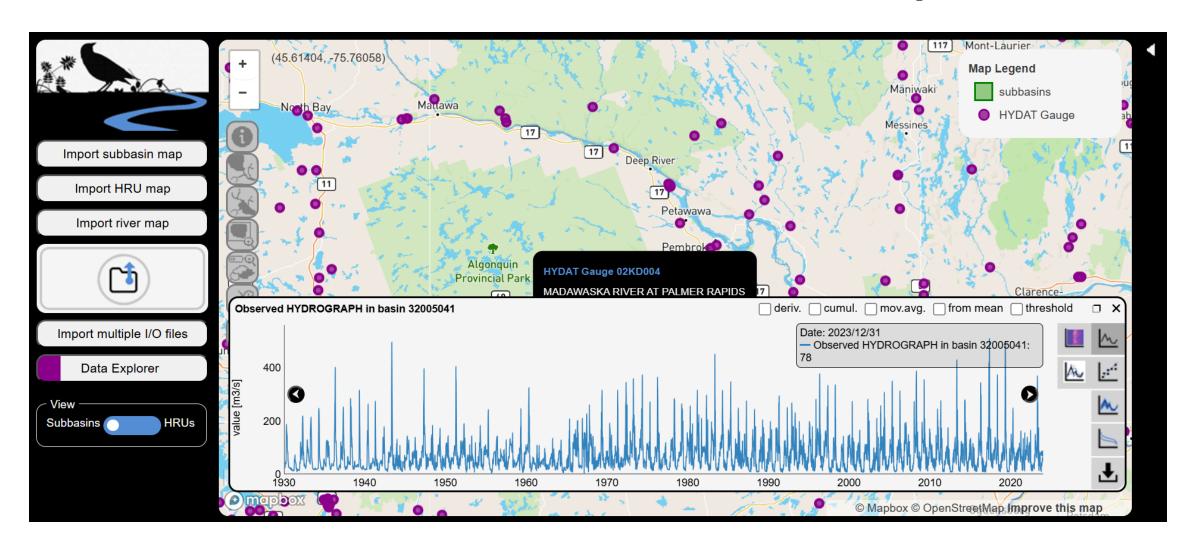

Semi-distributed model templates: Coming Soon

- Current Raven model template files apply directly to <u>lumped</u> model configurations
- Next Raven release, each template will be constructed with a semi-distributed (land & lake HRU) configuration as the assumed default user case:
 - .rvi will be paired with an .rvp file:
 - Provides reasonable parameter default values
 - Will identify inactive/artificial parameters with 'Not_used' label (and Raven will warn you if it wants to use that value)
 - Saves unnecessary sensitivity analysis & helps keep your model truly the 'HBV-EC' model
- To get a model simulating:
 - 1. Generate CLRH routing network/delineation files (.rvh from Colab) +
 - 2. The new template files (.rvp & .rvi) +
 - 3. Your climate forcing inputs (.rvt)

Canadian Surface Reanalysis (CaSR) version 3.1

- A few weeks ago ECCC released version 3.1 of their Canadian Surface Reanalysis forcing product (Khedhaouiria et al., 2025)
 - https://hpfx.collab.science.gc.ca/~scar700/rcas-casr/index.html
- 43 yrs of 10x10 km gridded model forcings from CaSR v3.1 subdaily timestep data:
 - Derived analysis rainfall (1-hour timestep)
 - Derived analysis snowfall (1-hour timestep)
 - Analysis air temperature (3-hour timestep)
- **Analysis** here means forcing variable is the ECCC numerical weather forecast model predictions with assimilated daily observations
- If you are building a Raven model for forecasting, THIS is the forcing data you really should use to calibrate


Remapping gridded forcings to HRUs/subbasins: Grid Weights


• UWaterloo team has 2-3 open source toolkits for generating the grid weights file

Canadian Surface Reanalysis (CaSR) version 3.1

- Comes in NetCDF format
- https://hpfx.collab.science.gc.ca/~scar700/rcas-casr/download CaSRv3.1 regions var period.html
- Team Raven is very good at using this NetCDF format data
- But is this useable for you and your team (NetCDF)?
- Heron/UWaterloo team wants to help make this more accessible to you all. Ideas?

- Official release date is Ju** this year ©
- Serves up daily time step .rvt formatted files for all WSC streamflow gauges (plug into your model)
 - Referenced to CLRH subbasin ID's
- Gives you all RavenView functionality to inspect and analyze observed flow data
- Drag and drop hydrographs onto one another ...

Raven framework functions you should know about

:AggregateDiagnostic

• e.g. median KGE of multiple gauges

:EvaluationPeriod cond options

Diagnostics for flows beyond specified percentile

:LateralEquilibrate

 Creates one groundwater store per subbasin (or watershed) instead of one per HRU

```
:AggregateDiagnostic [agg_stat] [datatype]
e.g.,
:AggregateDiagnostic AVERAGE HYDROGRAPH
```

The optional arguments cond and thresh can be used to exclude observation data based upon a threshold percentile. cond can be one of IS_GREATER_THAN or IS_LESS_THAN and thresh is a number between 0 and 1. This conditional clause determines the frequency of observed flows in the evaluation period then retains data above or below the specified threshold percentile (expressed from 0 to 1). For instance,

```
:EvaluationPeriod CALIB_HI 2002-10-01 2008-09-30 IS_GREATER_THAN 0.2
```

Evaluates the diagnostics for the 80% highest magnitude observations during the simulation duration, and disregards the 20% smallest observations. For observed hydrographs, this may be considered retaining all flows larger than the Q20 flow.

The Lateral Equilibrate process

Lateral equilibration is used to represent the basin-wide equilibration of storage over time. It would typically be used to represent groundwater exchange between deep groundwater storage or wetlands. The :LateralEquilibrate process uses the following syntax:

```
:LateralEquilibrate RAVEN_DEFAULT [HRUGroup] [SV] [mix_rate] {INTERBASIN}
```

Where HRUGroup denotes which HRU group this applies to in a given basin (often all HRUs), the SV refers to a source variable from table D.1). mix_rate is the percentage of water equilibrated per day (for a time step of 1.0 and mixing rate >1/d, the storage will be instantaneously equilibrated every day).

Calibrating to Water Levels

You can do this easily ... talk to myself or James if questions

Raven Input file in Routing Only Mode is Very Simple

```
🔚 SE.rvi 🛚 🔻
     # Raven Input file
      # GEM-Hydro SE region
      :StartDate 2010-01-01 00:00:00  # Model run start time, f
      :EndDate 2015-12-31 00:00:00 # Model run end time, for
      :Method ORDERED_SERIES # Numerical method used f
:TimeStep 24:00:00 # Expressed in days as a
                                                  # The name of model run.
      :RunName
                         se
10
      :CatchmentRoute ROUTE_DUMP
                                                  # Catchment routing metho
              ROUTE_DIFFUSIVE_WAVE  # Channel routing method
12
      :Routing
                         PRECIP ICEPT NONE # Estimation of the preci
      :PrecipIceptFract
                         POTMELT NONE # Estimation of the poten
14
      :PotentialMeltMethod
                         SW RAD NONE
                                         # Estimation of shortwave
     :SWRadiationMethod
15
                         SOIL_ONE_LAYER # In this routing model,
16
     :SoilModel
                                                  # Over water evporation,
17
      :OW Evaporation
                         PET NONE
18
19
     -: HydrologicProcesses
        :Precipitation PRECIP RAVEN
 20
                                         ATMOS PRECIP
                                                          PONDED WATER
      :Flush RAVEN_DEFAULT
    :Flush RAVEN_DEFAULT PONDED_WATER
:Recharge RAVEN_DEFAULT ATMOS_PRECIP
                                                          SURFACE WATER
                                                          SOIL[0]
23
      :Baseflow BASE THRESH POWER
                                            SOIL[0]
                                                          SURFACE WATER
     :EndHydrologicProcesses
```

Concluding Pledges for all of us ©

1. From this day forth, I shall utilize RavenView to help me build my Raven models

2. Next time I build a Raven model, I shall attempt to use CLRH* for subbasin and lake delineation

*OLLRPv2 if I am building models in Ontario.

QUESTIONS ??