Le cadre hydrologique Raven offre une grande variété d'options de modélisation et repose
sur une architecture logicielle robuste et extensible. Il est utilisé par un certain nombre d'organisations
Canadiennes pour la gérance des réservoirs et la prévision des inondations.
Pour citer Raven, veuillez utiliser:
Craig, J.R., G. Brown, R. Chlumsky, W. Jenkinson, G. Jost, K. Lee, J. Mai, M. Serrer, M. Shafii, N. Sgro, A. Snowdon, and B.A. Tolson,
Flexible watershed simulation with the Raven hydrological modelling framework, Environmental Modelling and Software, 129, 104728, doi:10.1016/j.envsoft.2020.104728, July 2020
(paper)
Pour citer les détails techniques de Raven pour les rapports techniques, la version actuelle du manuel de l'utilisateur et du développeur:
Craig, J.R., and the Raven Development Team, Raven user's and developer's manual (Version 3.5),
URL: http://raven.uwaterloo.ca/ (Accessed xxx, 2023).
Raven-related papers/theses:
Arsenault, R., D. Huard, J. Martel, M. Troin, J. Mai, F. Brissette, C. Jauvin, L. Vu, J.R Craig, T. Logan, T.J. Smith, B.A. Tolson, M. Han, S. Langlois,
The PAVICS-Hydro platform: a virtual laboratory for hydroclimatic modelling and forecasting over North America,
Environmental Modelling and Software, 168, 105808, 2023
(paper)
Brown, G., and J.R. Craig,
Structural calibration of a semi-distirbuted hydrological model of the Liard River basin, Canadian Water Resources Journal, 2020
(paper)
Brown, G., Application of a Hydrological Model for Predicting River Ice Breakup",
MASc thesis, University of Waterloo, 2019
Chernos, M., R. MacDonald, J.R. Craig,
Efficient semi-distributed hydrological modelling workflow for simulating streamflow and characterizing hydrologic processes,
Confluence: Journal of Watershed Science and Management, , 1(3), 2017 (paper)
Chernos, M., R. MacDonald, M.W. Nemeth, and J.R. Craig,
Current and future projections of glacier contributions to streamflow in the Upper Athabasca River basin,
Canadian Water Resources Journal, 2020 (paper)
Chlumsky, R., "Rigorous validation of hydrologic models in support of decision-making", MASc thesis, University of Waterloo, 2017
Chlumsky, R., J. Mai, J.R. Craig, and B.A. Tolson, Simultaneous calibration of hydrologic model structure and parameters using a blended model,
Water Resources Research, 57, e2020WR029229, doi:10.1029/2020WR029229, 2021
(paper)
Goodbrand, A., Anderson, A., Devito, K. and Silins, U.,
Untangling harvest-streamflow responses in foothills conifer forests: nexus of teleconnections, summer-dominated precipitation, and storage. Hydrological Processes. e14479, doi:10.1002/hyp.14479, 2022 (paper)
Jansen, K., A. J. Teuling, J.R. Craig, M. Dal Molin, W. Knoben, J. Paarajka, M. Vis, L.A. Melsen, Mimicry of a conceptual hydrological model (HBV): What’s in a name?
Water Resources Research, e2020WR029143, doi:10.1029/2020WR029143, 2021
(paper)
Leach, J.A., J.M. Buttle, K.L. Webster, P.W., Hazlett, and D.S. Jeffries,
Travel times for snowmelt-dominated headwater catchments: Influences of wetlands and forest harvesting, and linkages to stream water quality
Hydrological Processes 34, p2154-2175, 2020, doi:10.1002/hyp.13746 (paper)
Lee, K., Assessing the utility of hydrologic model diagnostics for decision support",
MASc thesis, University of Waterloo, 2018
Mai, J. , B. A. Tolson, H. Shen, É. Gaborit, V. Fortin, N. Gasset, H. Awoye, T. A. Stadnyk, L. M. Fry, E. A. Bradley, F. Seglenieks,
A. G. Temgoua, D. G. Princz, S. Gharari, A. Haghnegahdar, M. E. Elshamy, S. Razavi, M. Gauch, J. Lin, X. Ni, Y. Yuan, M. McLeod,
N. Basu, R. Kumar, O. Rakovec, L. Samaniego, S. Attinger, N. K. Shrestha, P. Daggupati, T. Roy, S. Wi, T. Hunter, J. R. Craig, and A. Pietroniro
The Great Lakes runoff intercomparison project phase 3: Lake Erie (GRIP-E), Journal of Hydrologic Engineering, 26(9), 2021
(paper)
Mai, J., J.R. Craig, and B.A. Tolson,
Simultaneously determining global sensitivities of model parameters and model structure, Hydrology and Earth System Science, 24, p5835-5858, 2020
(paper)
Mai, J., J.R. Craig, B.A. Tolson, and R. Arsenault,
The sensitivity of simulated streamflow to individual hydrologic processes across North America, Nature Communications 13(1), 455, 2022
(paper)(interactive website)
Sgro, N.,
"Formal hypothesis testing for prospective hydrological model improvements", MASc thesis, University of Waterloo, 2016
Shafii, M. J.R. Craig, M.L. Macrae, M. C. English, S. Schiff, P. van Cappellen, and N. Basu,
A diagnostic approach to constraining flow partitioning in hydrologic models using
a multi-objective optimization framework, Water Resources Research, 53, doi:10.1002/2016WR019736, 2017 (paper)
Snowdon, A.,
"Improved numerical methods for distributed hydrological models", MASc thesis, University of Waterloo, 2010
Snowdon, A., "Upscaling of coupled models with topography-driven surface-water/groundwater interactions", PhD thesis, University of Waterloo, 2016
Spieler, D., B.A. Tolson, J. Mai, J.R. Craig, and N. Schuetze,
Automatic model structure identification for conceptual hydrologic models, Water Resources Research, 2020
(paper)
Weier, J., Niederschlag-Abfluss-Modellierung unter Hinzunahme eines Permafrostmoduls am Beispiel der Selenga (Precipitation runoff modeling with the addition of a permafrost module
using the example of Selenga), MSc Thesis, Universität Heidelberg, 2019
Yao H, Field T, McConnell C, Beaton A, James AL. Comparison of five snow water equivalent estimation methods across categories. Hydrological Processes. 2018;32:1894–1908.
https://doi.org/10.1002/hyp.13129